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Abstract  

Radon (222Rn) is a naturally occurring radioactive noble gas produced in the decay series of 

uranium (238U), which is ubiquitously present in rocks, soils and some building materials. 

Radon from soil is being continuously released into the atmosphere. It can also accumulate 

in enclosed spaces, where it can pose a significant health risk upon inhalation. With a half-

life of 3.8 days, 222Rn undergoes further radioactive decay through a series of short- and 

long-lived progeny. Beyond its radiological significance, outdoor radon and its progeny 

serve as effective environmental tracers.  

This dissertation presents a comprehensive, multi-year study of outdoor radon dynamics in 

Bratislava, Slovakia, with a focus on its temporal variability, environmental influences, and 

radon potential as a tracer of environmental process. The study spans six years (2018-2023) 

of continuous radon measurements using a scintillation detector, and three years 

(2020-2022) of short-lived progeny measurements collected via alpha spectrometry. Low 

average radon concentrations (5.6 ± 3.9 Bq⋅m-³) were detected in the atmosphere of 

Bratislava during the monitored period, which is significantly lower than the global average 

of 10 Bq⋅m-³.  

Diurnal cycles of outdoor radon showed maximum concentrations in the early morning and 

minimum concentrations in the afternoon, while seasonal trends showed the lowest 

concentrations in April and the highest in November. These patterns are governed by 

changes in boundary layer height (BLH) and radon flux dynamics. Conventional regression 

and machine learning models were both applied to hourly data to identify the dominant 

environmental drivers of radon variability. The machine learning models significantly 

outperformed the traditional approaches, consistently identifying BLH as the dominant 

predictor of outdoor radon concentration and precipitation as the least influential factor. 

Further analysis of the interactions between radon progeny, particulate matter (PM), 

meteorological variables, and BLH demonstrated a strong, non-linear relationship between 

radon progeny and PM, suggesting enhanced attachment under polluted conditions.   

A box model incorporating outdoor radon concentration and radon flux was used to estimate 

the mixing layer height. The estimated mixing layer height effectively captures diurnal and 

seasonal boundary-layer dynamics, despite some limitations due to low radon concentration 

measurements and uncertainties in the radon flux data. 
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 Furthermore, the mean aerosol residence time was derived from activity ratios of 
210Pb/222Rn, 210Pb/214Pb, and 210Pb/214Bi, averaging 3.15 days (ranging from 0.35–6.73 days), 

which is consistent with findings in the existing literature.  

Overall, this work underscores the importance of long-term outdoor radon monitoring for 

both atmospheric research and public health. It demonstrates that radon and its progeny are 

effective, low-cost tracers of atmospheric mixing and aerosol dynamics.
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Abstract (Slovak version)  

Radón (222Rn) je prirodzene sa vyskytujúci rádioaktívny vzácny plyn vznikajúci v 

premenovom rade uránu (238U), ktorý je všadeprítomný v horninách, pôdach a niektorých 

stavebných materiáloch. Radón je kontinuálne uvoľňovaný z pôdy do atmosféry, hromadí sa 

tiež v uzavretých priestoroch a jeho inhalácia môže predstavovať významné zdravotné 

riziko. 222Rn sa s dobou polpremeny 3,8 dňa ďalej rozpadá prostredníctvom série krátko a 

dlhožijúcich produktov premeny. Okrem svojho rádiologického významu slúžia radón a jeho 

dcérske produkty ako účinné stopovacie látky v životnom prostredí.  

Táto dizertačná práca predstavuje komplexnú, viacročnú štúdiu dynamiky radónu v 

atmosfére Bratislavy (Slovensko), so zameraním na jeho časovú variabilitu, vplyvy 

životného prostredia a na potenciál radónu ako stopovača environmentálnych procesov. 

Štúdia zahŕňa šesť rokov (2018–2023) kontinuálnych meraní radónu pomocou scintilačného 

detektora a tri roky (2020–2022) meraní krátkožijúcich dcérskych produktov získaných 

pomocou alfa spektrometrie. Za sledované obdobie boli v atmosfére Bratislavy zistené nízke 

priemerné koncentrácie rádonu (5,6 ± 3,9 Bq⋅m⁻³), čo je výrazne menej ako je celosvetový 

priemer 10 Bq⋅m⁻³.  
Denné cykly koncentrácie radónu dosahovali maximá v skorých ranných hodinách a minimá 

popoludní, zatiaľ čo sezónne trendy sa vyznačovali najnižšími koncentráciami v apríli a 

najvyššími v novembri, čo je spôsobené zmenami výšky hraničnej vrstvy atmosféry (BLH) 

a dynamikou exhalácie radónu z pôdy. Na identifikáciu hlavných environmentálnych 

faktorov ovplyvňujúcich variabilitu rádonu boli na hodinové dáta aplikované konvenčné 

regresné modely a modely strojového učenia. Modely strojového učenia výrazne prekonali 

tradičné modely a konzistentne identifikovali BLH ako dominantný prediktor koncentrácií 

radónu, zatiaľ čo zrážky sa ukázali ako najmenej významný faktor.  

Ďalšia analýza interakcií medzi dcérskymi produktmi rádonu, polietavými prachovými 

časticami (PM), meteorologickými premennými a BLH preukázala silný, nelineárny vzťah 

medzi produktmi premeny rádonu a PM, čo vypovedá o ich zvýšenom záchyte na 

prachových časticiach v prípade atmosférického znečistenia.  

Na odhad výšky zmiešavacej vrstvy atmosféry bol využitý tzv. box model, ktorého vstupné 

parametre boli aktivita radónu vo vonkajšej atmosfére a exhalačná rýchlosť radónu z pôdy. 

Odhadnutá výška zmiešavacej vrstvy účinne zachytáva denné a sezónne variácie hraničnej 
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vrstvy, a to aj napriek určitým obmedzeniam spôsobeným meraním nízkych koncentrácií 

radónu a neistotám v určení jeho exhalačnej rýchlosti. 

Priemerný čas zotrvania aerosólov bol odhadnutý z pomerov aktivít ²¹⁰Pb/²²²Rn, ²¹⁰Pb/²¹⁴Pb 

a ²¹⁰Pb/²¹⁴Bi, pričom jeho priemerná hodnota bola na úrovni 3,15 dňa (s rozsahom 

0,35-6,73 dňa), čo je v dobrej zhode s hodnotami uvádzanými v literatúre.  

Táto práca ako celok zdôrazňuje význam dlhodobého monitorovania radónu pre 

atmosférický výskum a verejné zdravie a dokazuje, že radón a jeho produkty premeny sú 

účinnými a nízkonákladovými stopovačmi atmosférického premiešavania a dynamiky 

prachových častíc v atmosfére.
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Preface 

My interest in radon research began when I first learned about its unique properties. Radon 

is a fascinating radionuclide for researchers because of its distinctive characteristics i.e., on 

one hand, posing health risks due to its radioactive nature, and on the other hand, offering 

potential as a tracer in environmental processes. Working with radon provides an excellent 

opportunity for those passionate about interdisciplinary research, as it involves aspects of 

nuclear physics, atmospheric science, and environmental monitoring. I have been fortunate 

to engage in this interdisciplinary field. 

Initially, my plan was to focus on outdoor radon measurement using passive detectors, such 

as etched track detectors, in different regions of Slovakia. However, due to limited laboratory 

equipment, my research direction shifted toward continuous radon measurements and their 

application as environmental tracer. I found this path more compelling and promising. 

Fortunately, our faculty has a long-standing history of collecting outdoor radon data, 

spanning more than three decades. 

Ultimately, I set the objective of my dissertation to study the behaviour of outdoor radon and 

explore its potential as a tracer for environmental processes. To achieve these aims, I 

analysed long-term radon activity concentration (RAC) and used it to estimate the mixing 

layer height (MLH). The MLH represents the lowest part of the troposphere, ranging from 

hundreds of meters to several kilometres, and is a critical parameter in atmospheric research 

as it influences pollutant dispersion in the lower atmosphere. Since radon data for 

atmospheric studies require high accuracy and traceability, special care was taken during 

data preprocessing due to some limitations. 

My research objectives further extended to analysing the variability of radon and its progeny 

concerning key meteorological factors, boundary layer height (BLH), and particulate matter 

(PM). I utilized various statistical and machine learning techniques to gain deeper insights 

into the behaviour of radon and its governing factors. Understanding these interactions is 

essential for effective application of radon as a tracer and for mitigating associated health 

hazards. In particular, I developed an interest in investigating the interaction between radon 

progeny and PM, as both are carcinogenic and have been relatively underexplored. 

The structure of this dissertation is organized as follows: 
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Chapter 1: This chapter presents the theoretical background of the dissertation, including 

the basic properties of radon, its production in soil, transportation mechanisms, exhalation 

processes, and behaviour in the atmosphere. 

Chapter 2: This chapter describes the experimental methods used for measuring outdoor 

radon and its progeny, as well as the data analysis techniques employed. 

Chapter 3: This chapter presents the initial findings of the research. It includes a descriptive 

statistical analysis of the radon measurement data, complemented by an in-depth time series 

analysis to reveal temporal patterns and trends. 

Chapter 4: This chapter explores the environmental factors affecting radon temporal 

variability. It discusses various statistical and machine learning approaches used to identify 

the factors governing radon levels. 

Chapter 5: This chapter presents the study of radon progeny and its relationship with 

particulate matter and other meteorological parameters. 

Chapter 6: This chapter presents the application of radon and its progeny as tracers in 

atmospheric research. Specifically, it details the results for the retrieval of mixing layer 

height using radon measurements. Furthermore, this chapter presents the estimation of 

aerosol residence time, derived from the activity ratios of radon and its progeny.
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Introduction and objectives 

Radon (²²²Rn) is a naturally occurring radioactive noble gas produced in the uranium (238U) 

decay series. Uranium is widely present in rocks and soil with a half-life of billions of years, 

ultimately decaying to the stable isotope of lead (206Pb). As a result, radon is continuously 

released into the environment. With a half-life of 3.8 days, radon can travel significant 

distances from its source and accumulate in enclosed spaces. It decays through the emission 

of alpha particles, forming a series of short-lived radioactive progeny. Most of Radon decay 

products are electrically charged and readily attach to fine aerosols in the atmosphere, which 

can be deposited in lung tissue when inhaled. 

According to the UNSCEAR (2000), radon and its decay products (especially indoor radon) 

are the leading source of natural radiation exposure to the public, accounting for nearly half 

of the global mean effective dose. Exposure to radon is therefore a significant health concern 

and has been identified as the second leading cause of lung cancer after smoking (ICRP, 

1993). 

Radon in the atmosphere primarily originates from the soils and rocks near the Earth’s 

surface, groundwater and anthropogenic sources such as mining and the use of naturally 

occurring radioactive materials (NORM). While outdoor radon concentrations ranges 

(typically 1–100 Bq·m⁻³) are much lower than indoor levels (Čeliković et al., 2022). 

Although the effective dose from outdoor radon is relatively low, it still contributes to total 

natural radiation exposure. Furthermore, outdoor radon monitoring provides a valuable 

reference for distinguishing natural background levels from elevated anthropogenic 

emissions. 

Beyond health implications, radon has proven to be an effective environmental tracer due to 

its unique physical and chemical properties. These include its exclusive terrestrial origin, 

removal primarily through radioactive decay, inert nature as a noble gas, low water solubility 

(which limits washout by precipitation), and a half-life similar to the residence time of 

atmospheric aerosols. Importantly, its source strength shows minimal spatio-temporal 

variability (Karstens et al., 2015). These features make radon highly suitable for tracing 

various environmental processes. Some of the key applications of outdoor radon as a tracer 

of environmental processes include:  
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i) Assessing atmospheric vertical mixing and stability (e.g., Chambers et al., 2015, 

2016; Gregorič et al., 2020; Kikaj et al., 2019; Perrino et al., 2001; Sesana et al., 

2003; Sultani et al., 2023; Vecchi et al., 2005; Zahorowski et al., 2004). 

ii) Estimating greenhouse gas emissions (Grossi et al., 2018; Levin et al., 2021; 

Schmidt et al., 2001). 

iii) Tracing air mass transport (Gupta et al., 2004). 

iv) Hydrological studies (Adyasari et al., 2023; Baskaran, 2016; Sukanya et al., 

2022). 

Tracing dynamic processes such as earthquake prediction and volcanic activity (Friedman, 

2001; Hwa Oh & Kim, 2015; Utkin & Yurkov, 2010; Woith, 2015; Zmazek et al., 2003).The 

primary motivation of this dissertation is to improve understanding of the behaviour of 

outdoor radon and its short-lived progeny, particularly in relation to the environmental and 

atmospheric factors that govern their variability. Although numerous studies worldwide 

have examined atmospheric radon and its progeny, drawing definitive conclusions remains 

difficult due to the complex interplay of meteorological conditions, atmospheric mixing, 

source strength variability, and aerosol dynamics. This complexity poses ongoing challenges 

in predicting radon behaviour with high confidence as well as using it as a tracer of 

environmental process. 

A specific focus of this research is the interaction between short-lived radon progeny and 

particulate matter (PM), an area where current scientific understanding remains limited. Both 

radon progeny and PM are recognized carcinogens, and their potential synergistic effects on 

human health are still poorly understood. By leveraging long-term, continuous measurement 

data and applying advanced statistical and machine learning (ML) approaches, this study 

aims to analyse these interactions and provide deeper insights into their behaviour under 

varying atmospheric conditions. 

Additionally, this dissertation explores the application of radon as a tracer in environmental 

studies. While radon has been widely used for estimating parameters such as mixing layer 

height (MLH) and aerosol residence time, significant methodological challenges and 

uncertainties persist. For example, although various studies have used radon to estimate 

MLH, the reliability and accuracy of these models remain questionable and require further 

investigation. Similarly, the use of radon progeny ratios to determine aerosol residence time 

has yielded inconsistent results across different studies. This dissertation seeks to contribute 
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to the assessment of existing models, address their limitations, and offer improved 

methodologies for using radon as an atmospheric tracer. 

Given these diverse applications and the need for more detailed outdoor radon studies, this 

dissertation investigates outdoor radon and its progeny within the Slovak environment with 

the following objectives. 

Objectives of the dissertation 

The primary objectives of this dissertation are: 

1. To conduct continuous measurements of outdoor radon and its short-lived decay 

products in the atmosphere of Slovakia using multiple measurement techniques. 

2. To analyse the time series of outdoor radon and its progeny and investigate the key 

environmental factors influencing their variability, using both statistical and 

machine learning approaches. 

3. To assess the potential use of radon as a tracer for atmospheric studies, including 

the determination of MLH and the estimation of aerosol residence time. 
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Chapter 1 

 

1. Theoretical background 

This chapter presents the fundamental properties and behaviour of radon in outdoor 

environments, covering its physical and radioactive characteristics, sources, transport 

mechanisms and atmospheric variations.  

1.1. Basic properties of radon 

Radon was first discovered in 1898 by Friedrich Ernst Dorn, a German scientist (Dorn, 

1900). It is colourless, odourless and tasteless noble gas. Radon is the heaviest among the 

noble gases, which is a group of chemical elements known for their very low chemical 

reactivity due to their full valence electron shells. Some of the physical and chemical 

properties of radon are summarized in Table 1.1. Radon can readily be absorbed on charcoal, 

silica gel and similar materials, a property which can be used to separate it from other gases. 

Two isotopes of radon are well known, found in the environment, and considered 

radiologically significant: 

• 222Rn (radon): A decay product of ²²⁶Ra from the 238U decay series, with a half-life 

of approximately 3.82 days. It is the most abundant and long-lived radon isotope in 

the environment. 

• 220Rn (thoron): Originating from the 232Th decay series, it has a half-life of 

approximately 55.6 seconds. Due to its short half-life, thoron can travel only a few 

tens of centimetres in air and is usually negligible at a distance. 

In this study, only 222Rn (hereafter referred to as radon) is studied. Radon decays by emission 

of alpha particles to 218Po and initiating a decay chain that includes both short-and-long-

lived daughter products (218Po, 214Pb, 214Bi, 214Po, 210Pb, 210Bi, 210Po), until it reaches the 

stable element 206Pb (Fig. 1.1). Four short-lived isotopes of radon are heavy metals, each 

with a half-life of under 0.5 hours. These isotopes remain closely associated with radon and 

contribute significantly to its radiological health effects. After these short-lived 

radionuclides, the next element in the decay chain is 210Pb, which has a much longer half-

life of 21 years. 210Pb eventually decays into stable 206Pb through intermediate decay steps 

involving 210Bi and 210Po. The radioactive equilibrium between radon and its daughters is 
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considered to be reached after seven half-lives of the daughter product (Prichard & Gesell, 

1984). The activity of the daughter product can be described by following relation: 

 A��t� = A
� λ�λ� − λ
 �e���� − e����� + A��e���� (1.1) 

where A
� is the initial activity of the parent nuclide at time zero, A�� is the initial activity 

of the daughter nuclide, and λ
, λ� are the decay constants of the parent and daughter 

nuclides, respectively. 

The general solution describing the activity A��t� of the n-th member in a radioactive decay 

chain is given by the Bateman equations (Bateman, 1910): 

 A��t� = A
� � C�e�����
��� , (1.2) 

Where the coefficient C� is defined as: 

 C� = � λ 
�

 �� ��λ! − λ���
!��"       �j ≠ i� (1.3) 

Once the equilibrium is achieved, the activity of all members of the decay chain declines 

with the half-life of the parent radionuclide (radon). The radon daughters are metals that 

behave differently than radon. Most of the daughter products acquire a positive net charge 

which gets associated with molecules of water vapour or other atmospheric constituents, 

forming ions. These ions tend to get attached to aerosols or adjacent surfaces. Radon decay 

products exist in two forms: an unattached fraction, with diffusion diameters ranging from 

0.5 to 5 nm, and a fraction that attaches to aerosol particles, with diameters between 5 and 

3000 nm (Abdelfatah Mostafa et al., 2020; Porstendörfer, 1994). Once attached, radon 

progeny is removed from air by deposition. Heavier particles settle by gravity, while 

diffusion carries tiny unattached clusters to surfaces. In the respiratory tract, both attached 

and unattached progeny can deposit notably, the unattached fraction (very small clusters) 

has a much higher probability of reaching deep lung (Butterweck et al., 2005). According to 

the (UNSCEAR, 2000), radon and its progeny are the main sources of public exposure from 

natural radioactivity, contributing to nearly half of the global mean effective dose to the 

public. Considering the low level of outdoor radon, it will yield to a few tenths of a mSv 

radiation exposure to the population per year, whereas indoor radon (with significantly 

higher levels) yield much more. Nonetheless, outdoor radon and its progeny contribute to 

the collective lung dose of a population, especially in rural or mining regions. Therefore, the 
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exposure to radon increases the radiation risk to the population and is considered the second 

leading cause of lung cancer after smoking (ICRP, 1993). WHO notes that radon causes 

roughly 3–14% of lung cancers in populations depending on average levels (WHO, 2009). 

Table 1.1 Physical, and chemical properties of 222Rn taken from (Baskaran, 2016). 

Property Values 

Atomic number 86 

Standard atomic weight 222 

Outer shell electron configuration 6s26p6 

Density 9.73 kg m-3 (at 0 °C, 1.013 × 105 Pa) 

Melting point (°K) 202 

Normal boiling point (°K) 208.2 

Heat of fusion (kJ mol-1) 3.247 

Heat of vaporization (kJ mol-1) 18.0 

First ionization enthalpy (kJ mol-1) 1037 

Oxidation states 0, 2, 6 

Electronegativity 2.2 (Pauling scale) 

Covalent radius (nm) 0.150 

van der Waals radius (nm) 0.220 

Half-life (T1/2) 3.823 d 

Decay constant (λ) 2.098 × 10-6 s-1 

Diffusion coefficient in air (Da) 1 × 10-5 m2 s-1 

Diffusion coefficient in water (Dw) 1× 10-9 m2 s-1 

 

Fig. 1.1 The radioactive decay series of 222Rn. 
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1.2. Radon sources 

Radon in the environment mainly originates from the soil and rocks through the decay of 

Radium (²²⁶Ra) which is a decay product of ²³⁸U.  Radium with a half-life of 1620 years is 

usually in secular equilibrium with 238U. Radium is widely distributed in crustal rocks, soils, 

and building materials, and its presence in soil is the primary source of radon gas. Radium 

content in surface soils typically ranges from 10 to 100 Bq.kg-1, in localized areas near 

uranium mining or tailings reaching values as high as 1700 Bq.kg-1 (Nazaroff, 1992). 

Materials such as phosphate rock, granite, and shale often contain higher levels of uranium 

and radium and thus serve as significant radon sources (Appleton, 2007). Additional sources 

of radon include groundwater, oceans and building materials especially from deep wells. 

The rate at which radon is released from the soil, or exhaled, depends on radium content and 

various meteorological factors, such as moisture, temperature, pressure (Čeliković et al., 

2022). In the atmosphere, radon primarily enters from the soil through diffusive and 

advective transport (Nazaroff, 1992). The concentration of radon in the lower atmosphere is 

influenced by the amount of 238U and 226Ra in source materials, radon exhalation rate, and 

atmospheric mixing conditions driven by meteorological factors (e.g., Porstendörfer, 1994).  

 

Fig. 1.2 The schematic view of the radon emanation and exhalation from the soil to the 
atmosphere taken from (Hassan et al., 2014). 
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1.3. Radon emanation 

The soil can be described as a porous medium composed of organic material, mineral 

particles, and pores that contain water and soil gases. Emanation refers to the process by 

which radon atoms produced inside mineral grains escape into the pore spaces of soil or 

rocks. This process is critical because only the radon that escapes into pore spaces is 

available for migration and enter the atmosphere. Not all radon atoms produced by the decay 

of radium contained in the rock or soil grains are released into pore space. Some of radon 

gas remains embedded in the same grain, some travels within a pore space and become 

embedded in the adjacent grain, and some is released to the pore space (Fig. 1.2). According 

to (Appleton, 2007) usually 20 – 40 % of newly formed radon in soil and up to 70 % in clay 

emanate to the pore space, where they are mixed in the soil gas or water in the pores.  

The radon emanation coefficient (or emanation power) is defined as the ratio of number of 

radon atoms that escape from a soil grain to the total number of radon atoms formed in 

radioactive decay (Schumann & Gundersen, 1996). It is the most essential physical 

parameter for determining the behaviour of radon in materials. Radon emanation occurs 

through a process known as alpha recoil. This happens when an atom of radium decays into 

radon, which is accompanied by the immediate emission of an alpha particle. The energy 

released during this decay is distributed between the radon atom and the alpha particle and 

is inversely proportional to their masses. Consequently, due to the momentum conservation, 

the alpha particle and radon atom move in opposite directions. The radon atom continues to 

travel through the surrounding material until all of its energy has been dissipated.  The 

distance travelled depends on the density and the composition of the materials. The range of 

recoiling of radon is 0.02 − 0.07 μm in common minerals, 0.1 μm in water, and 63 μm in 

air (Nazaroff, 1992). Only radium atoms lying within this recoil distance from grain surfaces 

can contribute via direct recoil; atoms deeper inside require additional pathways to escape. 

Several factors influence the radon emanation coefficient i.e., the distribution of radon parent 

atoms in the solid, the soil grain size, soil porosity, and the moisture content and temperature 

(Nazaroff, 1992; Hassan et al. 2009; Phong Thu et al., 2020). Soil moisture affects the radon 

emanation coefficient in two opposing ways: it reduces the mobility of radon atoms by 

slowing their diffusion through soil pores (i.e.,  the diffusion coefficient of radon in water is 

about three orders of magnitude lower than in air and  it can enhance emanation by dissolving 

radon atoms trapped in intergranular pores or embedded within soil particles (Edsfeldt, 2001; 

Wilkening, 1990). Smaller particles (higher specific surfacer area) show higher emanation 
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coefficients while the emanation coefficient decreases with increasing the soil grain size 

(Phong Thu et al., 2020; Sakoda et al., 2011). The emanation coefficient is directly 

proportional to the temperature, as an increase in temperature aids the release of gases from 

solid particles (BARRETTO, 1973; Iskandar et al. 2004). 

1.4. Radon migration in soil 

Following emanation from soil grains, radon atoms migrate through the water and air 

contained in soil pores toward the soil surface, where they may be released into the 

atmosphere (Fig. 1.2). Radon transport in soil primarily occurs via two mechanisms: 

diffusion and advection.  

Diffusion refers to the movement of gas molecules from regions of high concentration to 

regions of low concentration, driven by concentration gradients. In the case of radon, this 

occurs due to the much higher concentration of radon in soil gas compared to atmospheric 

air typically about three orders of magnitude higher. Consequently, radon tends to diffuse 

upward to the atmosphere and reduce the gradient. Long-term evidence suggests that radon 

migration from soil to the atmosphere is predominantly governed by molecular diffusion 

(Nazaroff, 1992). The random molecular diffusion of radon in the vertical direction (z-axis) 

can be described quantitatively by Fick’s First Law, modified for porous media (Savović & 

Djordjević, 2008): 

 J0 = −D2∇C4� (1.4) 

Where:  

• J0 [Bq.m-2.s-1]: radon diffusive flux density, 

• D25m�. s�
7: effective molecular diffusion coefficient of radon in soil, 

• C4� [Bq.m-3]: radon activity concentration in the interstitial space, 

• ∇ [m-1]: gradient operator, and  

• the negative sign indicates that the radon diffuses from high to low concentration.  

The effective diffusion coefficient D2 accounts for the impact of soil structure, notably 

porosity and tortuosity, and is given by:  

 D2 = ε τD� (1.5) 

Where: 

ε [-]: porosity (fraction of soil volume occupied by pores), 
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τ [-]: tortuosity factor (pathway complexity), 

D� [1.2 × 10�<m�s�
]: diffusion coefficient in air. 

The effective diffusion coefficient D2 depends on the types of the soil and moisture content 

of the soil typically ranges from 10-10 to 10-5 (Nazaroff, 1992; Nielson et al., 1994). 

A related parameter is the diffusion length L0, representing the characteristic distance radon 

travels before decaying: 

 L0 = > D2λ4� (1.6) 

Where λ4� [s-1] is the radon decay constant. 

In addition to diffusion, advection can transport radon via bulk soil gas flow, driven by 

pressure gradients in the subsurface. The advective flux in the vertical direction is: 

 J? = v. C4� (1.7) 

Where: 

• J? [Bq.m-2.s-1]:  advective flux of radon, 

• v [m.s-1]: superficial velocity of the soil gas (Nazaroff, 1992), 

The velocity v is determined by Darcy’s Law:  

 v = − kμ ∇P (1.8) 

Where: 

• k [m2]: permeability of the soil matrix, 

• μ [Pa.s]: dynamic viscosity of the gas phase of the soil pores,  

• ∇P [Pa.m-1]: pressure gradient, and 

• the negative sign indicates flow from high to low pressure. 

The total radon flux from soil to atmosphere is the sum of diffusive and advective 

contributions: 

 J�C�?D = −D2∇C4� + E− kμ ∇PF C4� (1.9) 

Equation (1.9) provide the way to model the transport of radon in the soil. The model relates 

the transport of radon in the soil to the physical properties of soil which is the result of 



Theoretical background 

11 | P a g e  

 

laminar flow and molecular diffusion. The total soil‐to‐air radon flux (J�C�?D) depends 

critically on the physical properties of the soil (particularly porosity, tortuosity, and 

permeability) as well as on additional parameters such as moisture content, temperature, 

grain size, and radium content. High porosity and permeability enhance both diffusive and 

advective transport, while increased tortuosity and water saturation hinder gas movement 

(Chen et al., 1995; Nazaroff, 1992; Nunes et al., 2023; Phong Thu et al., 2020). 

1.4.1. Radon 1.4.1. Radon 1.4.1. Radon 1.4.1. Radon ttttransport ransport ransport ransport mmmmodelodelodelodel    

Several models have been proposed to describe radon transport in soil, notably by Wilkening 

(1990) and Nazaroff (1992). The generalized radon transport model by Nazaroff (1992) 

integrates diffusion, advection, radioactive decay, and radon production, with partitioning 

among gas, water, and sorbed phases. This model does not yield a general analytical solution 

and typically requires numerical methods for solution. 

 �ε? + KεH + ρK� ∂CRn∂t= ε?D2∇�CRn + kμ ∇Ca. ∇P − λ4�C4��ε? + KεH + ρK�
+ fA4?λ4�ρ 

(1.10) 

Where: 

• ε?: Air-filled soil porosity 

• εH: Water-filled soil porosity, 

• Ρ [kg.m-3]: Bulk density of soil, 

• K [m3.kg-1]: Sorption partition coefficient,  

• D2 [m2.s-1]: Effective diffusion coefficient of radon in soil 

• C4� [Bq.m-3]: Radon concentration in soil air, 

• k [m2]: Intrinsic permeability of the soil, 

• μ [Pa.s]: Dynamic viscosity of air, 

• P [Pa]: Pressure, 

• λ4� [s-1]: Decay constant of radon, 

• f: Radon emanation coefficient, 

• A4?[ Bq.kg-1]: Radium content. 



Theoretical background 

12 | P a g e  

 

The right-hand side of Equation (1.10) represents, in order, the diffusive transport, the 

advective transport, the radioactive decay of radon, and finally, the radon production term. 

Nazaroff’s radon transport model assumes that radon migrates only through the gas phase of 

soil, with diffusion following Fick’s law and advection governed by Darcy’s law. The soil 

is considered homogeneous and isotropic, with constant properties such as porosity, 

permeability, and diffusivity. Radon is assumed to partition at equilibrium among gas, water, 

and sorbed phases, with no transport occurring in the liquid or sorbed states. Air is treated 

as incompressible due to small pressure gradients, and mechanical dispersion is neglected. 

Radon generation from radium decay is treated as a uniform, steady source, and no chemical 

reactions are considered.  

A simplified version of equation (1.10) is considered by (Wilkening, 1990). It is a steady-

state equation describing the behaviour of radon gas in a homogeneous porous material that 

extends infinitely in one direction: 

 Dε d�C4�dz� − 1ε d�vC4��dz − λ4�C4� + ϕ = 0 (1.11) 

Where: 

• D [m2.s-1]: bulk diffusion coefficient, 

• ε: soil porosity 

• v [m.s-1]: transport velocity 

• λ4� [s-1]: radon decay constant, 

• ϕ [Bq.m-3. s-1]: radon production rate. 

The terms from right to left in equation (1.11) represent diffusion transport, advection 

transport, radioactive decay, and production rate of radon, respectively.  Under purely 

diffusive conditions with boundary conditions (C4� = 0 at z = 0 and  C4� = Q�RS at z → −∞) 

the solution of (1.10) becomes: 

 C4��z� = ϕλ4� V1 − exp Y−z>ελ4�D Z[ (1.12) 

This relationship illustrates that radon concentration increases exponentially with depth, 

reaching equilibrium after a few meters. The molecular diffusion of radon is typically limited 

to a depth of a few meters of surface soil, depending on the diffusion coefficient and porosity. 
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If the velocity profile v�z� is known (e.g., from Darcy’s law), the total radon flux is: 

 J = −D dC4�dz + v. C4� (1.13) 

1.5. Radon exhalation  

The radon exhalation rate quantifies the rate of radon gas released per unit area and time 

from the surface of a porous material (e.g., soil, rock, or building material) into the 

atmosphere. It is governed by the interplay of three key processes: (1) the decay of radium 

to radon, (2) the emanation of radon into pore spaces, and (3) the transport of radon through 

the material via diffusion and advection (UNSCEAR, 2000). The radon exhalation rate is 

measured in [Bq. m��s�
]. The radon exhalation rate mainly depends on the concentration 

of uranium and radium in the soil and soil properties such as grain size, porosity, 

permeability, and moisture contents (Appleton, 2007; Tchorz et al., 2018). Environmental 

factors such as moisture content, temperature, and atmospheric pressure modulate the radon 

exhalation rate by altering the emanation and diffusion of radon. For instance, moisture 

saturation reduces diffusion of radon by blocking pore pathways, while temperature 

gradients enhance diffusive transport (Sakoda et al., 2011). The exhalation of radon from the 

soil is an important phenomenon that significantly affects the radon concentrations in both 

indoor and outdoor environments (Čeliković et al., 2022).   

Different methods have been developed to measure the radon exhalation rate from the soil 

directly or estimate it indirectly. Most of these methods are based on the accumulation or 

build-up of radon in a closed chamber (Fig. 1.3). The direct measurement of radon flux is 

performed in the so-called accumulation chamber placed on the surface of the soil, and the 

flux is calculated based on the following relation (Jonassen, 1983): 

 C4��t� = C� exp�−λt� + φSVλ �1 − exp �−λt�� (1.14) 

Where: 

• C4��t�[Bq.m-3]: radon concentration at time t, 

• C� [Bq.m-3]: initial radon concentration at time t = 0, 

• λ4� [s-1]: radon decay constant,  

• φ [Bq.m-2.s-1]: radon exhalation rate,  

• S [m2]: horizontal cross-sectional surface area of the accumulation chamber, and  

• V [m3]: accumulation chamber volume.  
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Radon concentrations can be measured using various techniques, including integrated, 

continuous, and instantaneous sampling methods. 

 

Fig. 1.3 Accumulation chamber setting for the measurement of radon and CO2 fluxes at the 
campus of the Faculty of Mathematics, Physics, and Informatics, Comenius University 
(FMPI CU) in Bratislava, Slovakia. 

1.6. Outdoor radon 

Once exhaled from the soil, radon behaves as an inert, radioactive gas subject to atmospheric 

transport, turbulent mixing, and radioactive decay. Although its molecular weight (222 amu) 

is approximately five times greater than that of air, radon does not gravitationally settle. 

Instead, it is efficiently mixed by turbulent eddies and wind-driven advection (Cothern & 

Smith, 1987; Williams et al., 2011). Because it is chemically inert, its only significant 

removal process in the atmosphere is radioactive decay. 

Outdoor radon concentrations are significantly lower than indoor values, typically averaging 

around 10 Bq·m⁻³ globally, but can range from 1 to 100 Bq·m⁻³ depending on location and 

meteorological conditions (Čeliković et al., 2022). Despite these relatively low levels, 

outdoor radon plays an important role in atmospheric physics, such as tracing boundary layer 

dynamics, validating dispersion models, and serving as a natural tracer for surface exchange 

processes. Radon’s distribution in the atmosphere is governed by four key physical 

processes: 

1. Advection – transport by wind, 

2. Turbulent diffusion – vertical and horizontal mixing, 

3. Radioactive decay – with a half-life of 3.82 days for 222Rn, 

4. Surface emission – flux from soils and rocks. 
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These processes are described through mathematical transport models that range from simple 

analytical formulations under steady-state conditions to complex numerical models 

accounting for spatiotemporal variability. 

A one-dimensional transport model which can be applied to the radon is given by (Minato, 

1988) as follow: 

 ∂C4�∂t + U ∂C4�∂l = ∂∂z �K ∂C4��∂z − λ4�C4� + S (1.15) 

Where: 

• C4�[Bq·m⁻³]: Radon concentration, 

• T [s-1]: Time 

• U [m.s-1]: horizontal wind speed (advection), 

• l [m]: distance which radon travelled, 

• z [m]: height from the ground, 

• K [m²·s⁻¹]: vertical diffusion coefficient, 

• λ4� [s-1]: Radioactive decay constant of radon (~2.1 × 10⁻⁶ s⁻¹), 

• S [Bq·m⁻³·s⁻¹]: Radon source flux from soil or surface. 

In the original study by (Minato, 1988), this equation was used with steady-state condition 

to estimate the monthly mean values of outdoor radon. 

Wilkening (1990) developed a vertical diffusion–advection–decay model that provides an 

analytical solution to the vertical distribution of radon under steady-state atmospheric 

conditions. The model assumes radon is transported vertically by eddy diffusion and vertical 

wind and is simultaneously removed via radioactive decay. The governing equation is: 

 ∂C4�∂t = ∂∂z EK ∂C4�∂z F − w ∂C4�∂z − λC4� (1.16) 

Where: 

• C4� [Bq.m-3]: radon concentration in the atmosphere, 

• z [m]: height above the ground, 

• K [m2.s-1]: vertical diffusion coefficient, 

• w [m.s-1]: vertical wind speed, 

• λ4� [s-1]: radon decay constant.  
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Assuming a steady state condition (∂C4� ∂t⁄ = 0) and constant value of K, the integration 

of equation (1.15) gives the decrease of radon concentration with increasing height: 

 c = c� exp f− E λgF
 �h zi (1.17) 

This solution indicates that radon concentration decreases exponentially with increasing 

height above the ground. The model is especially useful for describing nocturnal boundary 

layer behaviour or stable stratification conditions, where vertical mixing is suppressed, and 

radon accumulates near the surface. This model does not include horizontal processes, 

assumes constant eddy diffusivity, and neglects time-dependent dynamics, making it more 

suitable for idealized or short-range vertical studies (Wilkening, 1990). 

1.6.1. Temporal variation of outdoor radon 

Outdoor radon concentration varies across different timescales, including diurnal, synoptic, 

seasonal, and annual-reviewed in (Čeliković et al., 2022). Diurnal variations of radon are 

mainly governed by the diurnal variation of meteorological parameters (e.g., temperature, 

wind velocity, precipitation, snow cover) and atmospheric mixing processes. A typical 

diurnal variation of RAC is shown in Fig. 1.4. Usually, the diurnal cycle of RAC has a 

sinusoidal shape, with the maxima occurring in the early morning and the minima in the late 

afternoon. This behaviour can be well explained by the changes in atmospheric stability and 

mixing. Under clear and calm conditions, stable nocturnal stratification leads to the 

formation of a temperature inversion layer that traps radon near the ground, resulting in peak 

concentrations just before sunrise (Čeliković et al., 2022). As solar heating begins, 

convective turbulence develops, enhancing vertical mixing in the boundary layer and 

diluting radon concentrations. This mixing generally causes radon levels to reach a minimum 

by late afternoon or early evening. The diurnal cycle is most distinct on cloudless, low-wind 

days with large temperature gradients (e.g., Chambers et al., 2015). Assuming a constant 

radon flux, Jacobi et al. (1963) observed minimum RACs during strong atmospheric mixing 

conditions. In contrast, during weak atmospheric mixing conditions, the authors observed 

radon concentrations that were 100 times higher. The diurnal variation of outdoor radon is 

more pronounced on cloudless summer days with large temperature gradients than on cloudy 

days with smaller temperature gradients (Sesana et al. 2003).  The diurnal variation of RAC 

is also influenced by the geological location of the measurement station. For instance, radon 

concentration often varies greatly in river valleys due to strong nocturnal inversions, whereas 
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in the surrounding hillside areas, radon concentration varies much less due to weaker 

inversions during the night (Porstendorfer et al. 1994).  

 

Fig. 1.4 An example of the composite diurnal cycle of RAC measured at FMPI CU 
Bratislava in May 2022.  

Outdoor radon concentrations at a given measurement site can show varying seasonal 

patterns based on local weather conditions. These seasonal variations are primarily 

influenced by changes in nighttime duration, soil radon emissions, and atmospheric mixing 

and meteorological factors. In many mid-latitude regions, higher radon levels are often 

observed during the colder seasons (e.g., Sesana et al., 2003; Oikawa et al., 2003; Özen et 

al., 2018), largely due to longer nights and more frequent temperature inversions that 

suppress vertical mixing and allow radon to accumulate near the surface. One long-term 

study, for example, found that fall–winter radon averages exceeded spring–summer values 

by approximately 20–30% in a valley city, attributing this pattern to persistent nocturnal 

stability and inversion layers (Kubiak & Zimnoch, 2022). However, some studies have 

reported the lowest radon levels in winter, linking this to mitigating factors such as snow 

cover, frozen ground, high humidity, and stronger winds that reduce both radon flux and 

accumulation (Žunic et al., 2007). Snow and frost act as insulating barriers, significantly 

suppressing radon exhalation from the soil (Čeliković et al., 2022). Conversely, in summer, 

drier soils and vegetation transpiration may increase radon emission, although these effects 

are often offset by stronger convective mixing, shorter nights, and higher solar angles, which 

tend to dilute radon concentrations. Field campaigns have noted that the largest diurnal 

amplitudes often occur in summer due to strong day–night contrasts, even if average 
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concentrations are not at their peak (Sultani et al., 2024). Ultimately, the net seasonal pattern 

results from the interplay between meteorological stability and soil emission dynamics. As 

summarized by Zimnoch et al. (2014), three key factors influence seasonal radon variation: 

(a) the seasonal variation in atmospheric stability, with prolonged inversion periods typically 

occurring in winter and autumn; (b) the seasonal changes in radon exhalation rate from the 

soil; and (c) the so-called fetch effect, referring to the origin of air masses reaching the site. 

For instance, maritime air masses generally carry significantly lower radon levels compared 

to continental ones, as radon flux over the ocean is 2–3 orders of magnitude lower than that 

over land (Chambers et al., 2015). 

1.6.2. Spatial variation of outdoor radon 

Outdoor radon concentrations exhibit significant spatial variability due to a complex 

interplay of geographic, geologic, topographic, and land-use factors (Petermann & Bossew, 

2021; Čeliković et al., 2022). Coastal regions typically display lower radon levels compared 

to inland areas; a phenomenon attributed to the reduced radon flux from oceanic surfaces 

relative to terrestrial environments (Aquilina & Fenech, 2019). This maritime influence is 

well-documented in regions such as Ireland and Germany, where coastal zones consistently 

exhibit lower radon concentrations than adjacent inland areas (Gunning et al., 2014; Kümmel 

et al., 2014). Conversely, elevated radon levels are frequently observed in inland regions 

underlain by uranium-rich bedrock, such as granite formations or volcanic soils, where 

enhanced radon generation and exhalation occur (Križman & Stegnar, 1992). 

Topography exerts a strong control on local radon dynamics. Valleys and basins often act as 

radon traps during stable atmospheric conditions, particularly under nighttime temperature 

inversions and cold air pooling, whereas elevated terrains such as hilltops benefit from 

increased atmospheric mixing and lower concentrations (Križman & Stegnar, 1992). For 

instance, continuous monitoring in Slovakia revealed divergent radon trends between 

flatland and hilly sites under identical meteorological conditions, underscoring terrain-

mediated modulation of local weather patterns and radon behaviour (Holý et al., 2016). 
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Chapter 2 

 

2. Material and methods 

This chapter discusses the methods for measurement of outdoor radon and its progeny, 

followed by their potential applications as tracers in atmospheric research. Additionally, it 

outlines the data analysis techniques used in this study. 

2.1. Radon measurement techniques 

The measurement of radon in outdoor environments can be conducted through various 

methodologies, which are broadly categorized based on the principles of detection and 

operational requirements. Radon can be measured either directly, or indirectly by detecting 

its decay products. Radon and some of its progeny (218Po, 214Po, 210Po) emit alpha particles 

during radioactive decay, while other progeny such as 214Pb, 214Bi, 210Pb, 210Bi are beta 

emitters, often accompanied by gamma radiation. The techniques and instruments employed 

for radon measurement are primarily designed to detect these alpha, beta, or gamma 

emissions. The selection of an appropriate measurement method depends on several factors, 

such as the type of radiation being detected, the duration of measurement, the portability of 

the equipment, its applicability in field conditions, and cost considerations. Radon 

measurement methods can be classified into two main categories: 

Based on electricity consumption for operation: This classification divides radon 

measurement techniques into active and passive methods. 

Based on measurement duration or sampling type: This classification includes grab 

sampling, continuous monitoring, and integrated sampling methods. 

Classification Based on Electricity Consumption 

The radon measurement techniques classified based on the electricity consumption i.e., 

active methods and passive methods is shown in Fig. 2.1.  

Active Methods: Active radon measurement techniques require electrical power to operate 

and are typically suitable for short-term measurements. These devices provide real-time 

measurements by simultaneously sampling and analysing radon or its progeny in air samples. 

This approach is particularly advantageous in scenarios where radon activity concentrations 
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exhibit significant and rapid fluctuations. Active methods are also useful for determining 

average RAC and assessing the impact of ventilation on indoor radon levels. Commonly 

used active instruments include scintillation chambers and commercial detectors such as 

AlphaGUARD and RAD7 (Bertin Technologies, n.d.; Durridge, n.d.). 

Passive Methods: In contrast, passive radon measurement techniques do not require 

electrical power and are well-suited for long-term field measurements. These methods are 

particularly valuable for studying the combined effects of seasonal variations, weather 

conditions, and environmental factors on radon levels. Long-term integrated measurements 

are also preferred for estimating annual average radon concentrations and assessing potential 

health risks to humans. Prominent examples of passive techniques include solid-state nuclear 

track detectors (SSNTDs), charcoal detectors, and thermoluminescence detectors. 

 

Fig. 2.1 Radon measurement techniques based on electricity consumption for operation. 

Classification based on measurement duration or sampling type 

Instantaneous/Grab Sampling: This method involves collecting a large number of samples 

over a very short period, typically in the order of minutes. The samples are subsequently 

analysed in a laboratory. Grab sampling is commonly used to assess radon levels in 

groundwater, freshwater, and air samples at specific locations. 

Continuous Monitoring: Continuous radon measurement devices sample and count radon 

concentrations in the atmosphere in real time. These sensitive instruments provide data that 

can be utilized for the study of environmental processes. 

Integrated Sampling: This technique is employed to determine the cumulative radon 

concentration over an extended period, ranging from months to years. Integrated sampling 
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is particularly useful for assessing large-scale monthly or annual average radon levels. 

Passive detectors are the most widely used instruments for this purpose. 

This study employs continuous measurement of outdoor radon and its progeny at FMPI CU 

in Bratislava, Slovakia. The following sections present a detailed overview of the 

instrumentation and methodologies used for the measurement of radon and its progeny. 

2.2. Radon and its progeny sampling 

Radon and its decay products (218Po, 214Pb, 214Bi, 210Pb) were monitored at the Faculty of 

Mathematics, Physics, and Informatics (FMPI) campus of Comenius University in 

Bratislava, Slovakia (Latitude: 48° 9’ 4’’N; Longitude: 17° 4’ 14’’E) (Fig. 2.2). This campus 

is situated about 3 km northwest of the city centre and is surrounded by urban infrastructure. 

Bratislava, an industrial hub in southwestern Slovakia, has a population of around 500,000. 

The city experiences a continental climate, characterized by warm, humid summers and cold 

winters. Average air temperatures range from approximately -5 °C in winter, with January 

being the coldest month, to around 20 °C in summer, with July typically being the warmest. 

 

Fig. 2.2 Sampling location: a) Location of the city of Bratislava, Slovakia within Europe; 
b) Monitoring stations in Bratislava from which the data were collected (Sultani et al. 
2023, 2024). 

2.3. Continuous measurement of radon 

The schematic view of radon measurement system is shown in Fig. 2.3. The air was sampled 

from a height of 1.5 m through a PVC pipe and pumped to the detection system at a flow 

rate of ∼0.5 L min−1. A 10 L delay volume was incorporated in the intake lines to ensure 

that the air entering the chamber will no longer contain thoron (220Rn) with a half-life of 

56 s. Detected count rates were automatically recorded and stored in a computer’s memory. 
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To protect the detector from humidity, two columns were fitted to the intake line: a freezing 

column that was kept at a temperature of -20 °C and a column filled with silica gel, trapping 

residual humidity in the air samples. Right before entering the scintillation chamber, the air 

passed through a membrane filter that trapped aerosols and radon daughters. This chamber 

has a volume of 4.5 L. The inner walls of this cylindrical chamber are coated with ZnS (Ag). 

The inner space of the chamber is divided into 9 sectors to achieve good geometrical 

conditions for efficient radon detection. The scintillations were collected through two glass 

windows placed at the far ends of the chamber, and the emitted light signals are collected by 

two TESLA 65 PK 423 photomultipliers with a 130 mm diameter. The analysed air first 

entered each external sector, continued to the central sector and finally exited the chamber. 

The chamber has a flow rate of 0.5 L m-1. Both halves of the chamber function as 

independent detectors and the photomultiplier signals are summed and processed in a 

standard manner. Detected counts are automatically recorded and stored in a computer’s 

memory. Radon detection efficiency is 1.7 counts per 1 decay of 222Rn. The lower limits of 

detection at the 95% confidence level (Currie, 1968; Zahorowski et al., 2004) is 2.8 Bq.m-3 

(background count rate is 0.0166 s-1 and detector sensitivity are 0,0026 s-1/ 1 Bq.m-3). This 

measurement system allows obtaining almost 80% of radon activity concentration data in 

the outdoor atmosphere with an error less than 30% (Putman, 1962).  

 

Fig. 2.3 Schematic diagram of sampling instrumentation for continuous measurement: 1) 
Delay volume, 2) Freezing columns kept at -20 °C 3) Freezing device, 4) Freezing liquid, 
5) Silica gel column, 6) Membrane filter, 7) Scintillation chamber, 8) Flow meter, 9) Gas 
meter, 10) Air pump (Bulko, 2010). 

Subsequently, the RAC, belonging to 2-h intervals, are calculated using the Ward and Borak 

method (Ward et al., 1991). This method is based on the determination of the so-called 

normalized detector response function, which characterizes the response of the detector to 

radon-laden air over time. This response function incorporates the effect of all detector 
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parameters and operating conditions such as flow rate, humidity, counting efficiency, 

detector volume and plate-out effect, thus eliminating the need to estimate these effects 

independently. The detector calibration procedure is as follows: for the first measurement 

interval (2 hours in our case), air with a known RAC is drawn through the detector. The 

detector counts rates in this interval increase rapidly due to the increased RAC within the 

sensitive volume of the detector as well as due to associated buildup of radon progeny within 

the volume and at inner surface of the detector. At subsequent intervals, radon-free air is 

passed through the detector. In these subsequent intervals, detected count rates gradually 

decrease to background levels as 222Rn, its decay products are flushed from the detector 

volume and radon progeny deposited on the detector inner walls are allowed to decay. The 

calibration outputs are the τi coefficients; their mathematical derivation is described in detail 

in the original study (Ward et al, 1991).  

The resulting formula for calculating the radon activity concentration C(t) is: 

 C�t� = τ��N� − Nl� − ∑ τ��N� − Nl�n��
 ,  (2.1) 

where N0 are the detected gross counts in the last measuring interval, NB is the detector 

background rate, Ni are the detected gross counts in the previous intervals and τ� are the 

inverting coefficient determined as follows: 

τ� = 
op, 

τ
 = τ��τ�φ
�, 

τ� = τ��τ�φ� − τ
φ
�, 

τq = τ��τ�φq − τ
φ� − τ�φ
�,            (2.2) 

. 

. 

τn = τ��τ�φn − τ
φn�
−. . . −τn�
φ
�. 

φ� is the coefficient of the nonlinear detector response function. Since the absolute values of 

τi coefficients for higher values of i approach zero, it is sufficient to consider up to 3 

preceding intervals, e.g. m = 3. The uncertainty corresponding to each count is calculated 

based on the following formula: 
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 σs� = � N��σt��n
��� + � τ���N� + Nl� + Nl � τ��

n
���

n
���  (2.3) 

The uncertainties of the first four inverting coefficients appearing in equation (2.3) can be 

calculated using the following relations: 

σtp � = u 
op� σopv�
, 

σt� � = �2τ�φ
��σtp � + τ�wσo��,         (2.4) 

σt� � = �2τ�φ� − τ
φ
��σtp� + �τ�φ
��σt� � + �τ�τ
��σo�� + τ�wσo� �,    

σtx � = �2τ�φq − τ
φ� − τ�φ
��σtp � + �τ�φ���σt�� + �τ�φ
��σt�� + �τ�τ���σo��
+ �τ�τ
��σo�� + τ�wσox �. 

The reliability of the detectors was tested by simultaneous measurements of RAC by LSCH 

with another independently calibrated scintillation chamber (SSCH) as well as by a 

commercially available radon detector AlphaGUARD, which served as an independent 

reference standard. The comparison took place during a period of two weeks in the summer 

of 2018 in a well-ventilated room, with RAC ranging from 10 to 70 Bq.m-3 and exhibiting 

distinctive diurnal cycles. The time series of RAC obtained by all three detectors were almost 

identical; the corresponding linear regression coefficients for all combinations of detector 

pairs were at the level of R� > 0.90 (Fig. 2.4). 

 

Fig. 2.4 Comparison of RAC measured by scintillation chambers and AlphaGUARD.  
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2.4. Radon measurement using AlphaGUARD  

In this study, the commercial radon detector called AlphaGUARD is also used for 

monitoring atmospheric radon. AlphaGUARD contains a cylindrical pulse ionization 

chamber with an active volume of 0.56 L (Bertin Technologies, n.d.). The AlphaGUARD 

has a linear response ranging from 2 Bq. m�q to 2 MBq. m�q of radon concentration. This 

device can also monitor air temperature �10 to � 50), air pressure 

(700 mbar to 1100 mbar), and air humidity (varying from 0% to 99%). The 

AlphaGUARD can run for 10 days on its internal battery in either flow or diffusion mode, 

and collect data in 1, 10 and 60-min intervals. The schematic view of AlphaGUARD is 

shown in Fig. 2.5. 

 

 

 

Fig. 2.5 AlphaGUARD portable radon monitor (left) and its schematic view (right) (Pant et 
al., 2016). 

 

Fig. 2.6 The schematic diagram of the radon progeny measurement system. 
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2.5. Radon progeny measurement 

For the measurement of short-lived radon decay products (218Po, 214Pb, 214Bi), an alpha 

spectrometric method was used (Stanys et al., 1997). The sampled air was passed through 

an RW 19 filter with a diameter of 47 mm and a pore size of 1.2 μm at a flow rate of about 

35 L.min-1. The alpha particles emitted by the radon decay products trapped on the filter are 

registered by an Si (Au) planar detector with a sensitive area of 450 mm2. The detector and 

the filter are located in the sampling head (Fig. 2.6). The measurement time of one sample 

is 2 hours; this period is divided into three intervals. During the first interval, which lasts 20 

minutes, the air is passed through the filter while the activity of the filter is measured. The 

subsequent second and third intervals (of 50 and 70 minutes, respectively) consist of 

spectrometric measurements of the filter without any air circulation. For 218Po, 214Pb and 
214Bi, the lower limit of detection in the outdoor atmosphere is about 0.4 Bq.m-3 for a 

measurement uncertainty of 30 %. The air entering each of these two detection systems was 

sampled at a height of 1.5 m above the ground. In total, twelve values representing the 

concentration of 218Po, 214Pb and 214Bi were obtained each day (i.e. one value every 2 hours). 

 

Fig. 2.7 Picture on the left: Low-background shield containing the PGT HPGe detector. 
Chart on the right: Comparison of gamma–ray background spectra measured by the PGT 
HPGe detector when placed outside (A) and inside (B) the low-background shield (Sýkora 
et al., 2017). 

2.6. 210Pb measurement 

The aerosol samples for the measurement of 210Pb were collected using a high-volume 

sampler operating at a flow rate of approximately 80 m3.h-1, positioned 2.85 meters above 

the ground. Further details on the sampling method can be found in (Povinec et al., 1988), 
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Sýkora et al. (2017), and Sýkora & Povinec, (2020). Nitrocellulose membrane filters 

(PRAGOPOR 4) with 0.85 µm pores ensuring nearly 100% particle collection efficiency 

were used for sampling. Each sampling period lasted about one week, during which between 

11,000 and 15,000 m³ of air was filtered. Adjustments for air temperature and atmospheric 

pressure were applied to accurately determine the volume of air processed. The exposed 

filters were analysed in the low-background gamma spectrometry laboratory located in the 

faculty’s basement using two HPGe detectors: a Canberra GX 4020 and PGT IGC65-DI 845 

(Fig. 2.7).  

2.7. The potential use of radon as a tracer 

2.7.1. Boundary layer height  

Boundary layer height (BLH) is the lowest part of troposphere which is directly influenced 

by the interaction with the Earth’s surface and responds to surface-driven forces within short 

time scales, typically an hour or less (Stull, 2012). The troposphere is the Earth’s lowest 

atmospheric layer, containing approximately 80% of the atmosphere’s total mass. It extends 

from the Earth’s surface to an altitude of about 11 kilometres and is characterized by a 

gradual decrease in temperature with increasing altitude. The depth of the boundary layer, 

also known as mixing layer height (MLH) varies temporally and spatially and ranges from 

hundreds of meters to kilometres. It is one of the key factors that governs the dispersion and 

distribution of atmospheric compounds. BLH serves as a valuable indicator of dispersion 

conditions and vertical mixing within the lower troposphere, offering insights into the degree 

of pollution dilution near the Earth’s surface (Omori & Nagahama, 2016).  

The BLH evolves continuously due to the heating and cooling of the Earth’s surface, and it 

goes through a distinct cycle. Fig. 2.8 presents a schematic view of the BLH evolution in 

high-pressure zones over land taken from (Stull, 2012). The changes in BLH over time is 

largely controlled by air temperature and the energy exchange between the Earth’s surface 

and adjacent atmosphere. Daily fluctuations in surface heating and cooling, combined with 

changes in solar radiation, lead to variations in BLH. As illustrated in Fig. 2.8, the inversion 

layer at the top of the boundary layer during the daytime acts as a barrier, inhibiting further 

vertical movement of atmospheric air. Following sunrise, the BLH starts growing, and a so-

called convective mixed layer develops as a result of solar heating of the Earth’s surface. 

The convective mixed layer continues to rise throughout the morning, mixing and retaining 

the air in the upper atmosphere, reaching heights of 1 to 2 km by mid-afternoon (Kaimal & 
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Finnigan, 1994). From mid-afternoon onwards, the BLH decreases as the intensity of solar 

radiation diminishes. Just before sunset, a stable (nocturnal) boundary layer (SBL) forms, 

leaving behind a residual layer (RL); this stable layer persists throughout the night. The RL 

is formed above the SBL and below the bottom of inversion layer and is not directly affected 

by the turbulence-generating surface perturbations. Both the RL and SBL are rapidly 

destroyed after sunrise with the emergence of the mixed layer, particularly on days with 

intense solar radiation.  The nocturnal SBL lacks a clearly defined upper boundary, unlike 

the daytime mixed layer, which is capped by the inversion layer. The top of the nocturnal 

layer is typically identified as the height where turbulence intensity diminishes to a small 

fraction of its value at ground level, since the strongest mechanical turbulence occurs near 

the ground due to surface friction and wind shear. A common guideline suggests that the 

height of the nighttime layer can be determined as the level where turbulence drops to 

approximately 5% of its surface intensity. Alternatively, it can be described as the average 

elevation of the inversion layers. Therefore, the estimated BLH or MLH, which exhibits a 

continuous profile, consist of the height of the convective mixed layer during the daytime 

and as the height of the SBL during the nighttime. 

 

Fig. 2.8 Schematic diagram of the vertical structure of boundary layer height (Stull, 2012). 

2.7.2. MLH based on radon  

Meteorological stations do not measure the MLH directly; instead, it is estimated using 

various methods such as meteorological radiosondes, ground-based remote sensing 

techniques (including sodar, lidar, and Doppler radar), and aircraft surveys, as summarized 

by Seibert et al., (2000). Despite these advancements, determining the MLH accurately and 
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automatically with high resolution remains a challenge. One alternative approach involves 

using outdoor radon to estimate MLH. Radon is considered a valuable tracer in atmospheric 

studies due to its distinct characteristics: it originates primarily from the soil, has a suitable 

half-life comparable to the residence time of most of atmospheric compounds, can be 

measured with high accuracy, and, as a noble gas, it does not undergo chemical reactions. 

Since its main source is the soil and local radon flux variations are minimal compared to 

those driven by atmospheric mixing, radon serves as a reliable indicator of atmospheric 

dynamics. This study employs a so-called box model to determine MLH based on radon 

concentrations. This model was originally introduced by Fontan et al. (1979); the model was 

later refined by Sesana et al. (2003) and Vecchi et al. (2018). This method has been 

effectively applied in several studies (e.g., Allegrini et al., 1994; Salzano et al., 2016; Vecchi 

et al., 2018; Griffiths et al., 2013). 

The schematic representation of the box model is illustrated in Fig. 2.9, with the ground 

surface serving as its base and the mixing layer as its height (h�). Radon gas, with a 

concentration C� and an emission rate φ4� from the surface, enters the box and is assumed 

to be uniformly mixed within it. 

 

 

 

 

 

 

 

This model is based on the mass balance relation, under 

the following assumptions:   

• radon exhalation rate is considered constant during a short time interval (Δt), 
• radon concentration varies only as a function of vertical stability (i.e., 

horizontal variation does not influence the radon concentration), 

• the mixing of radon within the box is homogenous, 

• radon in the residual layer is conserved. 

�� . ℎ�  
MLH 

ℎ�  

� 

 Fig. 2.9 The schematic view of the box model, 

having ground surface as its base, and mixing layer 

as its height (ℎ�). 
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Bearing in mind these assumptions the budget of layer – integrated trace gas (radon) inside 

the box can be written as: 

 ∂�C�∂t = φ4� − hCλ + C� ∂h∂t  (2.5) 

Where: 

• C 5Bqm�q7:  measured radon concentration,  

• φ4� 5Bqm��s�
7:  radon exhalation rate,  

• h 5m7: boundary layer height,  

• λ 5h�
7 = 0.0076 is the radon decay constant, 

• C�5Bqm�q7:  is the radon concentration in the residual layer.  

The residual layer forms as the mixing layer decays in the late afternoon. The radon 

concentration in residual layer C� is assumed to be conserved and can be modelled as 

follows: 

1) when ∂h ∂t⁄ > 0 (MLH increases), the C� is the concentration of radon in the 

encroached residual layer which can be modelled as C = Cn��e��������S�, where Cn�� is the measured radon concentration in the late afternoon of the previous day. 

2) when the ∂h ∂t⁄ < 0 (MLH decreases), the  C� = C, i.e., the measured radon 

concentration in the current time t. 

Considering the mentioned assumptions, equation (2.5) can be solved analytically for 

discrete time intervals during which MLH and RAC are assumed to be constant. If we know 

the MLH at the current time step h�, and have data on the RAC time series measured at time 

steps i and i + 1, then the MLH in the subsequent time step h��
 can be derived from the 

following formula: 

 C��
h��
 = φ4�λ �1 − e����� + C�h�e���� + C���h��
 − h��e���� (2.6) 

Equation (2.6) for this box model comprises three primary terms: emission, legacy, and 

encroachment. On the right-hand side of equation (2.6), the first term corresponds to the 

emission component, where radon is supplied to the box due to its exhalation from the soil. 

The second term represents the remaining legacy (radon remaining in the box from the 

previous time step), while the final term accounts for the encroachment effect caused by the 

expansion or contraction of the MLH during the current time interval. This describes the 

scenario where, when the MLH is increasing, the mixing layer and the residual layer become 
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coupled. As a result, the radon concentration remaining in the residual layer from the 

previous day encroaches into the box. Conversely, when the MLH is decreasing, it decouples 

from the residual layer, and the radon concentration from the residual layer is no longer 

added to the box. The box model is initialised in the late afternoon, when the MLH begins 

to shrink (equation 2.7).  

 

Fig. 2.10 An example of the temporal evolution of MLH based on radon measurements, 
illustrating the box model procedure. The plot shows MLH values derived for 13:00 on the 
first day to 17:00 on the second day. h1max and h2max represent the highest MLH on day one 
and day two, respectively. 

To describe the full diurnal cycle of MLH, the following three distinct conditions can be 

derived from the rearrangement of equation (2.6), also illustrated in Fig. 2.10: 

1. When the MLH is shrinking (h��
 � h�) (usually in the late afternoon), the residual 

layer becomes decoupled from the mixing layer (C�
� 	 C�): 

 
h��
 	 φ4��1  e�����

λ�C��
  C�e����� (2.7) 

2. when the MLH growing (h��
 y h�) (usually after the sunrise), residual layer 

containing a volume of air is incorporated into the mixing layer: 

 
h��
 	

φ4�
λ �1  e����� � h�e�����C�  C�

��
C��
  C�

�e����  (2.8) 



Experimental background 

32 | P a g e  

 

3. when the h��
 > hn?� (hn?� is the maximum height recorded in the previous day), 

the condition 2 is modified as: 

 h��
 = φ4�λ �1 − e����� + h�C�e���� + �hn?� − h��C��e����C��
  (2.9) 

If this modification were not implemented, the model would add radon-free space in the 

box above the hn?�, which would lead to uncertainty in the determination of MLH.  

The radon concentration was recorded at 2–hour intervals, specifically for the odd hours of 

the day (e.g., 1:00, 3:00, 5:00, etc.). To enhance the accuracy of the MLH calculation by 

increasing the number of data points, the original 2-hour RAC data were interpolated using 

the cubic spline method to estimate values for the even hours (e.g., 2:00, 4:00, 6:00, etc.). 

This interpolation ensures that the MLH time series derived from radon data more accurately 

captures variations in atmospheric conditions, such as shifts in sunrise and sunset times 

throughout the year. In this research, the daily mean radon flux was obtained from the 

European radon flux map, which is based on GLDAS-Noah v2.1 soil moisture data (Karstens 

et al., 2023). Since the model exhibits high sensitivity to RAC fluctuations, the measured 

RAC values, recorded at 2-hour intervals, were initially smoothed using the Fast Fourier 

Transform (FFT) to filter out fluctuations with periods shorter than 8 hours. Following this 

preprocessing step, the MLH was determined using equations (2.7), (2.8), and (2.9). 

2.7.3. Aerosols residence time  

The residence time of aerosols (TR) is a crucial factor that indicates the average duration 

aerosols remain in the atmosphere before settling on the Earth’s surface. This metric is 

essential for assessing the atmospheric concentration of various substances and their 

potential effects on the lower atmosphere and surface environment (Rangarajan, 1992). 

Notably, the TR is inversely related to the atmospheric removal rate constant, a key parameter 

in atmospheric models that can be used to study the transport and fate of airborne pollutants. 

Various experimental and modelling approaches have been employed to estimate aerosols 

residence time. A comprehensive review of the models used for this purpose is provided by 

(Kristiansen et al., 2016). However, significant uncertainties persist in modelled TR values 

due to limited data on atmospheric removal processes. One method relies on atmospheric 

mixing height and deposition velocity, but its accuracy is constrained by the scarcity of 

reliable deposition velocity data (Crova et al., 2021). An alternative technique involves using 

natural radionuclides, such as 7Be and radon/thoron decay products, as tracers. These 
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radionuclides attach to fine aerosols, making them effective tracers for studying aerosol 

dynamics (e.g., Porstendörfer et al., 2000). This method is based on analysing the radioactive 

disequilibrium between pairs of radionuclides in the decay chain. The degree of 

disequilibrium provides insights into the atmospheric aerosol’s lifetime before deposition. 

This method has been used extensively to determine the aerosols mean residence time. For 

example, studies using different radionuclide pairs (e.g., 210Po/210Pb, 210Bi/210Pb, 210Pb/222Rn, 
210Pb/214Pb, 210Pb/214Bi, 214Pb/222Rn, 214Bi/222Rn) have reported a wide range of mean TR, 

from a few hours to several weeks (Barba-Lobo et al., 2023; Baskaran & E. Shaw, 2001; 

Mohery et al., 2016; Porstendörfer et al., 2000; Turekian et al., 1977). The choice of 

radionuclide pair significantly influences the calculated TR. For instance, ratios involving 

long-lived radon progeny, such as 210Po/210Pb and 210Bi/210Pb, tend to yield longer TR, often 

in the range of weeks (Długosz et al., 2009; Marley et al., 2000; Papastefanou, 2009). In 

contrast, ratios combining long-lived and short-lived decay products (e.g., 210Pb/214Pb, 
210Pb/214Bi, 210Pb/222Rn) typically result in shorter TR, ranging from a few days to a week 

(Crova et al., 2021; Mohery et al., 2016; Sýkora et al., 2017). Notably, ratios of immediate 

radon progeny, such as 214Pb/222Rn, suggest even shorter residence times, often less than a 

day (Barba-Lobo et al., 2024). Another independent approach, based on the growth rate of 
7Be aerosols, estimated a residence time of approximately 8 days (Papastefanou, 2009a). The 

wide variability in reported TR values highlights the challenge of selecting the most reliable 

radionuclide pair for accurate estimation. Ratios involving long-lived radon progeny, such 

as 210Po, 210Pb, and 210Bi, are often less reliable due to the influence of external sources of 

these radionuclides, including soil dust resuspension, volcanic activity, biomass burning, and 

fossil fuel combustion (Długosz-Lisiecka & Bem, 2012; Lambert et al., 1983; Papastefanou, 

2009a; Poet et al., 1972). Recent findings by Crova et al. (2021) suggest that the 210Pb/214Bi 

pair offers a more robust estimate of aerosol residence time compared to methods based on 

deposition velocity and MLH. 

The TR is calculated based on the ratios of radon decay products e.g., (Turekian et al., 1977; 

Baskaran & Shaw, 2001; Crova et al., 2021; Mohery et al., 2016; Sýkora et al., 2017; Moore 

et al., 1973). In this model it is assumed that a set of data obtained from the analysis of air 

samples is a representative sample of a well-mixed box into which radon is continuously 

injected. If the radon flux entering the box remains constant over a short period of time, it is 

possible to obtain the aerosols residence time based on the ratios of radon and its progeny. 



Experimental background 

34 | P a g e  

 

The concentration of radon decay products as a function of time can be derived from the 

following equation:  

 dN0dt = λ�N� − λ0N0 − λ�N0 (2.10) 

Where N� and N0 are the parent and daughter products, λ� and λ0 are their respective 

radioactive decay constants. The term λ�N0 accounts for the atmospheric removal of the 

daughter nuclei attached to aerosol particles by all processes, e.g., by scavenging, 

gravitational settling, or removal by coagulation (all these removal processes together are 

characterized by the removal constant λ��. Under steady-state conditions, equation (2.10) 

yields relation (2.11), which gives the mean aerosols residence time.  

 T4 = 1λ� = C0λ0�C� − C0� (2.11) 

The T4�= 
��� is the aerosols residence time and C� and C0 are the activity concentrations of 

the parent and daughter radionuclides in units of Bq.m-3. This model has certain intrinsic 

limitations, such as the assumption of steady-state conditions and constant radon flux, which 

are not always met. However, studies have reported a strong correlation between the ratios 

of radionuclide pairs used to determine aerosol residence time (e.g., between 210Pb and short-

lived radon progeny), suggesting the presence of steady-state conditions (Kim et al., 2000). 

Additionally, given the small spatiotemporal variability of radon flux, it can be reasonably 

assumed to remain approximately constant over short periods, as also suggested by Crova et 

al. (2021). The aerosols residence time calculated in this way can be considered 

representative for particles with an aerodynamic diameter between 0.1 and 1 μm, since this 

is the size range of aerosols to which radon progeny preferentially attach (Porstendörfer et 

al., 2000). The residence time was calculated from relation (2.11) using the weekly ratios of 
210Pb/214Pb, 210Pb/214Bi and 210Pb/222Rn. In the case of the 210Pb/222Rn pair, relation (2.11) 

must be adjusted to include the equilibrium factor F2�: 

 T4 	 1λ� = C0λ0�F2�. C� − C0� (2.12) 

For this calculation, weekly values of Feq data from the present study were used.  
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2.8. Conventional data analysis techniques 

In this study, a combination of statistical and machine learning (ML) techniques was 

employed to preprocess the dataset and model radon time series. These methods were 

selected to effectively capture underlying trends and relationships between RAC and its 

influencing factors. The analytical approaches include time series analysis, regression and 

correlation techniques, as well as various machine learning models for regression analysis. 

Each method was chosen based on its suitability for specific aspects of the data and the 

objectives of the study. The techniques applied are outlined and discussed in detail below. 

2.8.1. Fast Fourier analysis  

The Fast Fourier Transform (FFT) was applied to analyse the RAC time series in order to 

explore its underlying frequency components. FFT is a widely used and efficient algorithm 

for performing spectral analysis on time series data (Morrison, 1994). This technique 

transforms the original time-domain signal into the frequency domain, allowing for the 

identification of periodic patterns and the contribution of various time scales to the overall 

signal. In this study, the built-in FFT function in OriginLab Pro1 was used for RAC spectrum 

analysis. Considering an input series x� of length �, its discrete Fourier transform is given 

by: 

 F� 	 ∑ x�e−2πjN ni��
��� ,      n =  0, 1, . . . , N − 1 (2.13) 

where F� represents the complex amplitude of the frequency component at index n with the j being the imaginary unit.  

The output of the FFT in OriginLab includes frequency components along with the 

corresponding complex-transformed values. Additionally, it can yield various analytical 

results such as magnitude, amplitude, phase, power density, and other related computations. 

2.8.2. Autocorrelation function 

Autocorrelation Function (ACF) is a mathematical equation used to measure the correlation 

of a time series with a delayed version of itself over different time lags. It is widely used in 

time series analysis, signal processing and statistics to understand the repeated trends and 

pattern. In the other words, the correlation between two points in a time series is called ACF. 

Mathematically, the ACF for a time series y� is given by: 

 
1 Help Online - Origin Help - Fast Fourier Transform  
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 Corr�y�, y��
�,   k = 1,2, …. (2.14) 

The value of k is the time gap being considered between two values of time series and is 

called lag. 

2.8.3. Canonical correlation analysis  

Canonical Correlation Analysis (CCA) is a multivariate statistical technique used to examine 

the relationship between two groups of variables (Uurtio et al., 2017). The core principle of 

CCA is to generate two composite variables from each set, which effectively summarize the 

overall correlation between the two groups. These composite variables help quantify the 

association between the sets of indicators. CCA results are typically represented through 

canonical correlation, canonical loadings, cross-loadings, and both standardized and 

unstandardized correlation coefficients. Canonical correlation and loadings provide insight 

into the overall relationship between the two sets of variables and the individual contribution 

of each variable to the corresponding canonical variates. In this study, the CCA analysis was 

conducted using the canonical correlation function in the Statistical Package for Social 

Sciences (SPSS, Version 26). 

2.8.4. Principal component analysis  

The Principal Component Analysis (PCA) is a well-established multivariate statistical 

technique primarily used as an explanatory tool to reveal the complex relationships between 

multi-high dimensional variables. PCA is particularly effective for exploratory and 

descriptive analyses of high-dimensional data (Jolliffe, 2002). Its primary strength lies in its 

ability to perform dimensionality reduction by transforming a set of potentially correlated 

variables into a smaller set of uncorrelated variables, known as principal components (PC). 

These components are linear combinations of the original variables, ordered in such a way 

that the first few components capture most of the variance present in the original dataset, 

thereby minimizing information loss. The PCA has been used in several radon studies (e.g., 

Al-Shboul, 2023; Banríon et al., 2023; Sabbarese et al., 2022). In this research, hourly data 

for all variables, except for wind direction and pressure were subjected to PCA. In this study, 

the PCA was applied to assess the relationship between RAC and its potential influencing 

factors.  
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2.8.5. Multiple linear regression  

Multiple Linear Regression (MLR) is a statistical technique used to explore how multiple 

independent variables collectively influence a single dependent variable (MONTGOMERY 

& and FRIEDMAN, 1993). Building upon simple linear regression, MLR employs the least 

squares method to determine the relationships among variables. The general form of the 

MLR model is expressed as: 

 Y 	 b� + b
X
 + b�X� + bqXq … b�X� (2.15) 

where Y is the dependent variables, b�, b
, b�, bq … b� are the unknown regression 

coefficients and X
, X�, Xq … X� are the independent variables (predictors). 

Key outputs of MLR typically include: 

R value: Measures the direction and strength of the overall linear relationship between 

predictors and the dependent variable. 

Adjusted R²: Reflects the proportion of variance explained by the model, adjusted for the 

number of predictors used. 

Beta (β) coefficients: Indicate the individual effect of each predictor while controlling for 

others. 

Hypothesis tests: These include t-tests for individual predictors and the F-test for evaluating 

the model; these tests help to assess statistical significance. 

By examining these metrics, MLR offers valuable insights into how well the model explains 

or predicts the dependent variable. 

2.8.6. Generalised additive model  

The Generalized Additive Model (GAM) is a flexible extension of the Generalized Linear 

Model (GLM) that allows for non-linear relationships between the response variable and 

predictor variables. While a GLM models the expected value of the response as a linear 

combination of the predictors through a specified link function, a GAM replaces this linear 

combination with a sum of smooth, non-parametric functions. These smooth functions are 

unspecified and are estimated from the data, with inference focusing on their shapes and 

effects. Unlike GLM, which assume a linear relationship between the predictors and the 

response (e.g., βx), GAM allow for complex, non-linear associations by incorporating 

smooth functions (e.g., f(x)). This flexibility makes GAM particularly well-suited for 
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modelling ecological, environmental, and biomedical data, where relationships between 

variables are often inherently non-linear (Hastie, 1992). The general form of the GAM is 

given by: 

 g�E�Y�� 	 β� � f
�x
� � f��x�� � ⋯ � f��x�� (2.16) 

where g is the link function (e.g., identity, log, logit), Y is response variable, β�is the 

intercept, f��x�� are non-parametric smooth functions estimated from the independent 

variables (x��. 
In this thesis, GAM is employed to infer information about the effects of factors governing 

RAC. GAM is considered a suitable modelling approach in this context because it can 

effectively accommodate non-linear relationships between predictor variables and RAC. 

Unlike traditional linear models, GAMs do not require a fixed functional form for each 

predictor; instead, they estimate smooth functions from the data, allowing for greater 

flexibility and a more accurate representation of complex environmental processes. These 

smooth functions provide valuable insights into the nature and shape of the relationships 

between predictors and the response variable. GAMs offer several advantages i.e., their 

flexibility enables them to model non-linear effects without overfitting, and their 

interpretability allows each predictor’s effect to be visualized and analysed individually. 

Additionally, GAMs maintain the statistical rigor of GLM while expanding their 

applicability to a wider range of data patterns commonly observed in environmental studies. 

2.9. Machine learning in radon studies 

ML is a subfield of Artificial Intelligence (AI) that involves algorithms which learn patterns 

from data to make decisions or predictions, without being explicitly programmed for specific 

tasks. These models can analyse new data, perform classifications, and generate predictions. 

A key use of ML is in regression analysis, where it often outperforms traditional statistical 

techniques. Commonly employed ML models for regression analysis include artificial neural 

networks (ANN), gradient boosting machines (GBM), extreme gradient boosting 

(XGBoost), and random forests (RF). These approaches have found extensive use in radon-

related studies. Examples include geogenic radon mapping (e.g., Elío et al., 2023; Petermann 

et al., 2021, 2024; Rezaie et al., 2022, 2023), exploring the variables that influence radon 

levels (Al-Shboul, 2023; Dicu et al., 2023; Elío et al., 2023; Naskar et al., 2023; Yang et al., 

2025), managing incomplete or irregular time series data (Janik et al., 2018), and identifying 

anomalies potentially linked to seismic activity (e.g., Mir et al., 2021, 2022; Tareen et al., 
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2019). In general, ML techniques tend to deliver more accurate and robust results than 

traditional methods, underscoring their value in radon research and analysis. Some key 

advantages of ML regression over conventional regression methods include the ability to 

model complex and nonlinear relationships without requiring explicit specification, allowing 

for greater flexibility in capturing real-world patterns. Unlike traditional approaches such as 

MLR, which assume linearity and often rely on assumptions like normality, 

homoscedasticity, and particularly stationarity in time series data, ML models can operate 

effectively without these strict prerequisites. This makes ML regression more suitable for 

dynamic, non-stationary datasets where the statistical properties change over time. 

Additionally, ML models are capable of automatically detecting interactions and 

dependencies among variables, and they tend to be more robust to multicollinearity 

compared to traditional statistical methods and handle high-dimensional or large-scale 

datasets more efficiently. While conventional methods offer simplicity and interpretability, 

ML regression provides a powerful and adaptable alternative for more complex and less 

predictable data like outdoor radon. In this study, we employed the GBM, XGBoost and RF 

algorithms for regression analysis to identify the factors influencing radon temporal 

variability. These ML approaches are explained in detail below. 

2.9.1. Gradient boosting machine  

GBM is a powerful ensemble ML technique, mainly used in regression and classification 

problems. Rather than constructing a single predictive model, GBM creates an ensemble by 

incrementally adding multiple weak learners (like decision trees) where each learner is 

trained to correct the errors made by the previous ensemble (Natekin & Knoll, 2013). This 

iterative process involves optimizing a differentiable loss function using a form of gradient 

descent in function space, where new learners are aligned with the negative gradients of the 

loss function. To enhance predictive performance and mitigate overfitting, several 

regularization strategies are incorporated, including learning rate reduction (shrinkage), 

random subsampling of training data, and early stopping based on validation error. Since 

their foundational development by Friedman (2001), GBM has achieved widespread success 

across diverse ML applications and are now considered a cornerstone method in predictive 

modelling. 
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2.9.2. Extreme gradient boosting  

XGBoost is an advanced version of the gradient boosting framework designed to improve 

performance and scalability in ML tasks (Chen & Guestrin, 2016). It addresses the 

limitations of traditional gradient boosting by incorporating several key improvements. One 

of the main improvements in XGBoost is regularisation, which prevents overfitting by 

adding a penalty term to the objective function and controlling model complexity. XGBoost 

supports both L1 (Lasso) and L2 (Ridge) regularisation. L1 regularisation promotes sparsity 

by driving some variable coefficients to zero, effectively performing feature selection and 

excluding irrelevant features. L2 regularisation, on the other hand, prevents large 

coefficients, which promotes stability and ensures that the model doesn’t become overly 

sensitive to fluctuations in the data. This combination helps to keep a balance between 

simplicity and stability, improving the model’s ability to generalise to unseen data. Another 

key feature is the use of second-order optimisation, which takes into account both the first 

and second derivatives of the loss function. This results in faster convergence and improved 

accuracy compared to standard gradient boosting, which uses only first-order information. 

XGBoost also incorporates a post-pruning technique that allows the model to limit the depth 

and complexity of the tree, thereby reducing overfitting. In addition, the algorithm uses 

parallel processing and distributed computing, which speeds up training and makes it 

suitable for large datasets. The flexibility of hyperparameter tuning further enhances 

XGBoost’s adaptability, providing options for adjusting learning rates, boosting rounds and 

subsampling ratios. This has made XGBoost popular for regression and classification in 

various fields. 

2.9.3. Random forest  

The RF algorithm is an ensemble learning method that combines multiple decision trees, 

where each tree is constructed using a randomly selected subset of data and features 

(Breiman, 2001). These trees operate independently, following the same probability 

distribution (Fig. 2.11). As the number of trees increases, the overall error stabilizes toward 

a fixed limit. The generalization error of a random forest depends on both the strength of 

individual trees and the correlation between them. By aggregating the predictions of multiple 

trees (i.e., through majority voting for classification or averaging for regression) random 

forests enhance accuracy while reducing overfitting. They are effective for handling high-

dimensional data, identifying important features, and improving predictive performance. 
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Fig. 2.11 Illustration of random forest trees. 

2.10. Regression models evaluation 

To compare and evaluate the model’s performance, certain metrics were calculated, 

including mean square error (MSE), root mean square error (RMSE), mean absolute error 

(MAE) and adjusted coefficient of determination (adj. R2). These metrics are widely used as 

standard metrics for evaluation and comparison of regression models in different fields 

including radon science (Janik et al., 2018). These metrics are described mathematically by 

the following equations: 

MSE measures the average of the squares of the errors: 

 
MSE 	 1

n��O�  P���
�

��

 (2.17) 

where O� are the observed values, P� are the predicted values and the n is the number of 

observations. 

RMSE is the square root of MSE, giving error in the same units as the target variable: 
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 RMSE = √MSE = �1n ��O� − P����
��
  (2.18) 

The MAE measures the absolute differences: 

 MAE = 1n �|O� − P�|�
��
  (2.19) 

Adjusted R� is a modified version of R� that adjusts for the number of predictors in the 

model: 

 adj. R� = 1 − �1 − R��. n − 1n − k − 1 (2.20) 

where R� is the coefficient of determination, and k is number of independent variables. 

2.11. Data preprocessing 

To ensure the accuracy and reliability of the regression and classification models, several 

preprocessing steps were applied to the dataset. These include outlier detection and 

treatment, data smoothing, handling missing values, normalization, testing for stationarity, 

feature selection, feature engineering, and splitting the dataset. 

Outlier detection: Outliers were identified manually by visually inspecting time series plots 

of each variable. Abnormal values, often caused by instrument malfunction, were excluded 

to maintain data integrity. 

Data smoothing: To reduce noise, the RAC data was smoothed using a 4-point FFT. This 

acts as a low-pass filter, effectively removing high-frequency components (i.e., fluctuations 

with periods shorter than 8 hours) and preserving longer-term trends. 

Normalization: Since some regression models are sensitive to feature scales, all variables 

were normalized using Min–Max scaling to ensure uniformity and improve model 

performance. 

Stationarity: In time series analysis, stationarity is a key, yet complex, concept. A time 

series is deemed stationary when its statistical properties (i.e., mean, variance, and 

autocorrelation) do not change over time. This assumption is essential in many forecasting 

and regression techniques and its violation can lead to inaccurate or misleading conclusions. 

For instance, in the presence of non-stationarity, models might incorrectly interpret patterns 
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like trends or seasonality as meaningful relationships, thereby compromising the reliability 

of statistical tests. However, environmental datasets including RAC frequently exhibit 

seasonal patterns and long-term trends indicating possible non-stationarity. To assess the 

stationarity of a time series, several statistical tests are commonly employed, each based on 

different assumptions and hypotheses. The Augmented Dickey-Fuller (ADF) test (Dickey & 

Fuller, 1979) is a widely used method for detecting unit roots in time series data. It tests the 

null hypothesis that the series is non-stationary due to the presence of a unit root against the 

alternative that it is stationary. Complementing this, the Kwiatkowski–Phillips–Schmidt–

Shin (KPSS) test (Kwiatkowski et al., 1992) adopts the opposite hypothesis framework: it 

tests the null hypothesis that a series is stationary (either around a level or a deterministic 

trend), with the alternative being that it is non-stationary. Employing both ADF and KPSS 

tests in parallel allows for a more robust diagnosis of stationarity, as their opposing null 

hypotheses can reveal different types of non-stationary behaviour. The ADF test was applied 

to the RAC time series containing six years of hourly data. The null hypothesis of the ADF 

test is that a unit root is present in a time series sample. The alternative hypothesis is usually 

stationarity or trend-stationarity. When applied to the entire dataset, the test returned a p-

value of 0.0, indicating that the series is stationary. However, when the ADF test was applied 

to shorter time periods, the p-values exceeded 0.05, suggesting non-stationarity in the short 

term. This discrepancy arises because short-term data often exhibit diurnal and seasonal 

patterns, while the complete time series tends to fluctuate around a relatively stable long-

term mean. A similar observation was made by Bossew et al. (2024) in their study of indoor 

radon time series in Berlin: although short-term segments displayed cyclic behaviour, the 

full time series was found to be approximately stationary. They emphasized that detecting 

trends within short temporal windows does not necessarily imply non-stationarity, as the 

broader, long-term pattern may reflect a different structure. In other words, what appears as 

a trend on a short timescale may be embedded within a stable, stationary process when 

viewed over a longer horizon. In this study, the full dataset was used for regression analysis 

under the assumption of long-term stationarity. 

Feature selection and engineering: Feature selection and feature engineering are processes 

in machine learning that involve choosing and transforming data features to improve model 

performance. Feature selection focuses on identifying the most relevant features, while 

feature engineering involves creating new features or modifying existing ones to enhance 

the model’s accuracy and effectiveness. 
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For our dataset, feature selection involved analysing the pairwise correlations between each 

predictor and RAC. This resulted in most of the independent variables being included. An 

exception was wind direction, which was excluded due to its cyclic nature. Although wind 

direction can be transformed into sine and cosine components, its contribution to the 

regression models was found to be negligible. 

Feature engineering was performed to enhance the predictive power of the time-related 

variables, including day of the year (DOY; 1–365) and hour of the day (H; 0–23). These 

variables capture seasonal and diurnal effects, which are important for time series modelling. 

To account for their cyclic behaviour, these parameters were transformed into sine and 

cosine features using the following formulas: 

 Sin 2?�¡�2 	 sin u�¢�
£ v,  Cos 2?�¡�2 = sin u�¢�£ v (2.21) 

where t is the time value (e.g., hour or day of year), and T is the period (e.g., 24 hours or 365 

days). 

This transformation ensures continuity at cycle boundaries (from 24:00 to 01:00 and from 

December 31 to January 1), enabling models to capture smooth periodic patterns. 

Incorporating these engineered time features significantly improved model performance, 

particularly for regression approaches involving machine learning. 

Data Splitting: The final step in the data preprocessing involved splitting the dataset into 

training and testing subsets. The training subset comprised 80% of the data, whereas 20% of 

the remaining data were used for model evaluation. Data preprocessing and regression 

modelling were performed using the SPSS software package (IBM Corp., 2021), the H2O 

machine learning platform (H2O.ai, 2020), and R programming language (R Core Team, 

2023). 
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Chapter 3 

 

3. Time series analysis of RAC 

This chapter presents the time series analysis of RAC, including data preparation 

(interpretation and smoothing), descriptive statistics, frequency distribution, periodicity, and 

hourly, diurnal and seasonal variations. 

3.1. Descriptive statistics of RAC 

The descriptive statistics of 2-hourly RAC measurements collected over a six-year period 

(January 2018 to December 2023) are summarized in Table 3.1. A total of 25,326 valid 

observations were recorded, with RAC values ranging from 0.00 to 31 Bq.m-3 and a mean 

of 5.6 Bq.m-3. The mean RAC value is lower than the global average of RAC 10 Bq.m−3 

(Tirmarche et al., 2010). The standard deviation of 3.9 indicates moderate variability in the 

data, while the standard error of the mean (Std.EM = 0.024) suggests that the sample mean 

is a reliable estimate of the population mean. Approximately 2.8% of the data were missing, 

which is within an acceptable range for long-term environmental monitoring. Additionally, 

465 measurements were identified as statistical outliers, defined as values falling outside the 

range of (Q1 − 1.5×IQR, Q3 + 1.5×IQR, where Q1 and Q3 represent the 25th and 75th 

percentiles, respectively, and IQR is the interquartile range), indicating occasional extreme 

RAC levels likely due to episodic events or anomalous conditions. 

Table 3.1 Descriptive statistics of 2-hourly RAC measured during (2018 – 2023). 

N Minimum Maximum Mean Std.EM 
Std. 

Deviation 
Missing% 

No. of 

Extremes2 

25326 0.00 31 5.6 0.024 3.9 2.8 465 

3.2. Data interpolation 

To improve the temporal resolution of the data and synchronize it with other variables, the 

2-hourly measured RAC data were interpolated to 1-hourly intervals using the cubic spline 

option of the interpolate/extrapolate method in OriginLab (OriginLab Corporation, 2025). 

Unlike simpler interpolation methods, such as linear or polynomial interpolation, cubic 

 
2 Number of cases outside the range Q1 − 1.5×IQR, Q3 + 1.5×IQR. 



Result and discussion  Radon time series 

46 | P a g e  

 

spline interpolation employs a series of piecewise cubic polynomials between each pair of 

data points, ensuring both smoothness and continuity (McKinley & Levine, 1998). An 

example of the interpolation result is shown in Fig. 3.1. As can be seen, this method 

generates additional points between each pair of measurements while preserving the overall 

smoothness and continuity of the data trend. 

 

Fig. 3.1 An example of cubic spline interpolation. The blue dots show the 2-hourly RAC 
data, and the orange squares represent the interpolated points. 

3.3. Data smoothing - results 

The outdoor radon signals recorded in the detection systems often includes noise and 

extreme fluctuations due to the harsh environmental factors and instrumental error. Data 

smoothing techniques are used to reduce the noise and extreme fluctuations in the time series 

while preserving the trends and patterns. In this study, the radon time series were smoothed 

using the moving average (MA) and FFT smoothing techniques. The MA is the simplest, 

widely used technique for smoothing time series data. In this technique, the average of a 

fixed number of consecutive observations is considered the smoothed value of the central 

point. The number of observations is called the window size and determines how much 

smoothing is applied to the data set. The window size is crucial in order to achieve the desired 

smoothing effect. The other smoothing technique is FFT, which uses the Fourier transform 

to filter out the high-frequency noise from a time series, leaving behind the low-frequency 

components that represent the underlying trends and pattern (Kimball, 1974). The FFT 

algorithm transforms the time series data into the frequency domain, cutting off the higher 

frequencies according to a specific threshold. OriginLab software was used to smooth the 

radon time series data using both MA and FFT smoothing techniques. The result is shown 

in Fig. 3.2. The frequency threshold (fs¡�C  � is calculated using the following equation: 
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 fs¡�C   	 12n∆t (3.1) 

Where n represents the number of points in the window and ∆t is the time interval between 

two consecutive data points. By considering the points in the window as described in 

equation (3.1), certain frequencies, or in other words, certain periods can be excluded. Since 

we used 2-hourly data (∆t = 2h), n = 1,2,3 corresponds to frequencies of 0.25/h, 0.125/h, 

and 0.083/h, respectively, leading to the exclusion of any periodic fluctuations with periods 

shorter than 4h, 8h, and 12h.  

It was found that the smoothing using 5-points MA and 1-point FFT do not reduce the noise 

sufficiently (Fig. 3.2). However, the 2-pts (8h) and 3-pts (12h) FFT smoothing reduce the 

noise reasonably well and reveal the expected trends. For all smoothing methods, strong 

correlation with Pearson′s r ≥  0.85 was observed between raw and smoothed data (Fig. 

3.3). For further analysis we considered the 2-pts FFT smoothing. 

 

Fig. 3.2 Comparison of data smoothing using MA and FFT with different frequency 
cutoffs. 
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Fig. 3.3 Correlation between the raw data and the data smoothed using FFT smoothing. 

3.4. Frequency distribution of RAC 

To understand the statistical distribution of the RAC data, we applied various statistical 

methods. Understanding the data distribution is crucial for capturing the true nature of the 

data and selecting appropriate analysis techniques. Different statistical tests often assume 

specific forms of data distribution (e.g., normal, binomial, or gamma distributions). 

Choosing the correct test based on the actual distribution of the data ensures the accuracy 

and validity of the analysis. Furthermore, recognizing the distribution type helps in data 

transformation, outlier detection, and the selection of suitable modelling techniques.  

As an initial step, the distribution of the data was assessed by fitting it to several theoretical 

distributions, including the normal, gamma, and Gaussian mixture models. The fit to the 

normal distribution is illustrated in Fig. 3.4. Notable deviations in the probability–

probability (P–P) and quantile–quantile (Q–Q) plots indicate that the data does not conform 

to a normal distribution. In contrast, based on the P–P plots and empirical cumulative 

distribution function (CDF), the RAC data was found to align most closely with a gamma 

distribution. 
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Fig. 3.4 RAC data fitting with normal distribution function. 

 

 

Fig. 3.5 Cullen and Frey graph, plotting the kurtosis against the square of the skewness for 
the RAC dataset (red circle) and the bootstrapped RAC data (orange smudge). 
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The second method involved using the Cullen and Frey graph, a visual tool used to assess 

the skewness and kurtosis of a dataset, helping to determine the appropriate probability 

distribution for the data. It plots these two statistical measures, allowing for a quick 

evaluation of the data’s characteristics (Cullen & Frey, 1999). This graph was generated 

using the ‘fitdistrplus’ package in R (Delignette-Muller & Dutang, 2015), with the data 

bootstrapped 1000 times. Different regions of the graph correspond to different families of 

distributions, allowing for a visual assessment of the likely distribution of the data. As shown 

in Fig. 3.5, the RAC data distribution falls along the line associated with the gamma 

distribution. 

3.5. Periodicities in RAC time series 

A time series consists of three main components: trend, periodic, and random components. 

Understanding each of these components is crucial for accurately characterizing the true 

nature of time series data and making reliable predictions. Periodicities refer to patterns or 

cycles that occur at regular intervals within a time series. The length of time after which the 

pattern repeats is called the period. Mathematically, periodicity is defined as follows: 

 x�t� = x�t + T�, (3.2) 

where x�t� is a signal with a period T for all time t. In this study two well-known techniques 

i.e., FFT and autocorrelation function (ACF) were used to assess the periodicities in RAC 

time series. 

The periodogram of the radon time series based on FFT analysis is shown in Fig. 3.6. The 

periodogram reveals dominant periodicities at 8 hours, 12 hours, and the expected 24 hours. 

To further investigate the periodic behaviour of the radon time series, a second method based 

on the ACF was applied. The ACF periodogram (Fig. 3.7) clearly shows 24-hour and 12-

hour periodicities; however, the 8-hour periodicity has not appeared. The 24-hour cycle is 

well understood and is primarily attributed to daily cycles in meteorological factors, 

particularly solar radiation. In contrast, the origins of the 12-hour and 8-hour periodicities 

are less clear, though they may be related to Earth’s tidal effects and atmospheric mixing 

conditions. Similar periodicities have been reported in previous studies (Bossew et al., 2024; 

Kumar & Nagaraja, 2024; Siino et al., 2020). 
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Fig. 3.6 Periodogram of RAC time series based on FFT. 

 

 

Fig. 3.7 Periodogram of the ACF of the RAC time series. 
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3.6. Diurnal cycle of RAC 

According to the periodicity analysis of outdoor radon data, it was revealed that the 24-hour 

period is the most dominant in the radon time series. The composite diurnal cycles provide 

valuable insights into the daily evolution of RAC, as random fluctuations tend to cancel each 

other out. The RAC exhibited a clear diurnal cycle, with the highest concentration in the 

early morning (03:00–05:00) and the lowest during the afternoon (14:00–16:00). The same 

diurnal cycle was observed elsewhere (Griffiths et al., 2013; Sultani et al., 2023; Zahorowski 

et al., 2004). This pattern is primarily governed by changes in atmospheric mixing 

conditions/BLH (e.g., Pal et al., 2015; Zimnoch et al., 2014). After sunrise, solar heating 

warms the Earth’s surface, warming near-surface air parcels and generating turbulent 

mixing. This turbulence vertically expands the boundary layer, forming a convective 

boundary layer (CBL) whose depth peaks in mid-afternoon. As solar intensity diminishes 

towards evening, the CBL begins to collapse. After sunset, the surface cools rapidly via 

thermal radiation, creating a temperature inversion (colder air near the surface, warmer air 

above). This inversion stabilizes the atmosphere, suppressing turbulence and reducing the 

BLH to a shallow stable boundary layer, typically 200–300 m deep. During this stable phase, 

radon accumulates near the surface due to limited vertical mixing, reaching peak 

concentrations by early morning. After sunrise, solar heating erodes the nocturnal inversion, 

restoring turbulent mixing and deepening the boundary layer. This dilutes surface 

concentrations of radon and its progeny by vertically dispersing them, leading to the 

observed mid-afternoon minimum. 

Distinct diurnal cycle of RAC was observed for different months and seasons. The highest 

amplitudes occur in the summer (Jun– Aug), followed by spring (Mar– May) and autumn 

(Sep–  Nov) while the lowest amplitude was observed in winter (Dec– Feb). These variations 

are likely due to the seasonal changes in radon exhalation rates and meteorological 

conditions. In warmer months, intense atmospheric mixing results in more pronounced 

diurnal fluctuations of radon while in winter, more stable atmospheric conditions contribute 

to less fluctuations in radon concentrations.  
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Fig. 3.8 Composite diurnal cycle of RAC for each month. The data are aggregated over the 
entire study period (2018 – 2023). The blue curves with dots illustrate the 24-h cycle of 
RAC, whereas the horizontal lines represent the monthly averages. 

 

 

Fig. 3.9 Composite diurnal cycle of RAC for each season. The data are aggregated over the 
entire study period (2018 – 2023). 
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3.7. Seasonal variation of RAC 

Fig. 3.10 shows the seasonal variation of RAC, presented as composite monthly boxplots. 

The RAC exhibits a clear seasonal trend, with the lowest levels observed in April and May 

and the highest levels in October and November. The mean RAC is lowest in April and then 

steadily increases, reaching its maximum in November, before gradually decreasing from 

December to April. Throughout the year, the mean remains consistently higher than the 

median, indicating a right-skewed distribution likely influenced by occasional high values. 

This seasonal pattern can be attributed to several factors, primarily seasonal changes in 

atmospheric stability, air mass history, and variations in radon exhalation rates (Zimnoch et 

al., 2014). During autumn and winter, more frequent and prolonged atmospheric inversions 

lead to greater atmospheric stability, favouring the accumulation of radon near the ground. 

In contrast, during spring and summer, stronger atmospheric mixing enhances the dispersion 

of radon, resulting in lower near-surface concentrations. 

 

Fig. 3.10 Seasonal boxplots of RAC. The data are aggregated over the entire study period 
(2018 – 2023).
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Chapter 4 

 

4. Factors governing radon variability 

Ground-level radon variability is influenced by several environmental factors, including 

boundary layer height (BLH) and a range of meteorological parameters. Among these 

factors, BLH is the most significant factor in controlling the dispersion and accumulation of 

radon near the surface. In this study, BLH derived from the ERA5 reanalysis dataset, along 

with key meteorological parameters measured simultaneously, were analysed to assess the 

variability of outdoor RAC. The meteorological parameters included temperature (T), 

relative humidity (RH), wind speed (WS), wind direction (WD), atmospheric pressure (P), 

and precipitation (Prec), all of which were measured hourly at a nearby sampling station. 

The BLH based on the ERA5 reanalysis dataset produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) provides a high-resolution global 

atmospheric reanalysis dataset dating back from 1950 to the present day (Hersbach et al., 

2020). The BLH is calculated using the Bulk Richardson number, has a spatial resolution of 

0.25°×0.25° and a temporal resolution of 1 hour. The BLH-ERA5 dataset has been widely 

used in atmospheric research worldwide. Several studies have compared BLH-ERA5 with 

experimental datasets obtained from ground-based LIDAR, sodar, ceilometer, and 

radiosonde measurements. Despite some differences, there was generally good agreement 

between the BLH-ERA5 data and the experimental results (e.g., Allabakash et al., 2020; 

Madonna et al., 2021; Guo et al., 2021; Sinclair et al., 2022; Li et al., 2023). For our analysis, 

the hourly BLH-ERA5 data for our locality (latitude: 48°9′N, longitude: 17°4′E) were 

extracted, covering the years 2018 to 2023, which aligns with the period during which radon 

and its progeny concentrations were measured. 

Fig. 4.1 represents hourly variation of RAC, BLH and key meteorological factors for a 

period of 10 days for the month of June 2018. The RAC data were smoothed using FFT 

smoothing with 2-pts frequency cutoff; other parameters were not smoothed. Generally, the 

RAC shows a clear diurnal cycle influenced by the changes in the diurnal cycles of BLH and 

meteorological factors. Usually, the highest RAC coincides with the shallowest BLH, lowest 

temperature and wind speed. On the other hand, the lowest RAC is observed to occur when 

BLH is very deep, and the temperature and wind speed are high. 
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Fig. 4.1 Hourly RAC, BLH and major meteorological parameters for a period of 10 days 
measured in June 2018. 
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Fig. 4.2 Variations of RAC, BLH and major meteorological parameters over a period of 
one year (2019). Each graph contains original hourly data that were smoothed using a 2-
point FFT, as well as the moving averages of this data smoothed over periods of 3 and 7 
days. The grey area below the red dashed line shows the annual mean. 
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4.1. Factors governing RAC at synoptic scales 

In addition to diurnal and seasonal patterns, RAC shows changes on a synoptic scale 

associated with the weather systems such as cyclones, anticyclones, frontal passages, and 

persistent temperature inversion events. The synoptic-scale changes are considered to vary 

from days to about two weeks (Kikaj et al., 2019). To better understand the changes in RAC 

against BLH and key meteorological factors on the synoptic scale, a one-year data series was 

plotted using 2-pts FFT smoothing, as well as 3-day and 7-day moving averages (Fig. 4.2). 

A moving average (MA) is a useful smoothing technique that highlights long-term trends by 

reducing short-term fluctuations. Given that both radon concentrations and environmental 

parameters exhibit short- and long-term variability, the use of MA smoothing can be useful 

technique.  

The MA values of RAC reveal a clear short- and long-term variability throughout the year 

2019, strongly influenced by changes in meteorological conditions. Beyond the diurnal 

cycle, RAC exhibits synoptic-scale and sub-seasonal variations ranging from a few days to 

several weeks. The 3-day MA may be useful for revealing changes on a synoptic scale over 

a period of less than one week, while the 7-day MA should highlight patterns over a period 

of one week. A closer look at the long-term trend reveals considerably higher RAC from 

September through February associated with the changes in daylight duration and solar 

intensity. In this period, the 7-day MA of RAC remains consistently above the annual mean 

(represented by the red dashed line in the grey-filled area). During this period, the RAC also 

exhibits several notable synoptic-scale patterns and spikes, each lasting from a few days to 

approximately three weeks. These spikes maybe attributed to the persistent temperature 

inversion events occurring during cold months (Kikaj et al., 2019). During this period, lower 

BLH (Fig. 4.2b) and lower temperature (Fig. 4.2d) were typically observed. However, high 

RH is often associated with elevated RAC, reflecting moist, stagnant air masses. 

Atmospheric pressure plays a more complex role: high-pressure systems can potentially trap 

radon, while falling pressure may promote its release from the soil. Precipitation generally 

causes short-term reductions in RAC by blocking the release of radon from the soil, although 

radon concentrations often rebound once the soil has dried out. Collectively, these factors 

account for the observed seasonal and synoptic variations in outdoor RAC, with the most 

pronounced peaks occurring under calm, cold, and stable weather conditions. 
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Fig. 4.3 Spearman’s correlation coefficient analysis, investigating RAC versus 
meteorological factors and BLH for various degrees of data smoothing. The first set of bars 
on the left shows the correlations between the raw (non-smoothed) data. The remaining bars 
show the correlations after smoothing with moving average windows of 1, 2, 3, 4, 7, 15, 30, 
60 and 72 days, respectively. 

Spearman’s correlation analysis was conducted between radon concentrations and each 

variable using various MA windows; the results are shown in Fig. 4.3. The Spearman’s rank 

correlation coefficient is a non-parametric measure of statistical dependence between two 

variables (Spearman, 1961). Unlike Pearson’s correlation, which assesses linear 

relationships, Spearman’s correlation evaluates the strength and direction of a monotonic 

relationship between two ranked variables. This makes it particularly useful when the data 

does not meet the assumptions of linearity. In our case, this approach allows for evaluating 

the relationship between RAC and any environmental variable.  

The RAC exhibits complex relationships with meteorological parameters and BLH. 

Atmospheric pressure and RH generally show positive correlations with RAC, while BLH, 

temperature, precipitation, and WS are correlated negatively. The magnitude of correlation 

coefficients ranges from negligibly small (e.g., r« = 0.004 for RAC vs. temperature 

smoothed by 24-hour MA) to strong (r« = 0.75 for RAC vs. RH smoothed by 3-month MA). 

Most of the correlations are statistically significant (p < 0.05), except for the weakest one 
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(the 24-hour MA smoothing of RAC vs. temperature). The strength of correlations increases 

with longer MA windows for pressure, RH, precipitation and temperature, suggesting that 

these parameters influence RAC over longer timescales. By contrast, WS correlations 

decreasing with longer MA windows, implying its effects the radon levels in short-term 

scales. BLH correlations remain relatively stable across all MA windows, indicating 

persistent short- and long-term impacts on RAC. RH is an exception: its correlation is high 

with raw (non-smoothed) data, dips at intermediate MA windows, and strengthens again 

with longer smoothing windows, possibly reflecting competing short term moisture 

inhibition (e.g., rainfall sealing the soil pores) and long-term seasonal drivers (e.g., dry vs. 

wet seasons). Precipitation shows a minimal correlation with raw data, but its influence 

grows with larger MA windows, likely due to noise reduction or delayed effects such as 

enhanced radon exhalation caused by soil cracking after rain).  

In general, the variability in correlation values as a function of different MA windows is due 

to two factors:  

1) Noise reduction: Smoothing has a tendency to filter out high-frequency fluctuations (e.g., 

transient weather events), emphasizing sustained trends.  

2) Timescale dependence: Parameters such as WS act over short timescales (~hours), 

whereas the seasonal trends of RH correlate strongly with those of RAC.  

For example, the raw WS data showed a stronger correlation with the raw RAC data, likely 

due to radon dispersion caused by short-term wind gusts. However, this correlation weakens 

after smoothing.  By contrast, RAC correlation with precipitation only gains significance for 

longer MA windows due to the delayed physical impact of precipitation on radon release 

from the soil. These patterns demonstrate that RAC variability is governed by both 

immediate meteorological drivers and cumulative environmental conditions. 

4.2. Factors governing diurnal variation of RAC 

The diurnal variation of RAC, as depicted in Fig. 4.4, reveals a distinct pattern driven 

primarily by boundary layer dynamics and meteorological conditions. The highest RAC 

values occur during the early morning hours (03:00–05:00), while the lowest values are 

observed in the midafternoon afternoon (14:00–16:00). This pattern is attributed to the 

diurnal evolution of the BLH (Fig. 4.4b), which is driven by solar radiation, WS, and surface 

air temperature. Following sunrise, increasing solar radiation warms the ground and the 

adjacent air layers, enhancing buoyancy and generating convective turbulence. This results 
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in the progressive erosion of the nocturnal temperature inversion and the development of a 

convective boundary layer (CBL), which deepens throughout the morning and reaches its 

maximum during mid-afternoon. The resulting enhanced vertical mixing, supported by 

rising WS (Fig. 4.4c) and elevated temperatures (Fig. 4.4d), facilitates the dispersion and 

dilution of radon from the surface atmosphere into higher atmospheric layers, thereby 

significantly reducing surface-level RAC concentrations. In contrast, after sunset, the 

absence of solar heating leads to radiative cooling of the land surface, which promotes the 

formation of a stable boundary layer (SBL). This SBL is characterized by a shallow BLH, 

low wind speeds, and suppressed turbulence, all of which inhibit vertical mixing. Under 

these stable nighttime conditions, radon emitted continuously from the ground accumulates 

near the surface, resulting in elevated RAC levels by early morning. A graphical depiction 

of the evolution of the boundary layer throughout a 24-hour period is also shown in Fig. 2.8 

of Chapter 2. 

The diurnal cycle of RH (Fig. 4.4e) exhibits an inverse relationship with temperature, 

peaking during the early morning and reaching a minimum in the afternoon, further 

reflecting the thermally stable nighttime atmosphere and more turbulent daytime conditions. 

Atmospheric pressure (Fig. 4.4f) follows a typical semi-diurnal cycle with limited direct 

influence on RAC, though a weak positive correlation suggests some minor modulation 

effect might be at work.  

Notably, a time lag of around 2h exists between the evolution of BLH and RAC 

concentrations: the RAC minimum does not coincide exactly with the peak BLH, nor does 

the RAC maximum align perfectly with the lowest level of BLH. Instead, RAC responds 

gradually to the changes in atmospheric stability, reflecting the cumulative effects of vertical 

mixing and sustained accumulation or dilution under prolonged meteorological conditions. 

This time-lagged response highlights the importance of considering the temporal inertia of 

boundary layer processes when interpreting pollutant behaviour in near-surface atmospheric 

layers.  

Fig. 4.5 further supports this interpretation by illustrating the heatmap of Pearson correlation 

coefficients among the studied variables. As shown, RAC is strongly negatively correlated 

with both BLH and WS (Pearson’s r >  0.7), while exhibiting a strong positive correlation 

with RH (Pearson’s r = 0.92) and a moderate positive correlation with pressure (Pearson’s r =  0.55). In line with the observed dynamics, BLH shows a very strong positive 
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correlation with temperature and wind speed, consistent with the role of solar heating and 

mechanical mixing in boundary layer development and, consequently, in regulating radon 

dispersion. 

 

Fig. 4.4 Composite diurnal cycles of RAC, BLH and key meteorological factors averaged 
over the entire study period. 

 

Fig. 4.5 Correlation heatmap depicting the correlations between the diurnal cycles of RAC, 
BLH and meteorological parameters shown in Fig. 4.4. 



Result and discussion  Factors governing radon variability 

63 | P a g e  

 

4.3. Factors governing seasonal variations of RAC 

Seasonal variation of RAC is influenced by several factors, including meteorological and 

atmospheric mixing conditions, as well as the seasonality of radon exhalation rate. The 

typical seasonal pattern of RAC shows a minimum in April, followed by an increase 

throughout the summer, a peak in November, and slightly decline during winter (Fig. 4.6a). 

This pattern is mainly driven by seasonal variations in BLH dynamics (Fig. 4.6b) and radon 

exhalation rates (Fig. 4.6b, i). Enhanced solar radiation during spring and summer deepens 

the boundary layer, promoting vertical mixing and radon dilution. Conversely, in autumn 

and winter, shallow BLHs, reduced solar input, and persistent surface-based inversions limit 

vertical dispersion, allowing radon to accumulate near the surface. Measured radon flux 

shows low variability from April to August, followed by higher variability and a peak in 

November (Fig. 4.6i), aligning well with the seasonal RAC pattern. However, modelled 

radon flux from the European radon flux map (Karstens et al., 2022) diverges from local 

measurements, highlighting site-specific variability. Other variables such as temperature, 

wind speed, pressure, and rainfall may indirectly influence RAC by affecting BLH and radon 

exhalation rates. As shown in Fig. 4.7, RAC exhibits a strong negative correlation with BLH 

and positive correlations with RH and measured radon flux. In contrast, correlations with 

temperature, WS, precipitation, pressure, and modelled radon flux are statistically 

insignificant. These findings are consistent with previous studies such as that of Zimnoch et 

al. (2014), which attributed seasonal radon variability to changes in atmospheric mixing and 

stability, air mass history, and radon exhalation rates. While soil parameters may influence 

radon flux, RAC is predominantly governed by the atmosphere’s vertical transport capacity, 

dictated by BLH and stability. 
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Fig. 4.6 Composite monthly boxplots of RAC against BLH, RnFlux and meteorological 

factors. The data are aggregated over the entire study period (2018 – 2023). 

 

Fig. 4.7 Pearson correlation between composite monthly means of RAC, BLH, 
meteorological factors and radon flux (F). 
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Table 4.1 PCA summary including eigenvalue, variance and cumulative percentages. 

Number Eigenvalue Variance (%) Cumulative (%) 

1 2.2 37.0 37.0 

2 1.3 21.6 58.5 

3 1.0 17.1 75.7 

4 0.7 11.5 87.2 

5 0.4 7.5 94.7 

6 0.3 5.3 100 

 

Table 4.2 Loadings of each variable for the first three principal components from PCA. 

Variable PC1 PC2 PC3 

RAC -0.44 -0.26 -0.09 

RH -0.49 0.37 0.10 

T 0.27 -0.61 0.43 

Prec -0.07 0.36 0.86 

WS 0.37 0.53 -0.21 

BLH 0.59 0.10 0.06 

 

Statistical and ML analysis of RAC variability 

This section employs a comprehensive suite of statistical and machine learning (ML) 

techniques to analyse the hourly variability of RAC in relation to BLH and key 

meteorological variables. The methods include PCA, GAM, and MLR, alongside advanced 

ML algorithms such as XGBoost, GBM, and RF. This diverse modelling approach balances 

the interpretability of classical statistical techniques with the predictive power of ensemble 

learning, aiming to identify and quantify the key drivers of RAC variability. 

4.4. Principal component analysis  

The PCA introduced in Section 2.8.4, was applied to the dataset (RAC, BLH and key 

meteorological parameters) aiming to identify dominant patterns, reduce dimensionality by 

capturing the most informative combinations of correlated variables, and explore underlying 

patterns in dataset. The subsequent PCA analysis revealed that three principal components 

(PC) collectively explain 75.7% of the total variance in the dataset (Table 4.1), while a total 

of six PCs are required to account for the entire variance. The loadings of each original 

variable for these first three PCs are presented in Table 4.2 and visually depicted in Fig. 4.8. 

Specifically, Fig. 4.8 illustrates the loadings for PC1 versus PC2  and PC1 versus PC3, along 

with their corresponding biplots, which display the distribution of the original data points in 
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the reduced-dimensional space (Fig. 4.8c and 4.8d, respectively). This approach provides a 

clear visualization of the relationships between the original variables and the derived PCs, 

facilitating a more intuitive understanding of the factors influencing outdoor radon 

variability. 

The PCA performed on the dataset revealed distinct patterns in the interplay between 

atmospheric variables and radon activity concentration (RAC). Since a principal component 

(PC) is a linear combination of the original variables, direct interpretation can be 

challenging. However, examining the loadings provides insight into the contribution and 

influence of each variable within each component. 

The first two principal components (PC1 and PC2) explained 58.6% of the total variance, 

with PC1 alone accounting for 37.0%. PC1 appears to represent atmospheric dispersion 

processes, as indicated by strong positive loadings from WS, BLH, and temperature, and a 

clear negative loading from RAC. This inverse relationship suggests that elevated radon 

concentrations are typically associated with shallow boundary layers and weak winds 

conditions that inhibit vertical mixing and promote radon accumulation near the surface. 

PC2, which accounts for 21.6% of the variance, reflects a secondary axis influenced by RH, 

temperature, wind speed, and to a lesser extent, precipitation. RAC shows a moderate 

negative loading on this component as well, further supporting the view that radon levels 

tend to rise under stagnant, humid, and low-mixing conditions. 

The third principal component (PC3), which explains 17.1% of the variance, highlights the 

more independent role of precipitation, with a strong positive loading, alongside 

temperature. While its influence is less dominant than PC1, this component points to 

potential effects of moisture conditions on radon behaviour such as soil saturation altering 

radon exhalation rates. 

Overall, the PCA findings underscore that RAC is most strongly governed by meteorological 

conditions that control atmospheric mixing and dispersion, particularly BLH. These insights 

enhance our understanding of the environmental drivers of radon dynamics in the 

near-surface atmosphere. 
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Fig. 4.8 PCA performed on RAC, BLH, and key meteorological variables. Panels (a) and (b) 
present the loading plots for PC1 vs. PC2 and PC1 vs. PC3, respectively, highlighting the 
correlations among the variables. Panels (c) and (d) show the corresponding score plots with 
loadings, illustrating the distribution of observations in the reduced principal component 
space. 

Table 4.3 Results of the multicollinearity check based on the variance inflation factor. 

All variables included 

Variable Prec SinH P WS CosH SinDoY RH BLH CosDoY T 

VIF 1.05 1.15 1.16 1.58 1.64 1.77 2.08 2.23 4.42 5.63 

Temperature is excluded 

Variable Prec SinH SinDoY P CosDoY CosH WS RH BLH 

VIF 1.04 1.1 1.11 1.11 1.39 1.54 1.57 1.77 2.23 

4.5. Multiple linear regression analysis  

MLR as discussed in Section 2.8.5. Multiple linear regression, was applied to establish a 

simpler and more interpretable model between radon and potential predictors.  Before 

applying the MLR analysis, multicollinearity among the independent variables was assessed 
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using the so-called variance inflation factor (VIF). The VIF quantifies how much the 

variance of the estimated regression coefficients is inflated due to collinearity with other 

predictors in the model. Specifically, the VIF is the reciprocal of tolerance, calculated as 1 − R�, where R� represents the coefficient of determination between a given predictor and 

all other predictors (O’Brien, 2007). A high VIF indicates that a predictor is highly correlated 

with other predictors, which can lead to unreliable coefficient estimates and inflated standard 

errors. Typically, a VIF value greater than 5 or 10 suggests significant multicollinearity 

(O’Brien, 2007). Therefore, assessing the VIF values prior to model fitting helps identify 

potential multicollinearity issues and ensures the reliable interpretability of the regression 

results. 

The initial VIF results showed that most variables had relatively low multicollinearity, with 

values ranging from 1.05 to 5.63 (Table 4.3). However, the temperature variable exhibited 

the highest VIF of 5.63, indicating considerably high degree of collinearity with some 

predictors. Although the overall VIF analysis indicated that multicollinearity was within 

acceptable limits; to further enhance model robustness, temperature was excluded from the 

final MLR analysis. After removing temperature, all VIF values dropped to below 2.3, 

indicating minimal multicollinearity among the remaining predictors. 

Table 4.4 The summary of multiple linear regression analysis of RAC. 

Variables 
Standardized 

Coefficients 
t-value p-value 

BLH -0.36 -52.5 0.00 
SinDoY -0.23 -47 0.00 

SinH 0.21 43 0.00 
WS -0.11 -19 0.00 

CosDoY 0.10 18.7 0.00 
CosH -0.08 -14.6 0.00 

P -0.035 -7.2 0.00 
Prec -0.035 -7.2 0.00 
RH 0.021 3.4 0.00 

The summary of the MLR results, with RAC as the dependent variable and the selected 

meteorological parameters and BLH as predictors, is presented in Table 4.4. The MLR 

model demonstrated statistical significance (p-value < 0.05) with a correlation coefficient of R� = 0.31, indicating that approximately 31% of the variability in RAC was explained by 

the predictors. 
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As shown in Table 4.4, several variables were statistically significant contributors to the 

model. BLH had the largest standardized effect (β = -0.36, t = -52.5, p < 0.001), followed by 

SinDoY (β = -0.23), SinH (β = 0.21), and WS (β = -0.11). Other predictors such as CosDoY, 

CosH, P, Prec, and RH also showed statistically significant but smaller standardized 

coefficient. Based on these results, it can be concluded that the primary drivers of RAC 

variability are BLH and WS, both of which are related to the atmospheric mixing processes. 

Specifically, stronger atmospheric mixing tends to decrease RAC concentrations near the 

ground, while weaker mixing allows for higher near-surface accumulation. The strong 

standardized beta coefficients observed for SinDoY and SinH further suggest a significant 

influence of seasonal and diurnal cycles on RAC variability in the prediction model. By 

contrast, the contributions of other variables such as RH, P, and precipitation were much 

smaller. This could be attributed to their weak influence on RAC, or alternatively, to an 

underlying non-linear relationship between them that is not well captured by the linear MLR 

approach, leading to a relatively poor predictive performance of the MLR model. 

4.6. Generalised additive model analysis 

Following the poor performance of the MLR, the generalised additive model discussed in 

Section 2.8.6 was applied, using a Gaussian distribution with an identity link function. The 

response variable (RAC) was modelled as a function of BLH, key meteorological factors, 

and time-related predictors. Prior to model fitting, concurvity, a measure of nonlinear 

dependence among smooth terms in GAMs was assessed (Hastie, 1992; Wood, 2017). 

Similar to multicollinearity in linear models, concurvity indicates that one smooth term can 

be approximated by others. This can potentially destabilize coefficient estimates, inflate 

standard errors, and reduce predictive reliability (Fox, 2015). 

Table 4.5 presents the concurvity results for all predictors, including transformed 

time-related variables. The table reports three key metrics for each predictor’s smooth term: 

• Worst concurvity: the highest observed dependence between the smooth term and 

any other smooth term in the model, indicating the maximum redundancy with other 

predictors. 

• Observed concurvity: the actual level of dependence measured between the term 

and the others based on the data. 

• Estimated concurvity: a model-based estimate reflecting how well the term can be 

approximated by the other terms, smoothing out noise in the measurement. 
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The results showed that the sine and cosine terms for both day of the year (DoY) and hour 

od day (H) exhibit very high concurvity, with worst-case values reaching 1.00, indicating 

near-perfect redundancy among these time-based predictors. In contrast, meteorological 

variables display varying concurvity levels. Notably, precipitation has consistently low 

concurvity across all metrics, especially in the estimated concurvity (0.06), suggesting a 

strong, independent contribution to the model. Pressure, WS and BLH also show relatively 

low concurvity, with worst-case values below 0.65, indicating acceptable levels of 

dependence and a minimal risk of instability. On the other hand, T and RH showed moderate 

to high concurvity, particularly temperature, which has an observed value of 0.83 and an 

estimate of 0.69, highlighting potential issues with shared information among predictors. 

These findings imply that while some predictors in the model structure are largely 

independent, others, such as time-related variables, temperature and RH, may require 

additional evaluation or transformation to reduce multicollinearity and improve the model’s 

interpretability.  

Table 4.5 Concurvity analysis results for predictors used in the GAM (part 1). 

Concurvity s(Prec) s(P) s(WS) s(RH) s(BLH) s(T) s(SinDoY) s(CosDoY) s(SinH) s(CosH) 

worst 0.12 0.26 0.49 0.63 0.63 0.85 1 1 1 1 

observed 0.11 0.1 0.36 0.55 0.62 0.83 0.35 0.8 0.15 0.59 

estimate 0.06 0.18 0.35 0.56 0.48 0.69 0.5 0.81 0.2 0.48 

For further analysis, the four time-related predictors were transformed using PCA. Table 4.6 

and Fig. 4.9 present the PCA results for these variables. As shown in Table 4.6, the first 

three principal components explain 75.2% of the total variability among the four time-related 

predictors. These PCs are orthogonal (i.e., uncorrelated), making them suitable for inclusion 

in the GAM without introducing multicollinearity. This transformation allows the model to 

retain the temporal structure of the data while improving numerical stability and 

interpretability.  

Table 4.6 PCA results for time-related predictors. 

Principal Component 

Number 
Eigenvalue 

Percentage of Variance 

(%) 

Cumulative 

(%) 

1 1.01 25.28 25.28 
2 1.00 25.01 50.30 
3 0.99 24.93 75.23 
4 0.99 24.76 100 
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Fig. 4.9 Three-dimensional PCA loading plot of the time-related predictors, illustrating the 
loadings of principal components and the distribution of observations in the reduced feature 
space. 

The three PCs derived from the time-related predictors, along with the remaining 

meteorological variables and BLH, were subjected to a concurvity analysis, as presented in 

Table 4.7. The results show a marked improvement in multicollinearity levels compared to 

the original time-based predictors. Specifically, all three PCs exhibit moderate concurvity, 

with worst-case values ranging from 0.55 to 0.76, substantially lower than the perfect 

concurvity (1.00) observed in the original (untransformed) time variables. Once again, the 

meteorological variables show low to moderate concurvity, with precipitation showing the 

lowest values (estimate = 0.06). These results confirm that PCA effectively reduces 

multicollinearity among time-related variables, making the transformed components suitable 

for inclusion in the GAM without compromising model reliability. 

Table 4.7 Concurvity analysis results of predictors used in the GAM (part 2). 

Concurvity s(Prec) s(P) s(WS) s(T) s(PC1) s(RH) s(BLH) s(PC2) s(PC3) 

worst 0.11 0.22 0.45 0.49 0.55 0.57 0.64 0.68 0.76 

observed 0.11 0.07 0.22 0.48 0.38 0.42 0.62 0.16 0.62 

estimate 0.06 0.13 0.32 0.39 0.39 0.51 0.49 0.17 0.58 
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The summary of the GAM analysis is presented in Table 4.8, including model fit statistics, 

parametric coefficients, and the significance of smooth terms. The GAM demonstrated 

moderate explanatory power for RAC, with an adjusted R2 of 0.37 and 37.1% deviance 

explained. All predictors showed statistically significant non-linear relationships (p < 0.001). Among them, BLH emerged as the strongest driver (F = 448.1), followed by time 

related predictors PCs (PC1– PC3) and key meteorological variables. High effective degrees 

of freedom (edf) for BLH, P, and T indicates complex, non-linear interactions with RAC, 

while other variables like RH, Prec, and WS also showed notable, though slightly simpler, 

effects. The model intercept of 5.54 represents the baseline RAC under reference conditions. 

Table 4.8 Summary of GAM results for RAC, including model specifications, parametric 
coefficients, and the significance of smooth terms. edf (effective degrees of freedom) reflects 
the complexity of smooth terms higher values indicate greater flexibility or nonlinearity. 
Ref.df (reference degrees of freedom) is used for hypothesis testing of the smooth terms. F 
represents the F-statistic used to assess the significance of each smooth term. 

Family 
Link 

function 
Formula adj. R2 

Deviance 

explained 

Gaussian Identity 
RAC ~ s(PC1)+s(PC2)+s(PC3) 

+s(P)+s(RH)+s(T)+s(Prec)+s(WS)+s(BLH)  
0.37 37.1% 

Parametric coefficients  
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 5.54 0.014 395.9 <2e-16 

Approximate significance of smooth terms 

Predictors edf Ref.df F p-value 

s(BLH) 8.54 8.94 448.1 0.001 

s(PC2) 8.4 8.9 265 0.001 

s(PC1) 7.88 8.8 207 0.001 

s(PC3) 3.84 4.86 120 0.001 

S(T) 7.9 8.7 117 0.001 

S(RH) 5.4 6.6 72.6 0.001 

s(P) 8.32 8.87 21.97 0.001 

s(Prec) 5.5 6.5 20.36 0.001 

s(WS) 5.8 6.8 14.2 0.001 

The estimated smooth functions from the GAM analysis provide a visual representation of 

the relationship between predictors and RAC (Fig. 4.10). Pressure showed a complex 

relationship, with RAC peaking around 990–1010 hPa and decreasing at both lower and 

higher pressures (Fig. 4.10a). RH exhibits a modest variation across most humidity levels, 

with a slight increase at high RH (>80%), possibly reflecting atmospheric conditions that 

limit vertical mixing typical for cold periods of the year (Fig. 4.10b). Temperature displays 
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a strong non-linear pattern, with RAC rising sharply at temperatures above 10 °C, likely 

driven by enhanced radon exhalation rates during warm periods (Fig. 4.10c). However, this 

contrasts with the fact that higher temperatures intensify thermally driven atmospheric 

mixing, thus reducing RAC levels near the ground. As shown in Fig. 4.10d, precipitation 

does not have a strong overall effect on RAC variability, although there is a noticeable 

decrease in RAC around 2.5 mm of rainfall, which is likely due to the short-term reduction 

of radon exhalation rate. Beyond that point, the scarcity of high intensity precipitation data 

introduces large uncertainties, making it difficult to clearly interpret its influence. Fig. 4.10e 

demonstrates the suppressing effect of wind speed on near-surface radon levels due to 

enhanced turbulent mixing. Finally, BLH (Fig. 4.10f) shows the strongest inverse and non-

linear relationship with RAC.  As BLH increases, RAC declines rapidly, particularly at lower 

heights (<1000 m), which highlights the critical role of vertical atmospheric mixing in 

controlling radon concentrations near the surface. 

 

Fig. 4.10 Estimated smooth functions of predictors from the GAM analysis. Solid blue lines 
represent the estimated smooth terms, and shaded lines indicate 95% confidence intervals. 
EDF stands for effective degrees of freedom, indicating the model complexity for each 
variable. EDF stands for effective degrees of freedom showing the smooth functions 
complexity for each variable. 
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4.7. Machine learning-based regression models 

The GAM and MLR were employed as conventional regression models to model RAC 

variability in relation to BLH and key meteorological factors. The MLR provided simple 

and interpretable insights into the most significant predictors and their directional influence 

on RAC. However, it was unable to capture non-linearity and demonstrated limited 

predictive performance. While the GAM analysis was able to effectively capture the non-

linear relationships between potential predictors and RAC variability, its predictive power 

was still relatively weak. Both models suffer from conventional challenges inherent in 

regression analysis, including potential non-stationarity in the time series, multicollinearity 

among predictors, and deviations from the assumption of normally distributed residuals. To 

overcome these limitations, machine learning-based ensemble regression models such as 

GBM, XGBoost and RF were applied (discussed in Sections 2.9.1 – 2.9.3). A summary of 

results for all models, including the MLR, is presented in Fig. 4.11 and Fig. 4.12 in the form 

of scatter plots and feature importance analyses. Furthermore, Table 4 provides a 

comparison of model performances based on the evaluation metrics introduced in Section 

2.10. 

As shown in the scatter plots of predicted versus measured RAC (Fig. 4.11), the XGBoost 

model achieved the highest predictive performance with an R2 value of 0.87, followed by 

GBM and RF models, both with R� 	 0.76. The MLR model exhibited a much lower 

predictive capability, with an R2 of only 0.31, highlighting the greater ability of ML models 

to capture the underlying complexity and nonlinearity in RAC dynamics compared to linear 

methods. 

The feature importance plots (Fig. 4.12) revealed some recurring patterns across all models. 

In all ML models (XGBoost, GBM, and RF), BLH is identified as the most influential 

predictor, suggesting that vertical mixing in the atmosphere plays a dominant role in 

controlling RAC levels. The second most important predictor across all models is SinDoY, 

emphasizing the strong seasonality embedded in RAC variability. The next four predictors, 

CosDoY, T, RH and P, show moderate levels of importance and reflect the influence of 

general meteorological conditions on RAC levels. The relative importance of these features 

is similar across XGBoost, GBM, and RF models, pointing to a shared understanding of the 

environmental drivers influencing RAC. Notably, Prec consistently ranks as the least 

important feature across all models, suggesting that, under the studied conditions, 

precipitation-driven effects play a relatively minor role compared to atmospheric mixing and 
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seasonal influences. This may be due to the sporadic nature of rainfall events, which occur 

only occasionally at a data resolution of one hour. As a result, its impact is minimal compared 

to that of other datasets that vary continuously. This interpretation is further supported by 

the application of a larger moving average window, as well as the relatively moderate 

correlations observed between RAC and Prec (Fig. 4.3). 

The MLR model showed a roughly similar ranking of feature importance based on the 

standardized beta coefficients, with BLH emerging as the dominant predictor, followed by 

SinDoY and other meteorological variables. However, the lower R2 value for MLR indicates 

that conventional linear regression is insufficient to fully capture the interactions between 

RAC and its predictors, further underlining the value of ML approaches for this type of 

environmental modelling. 

 

Fig. 4.11 Scatter plots of measured RAC against predicted RAC based on different 
regression models. The predicted values are based on test dataset for ML models. 
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Fig. 4.12 Feature importance plots of different regression models.  

4.8.  Evaluation of regression models  

The performance of regression models used in this study, evaluated based on metrics 

introduced in Section 2.10, are shown in Table 4.9 and are visually depicted in Fig. 4.13. 

Among the models evaluated, XGBoost demonstrated the best overall performance, 

achieving the highest cross validation R� 	 0.86 and adj. R� = 0.86  values, along with the 

lowest MSE (1.39), RMSE (1.18), and MAE (0.86). GBM and RF models also performed 

reasonably well, whereas MLR and GAM exhibited comparatively lower predictive 

capabilities. These results indicate the effectiveness of machine learning ensemble models, 

particularly XGBoost, in modelling the RAC and its associated environmental factors. 

Table 4.9 Evaluation metrics for different regression models. 

Model XGBoost GBM RF GAM MLR 

CV R-square 0.86 0.76 0.73   
adj.R-Square 0.87 0.76 0.76 0.37 0.31 

MSE 1.39 2.41 2.6 3.84 6.8 
RMSE 1.18 1.55 1.61 1.96 2.6 
MAE 0.86 1.19 1.21 2.56 2 
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Fig. 4.13  Regression models performance evaluation metrics. 

4.9. SHAP analysis of the XGBoost model 

The Shapley Additive exPlanations (SHAP) method was used to interpret the performance 

of the best-performing model used for the prediction of RAC (i.e., XGBoost model). SHAP 

is a game theory–based approach widely used for interpreting ML models prediction 

(Lundberg & Lee, 2017). In cooperative game theory, the Shapley value is a method used to 

fairly distribute gains or costs among players who have collaborated, based on their 

individual contributions. In machine learning, it is designed to quantify the contribution of 

individual features to the model’s predictions. Typically, ML outputs are treated as "black 

boxes" due to their complexity and lack of interpretability. By calculating SHAP values, it 

becomes possible to understand how each feature influences the model’s output, providing 

deeper insights into feature importance and behaviour. 

Fig. 4.14 presents the SHAP summary plot, showing the distribution and relative importance 

of each feature in the outcome. Features are ranked according to their mean absolute SHAP 

values, indicating their overall influence on the model output. As shown, BLH emerged as 

the most influential predictor, followed by CosDoY, T, and SinH. Lower BLH and higher 
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temperature values were generally associated with an increase in the predicted RAC, as 

indicated by their predominantly positive SHAP values. Conversely, features such as RH 

and precipitation exhibited relatively smaller impacts on the prediction of RAC. The colour 

gradient in the plot further reveals how high and low feature values influence predictions, 

providing additional insight into the relationships captured by the model. 

For further evaluation, the SHAP dependence plot of the XGBoost model is plotted in Fig. 

4.15. A SHAP dependence plot visualizes the relationship between a feature’s value and its 

SHAP value, showing how changes in the feature affect the model’s predictions.  In our 

dataset, features such as temperature., BLH, and WS exhibit the most pronounced effects on 

radon levels. Specifically, higher temperatures are associated with increased RAC, while 

greater BLH and WS correspond to lower RAC, likely due to enhanced atmospheric mixing 

and dispersion. Higher RH is linked to higher radon levels; pressure shows a weak nonlinear 

relationship. Precipitation has a minimal impact, with most values clustered close to zero. 

These results highlight the model’s ability to capture complex, nonlinear relationships and 

interactions among meteorological variables influencing RAC levels. 

Fig. 4.14 SHAP summary plot, illustrating the contribution of each feature to the predicted 

RAC for the XGBoost model. The right-hand panel shows a beeswarm plot displaying the 

distribution and direction of SHAP values for each feature. The plot is coloured according 

to the normalised feature values, revealing the impact of different feature magnitudes on 

predictions. The left-hand panel shows a bar chart of the mean absolute SHAP values, 

ranking features by their overall importance. Together, these visualizations provide a 

comprehensive understanding of the influence of each feature on the model output. 
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Fig. 4.15 SHAP dependence plots of each feature used in the XGBoost model. Each plot 
shows the influence of a single feature on the model’s output, with SHAP values indicating 
the magnitude and direction of contribution. 

4.10. Partial dependence plots of the XGBoost model 

The partial dependence plots (PDPs) of the key environmental features incorporated into the 

XGBoost model are shown in Fig. 4.16. PDPs are widely used model-agnostic interpretation 

tools that depict the marginal effect of a single feature on a model’s predicted outcome, 

averaging out the influence of all other variables (Friedman, 2001). They show how the 

model’s prediction changes when the value of one feature varies, while the other features 

remain constant. This enables a global understanding of the direction and strength of each 

feature’s influence on the model output. In this case, the plots reveal the marginal effects of 

predictors on the predicted radon levels. Similar to the SHAP dependence plots (Fig. 4.15), 

the plots reveal that features such as temperature, BLH, and WS have strong nonlinear effects 

on RAC, with high temperatures, low BLH and WS associated with elevated radon levels. 

Relative humidity also exerts a generally positive influence, particularly at high humidity 

levels. Pressure shows a non-linear relationship, with RAC predictions peaking at 

intermediate pressures and declining at both low and high extremes. Precipitation shows a 
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sudden decrease in RAC with an increase in rainfall. Rainfall above 5 mm shows unstable 

behaviour, which may be due to the limited data available in this range.  

Remarkably, all these patterns are consistent with those observed in the SHAP and 

GAM-based analyses, providing further validation across different interpretive frameworks. 

 

Fig. 4.16 Partial dependence plots for each feature that was used to predict RAC in the 
XGBoost model.
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Chapter 5 

 

5. Radon decay products  

In this chapter, the study of radon decay products (i.e., ²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi, and ²¹⁰Pb), along 

with the radon equilibrium factor and radon progeny ratios, is presented. Additionally, these 

radionuclides, together with 222Rn, are used to estimate aerosol residence times. This topic 

will be discussed in the next chapter. Emphasis is placed on the behaviour and application 

of these radionuclides as tracers in atmospheric research. 

Simultaneous measurements of radon and its decay products provide useful information that 

can be used in radiation protection and atmospheric research. These data provide information 

such as the equilibrium equivalent radon concentration (EEC) and the radon equilibrium 

factor (Feq), which are important parameters for estimating the effective dose from radon. 

The EEC can be understood as the concentration of radon that is in a state of secular 

equilibrium with its progeny and poses the same health risk as the actual mixture of radon 

and progeny in air (Tirmarche et al., 2010). The measurement of radon and its progeny can 

also be used to determine the residence time of atmospheric aerosols (TR) (e.g., Baskaran & 

Shaw, 2001; Długosz−Lisiecka & Bem, 2012; Lambert et al., 1983; Porstendörfer et al., 

2000). The aerosols residence time is an important factor which provides insight into the 

average amount of time aerosols spend in the atmosphere before being deposited on the 

Earth’s surface.   

The EEC was calculated using the formulas published in UNSCEAR (2000):  

 � =  0.105. �®¯  +  0.515. �®°  +  0.380. �±� (5.1) 

where �®¯,  �®° and  �±� are the activity concentrations of 218Po, 214Pb and 214Bi in the 

atmosphere, respectively. The ratio of EEC and RAC is called the radon equilibrium factor 

Feq, mathematically defined as 

 ²³´ = µµ¶·¸¶ , (5.2) 

where RAC is the 222Rn activity concentration measured simultaneously with its short-lived 

progeny. 
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5.1. Descriptive statistics of radon progeny 

The descriptive statistics of radon short-lived progeny and related calculated variables 

measured during the study period (December 2019 to October 2022) are presented in Table 

5.1. Measurements were taken every two hours, resulting in over 9,000 data points for each 

variable. The mean activity concentrations of 218Po, 214Pb, and 214Bi were 2.78, 3.21, and 

2.75, respectively, with 214Pb exhibiting the highest variability (standard deviation = 1.95). 

The average EEC was 3.01.  

Table 5.1 Descriptive statistics of radon short-lived progeny, EEC and Feq measured 
during the study period (December 2019 to October 2022). 

Variable N Minimum Maximum Mean  Std. Deviation 

218Po 9502 0 11.72 2.78 1.65 
214Pb 9518 0 13.35 3.21 1.95 
214Bi 9541 0 9.36 2.75 1.51 

EEC 9423 0 11.38 3.01 1.7 

Feq 9346 0 7.50 0.44  0.26 

 

 

Fig. 5.1 Diurnal cycles of short-lived radon progeny and its equilibrium equivalent 
concentration. 
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The diurnal cycle of short-lived radon decay products along with EEC is shown in Fig. 5.1. 

As expected, they follow the same pattern as RAC, discussed in Section 3.6, i.e., the highest 

concentrations were observed in the early morning and lowest in the mid-afternoon. This 

pattern is mainly attributed to the diurnal changes in BLH influenced by meteorological 

factors such as temperature and wind speed discussed in Section 4.2. 

The seasonal variation of short-lived radon progeny concentrations, presented as composite 

monthly boxplots (Fig. 5.2), exhibits a pattern very similar to that of radon, as discussed in 

Section 3.7. The lowest variability in radon progeny concentrations was observed in April, 

followed by a steady increase, reaching a maximum in November. The observed seasonal 

variation is mainly governed by changes in BLH and radon flux variability, as previously 

discussed in the case of radon (Section 4.3). 

 

Fig. 5.2 Seasonal boxplots of short-lived radon progeny and EEC. The horizontal lines 
represent the median, while the circles denote the mean. The boxes represent the 25th to 75th 
percentile range, while the bars extend this range to the 10th to 90th percentile. 
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5.2. Radon equilibrium factor  

The Feq is an important parameter in radiation protection and atmospheric research. It is 

widely used to assess the annual effective dose from inhalation of radon and its decay 

products (UNSCEAR, 2000) and to estimate the residence time of aerosols in the atmosphere 

based on the ratios of radon and its progeny (Baskaran & Shaw, 2001; Sýkora et al., 2017). 

Spatial, diurnal and seasonal variations of Feq in the outdoor atmosphere depend mainly on 

the radon exhalation rate, meteorological and atmospheric mixing conditions (Chen & 

Harley, 2018).  

The radon equilibrium factor calculated according to Equation (5.2) ranges from 0.04 to 7.5, 

with a mean ± std. deviation of 0.54 ± 0.28. The interquartile range for Feq is (0.4−0.6), and 

the data showed that 5.6% of observations are greater than Feq > 1. The range of Feq  observed 

in this study is consistent with the values reported by Chen and Harley (2018), which range 

from 0.18 to 0.67. However, the mean value of Feq is slightly lower than the typical value of 

0.6 given in the UNSCEAR 2000 report. The standard UNSCEAR value of Feq is used when 

the specific environmental Feq is not known; UNSCEAR acknowledges that this value can 

vary by more than 50%.  

Fig. 5.3a shows the composite diurnal cycle of Feq averaged over the entire study period.  Feq 

exhibits a clear 24-hour pattern: the lowest value observed at 00:00 (~0.45); afterwards, Feq 

gradually increases and reaches a maximum between 13:00 and 15:00 (~0.58), then it 

declines steeply. The higher Feq could be related to an increased attachment rate of radon 

progeny during the day, due to higher aerosol concentrations. As airborne aerosol levels rise 

primarily because of human activities such as traffic, this leads to an increase in the attached 

fraction of radon progeny. This is supported by the findings of Abdelfatah Mostafa et al. 

(2020), who observed a positive correlation between Feq and aerosol concentration in a 

standard radon box. This is consistent with the observations published in Winkler et al. 

(2001) for Munich−Neuherberg, Germany. According to these findings, the diurnal cycle of 

Feq, when averaged over all seasons, starts to increase after sunrise, peaks around 13:00, and 

gradually decreases towards nighttime.  

Fig. 5.4a presents the seasonal variation of the boxplots of Feq. The interquartile range 

indicates the lowest variability in March, with values increasing through spring and peaking 

in May and June. A slight decline is observed in August, followed by a gradual increase 

through autumn, reaching a maximum in November. Feq then declines slightly during winter, 
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reaching its lowest levels in March. Similar seasonal patterns were reported in 

Munich−Neuherberg, Germany, where higher Feq values were observed during winter 

compared to summer (Winkler et al., 2001).  

 

Fig. 5.3 Composite diurnal cycles of Feq and radon progeny ratios averaged over the entire 
study period. 

 

Fig. 5.4 Composite monthly boxplot of Feq and radon progeny ratios over the entire study 
period. The horizontal lines represent the median, the boxes indicate the 25th to 75th 
percentile range, and the bars illustrate the 10th to 90th percentile range. 



Result and discussion  Radon progeny 

86 | P a g e  

 

5.3. Radon and its progeny ratios  

In this section, the temporal variation of radon progeny ratios is discussed. Studying these 

ratios is important for understanding radon progeny behaviour, their disequilibrium, and 

their applications in atmospheric research. Such ratios have been applied in various contexts, 

including the estimation of aerosol residence times (Barba-Lobo et al., 2024), atmospheric 

diffusion modelling (Jacobi & André, 1963), and the investigation of wet deposition 

processes (Liu et al., 2014). Under ideal open−air conditions, where removal occurs only by 

radioactive decay, the short−lived decay products of radon will reach equilibrium with their 

parent isotopes within a few half−lives of the decay products. In the real atmosphere, 

however, this equilibrium is significantly affected by environmental factors, resulting in a 

disequilibrium between the parent and daughter nuclides. In radioactive decay chains, the 

daughter/parent activity ratio can vary depending on the equilibrium state. In secular 

equilibrium, the daughter’s activity equals the parent’s (ratio ≈ 1). In transient equilibrium, 

the ratio can temporarily exceed 1 before stabilizing. Under disequilibrium conditions, the 

activity ratio may deviate significantly from unity. In this study, the average activity ratio of 
214Pb/218Po/214Bi over the study period was 1:0.86:0.85. Surprisingly, the 214Pb/218Po ratio 

tended to be higher than one during the whole measurement period (Fig. 5.3c). A similar 

ratio has been reported in other studies e.g., (Schery & Wasiolek, 1993; Sheets & Lawrence, 

1999). The observed higher-than-one ratio can be attributed to several factors, including the 

different attachment processes of these radionuclides and specific meteorological conditions. 

The half−life of 218Po of 3.1 minutes is considerably shorter than the half−lives of 214Pb (26.8 

minutes) and 214Bi (19.9 minutes). Since the activity concentration measured here represents 

the attached fraction of these radionuclides, 218Po, with its much shorter half−life, has 

significantly less time to attach to aerosols than 214Pb and 214Bi. This idea is supported by 

studies that have reported a much higher fraction of unattached 218Po compared to its 

attached fractions (Abdelfatah Mostafa et al., 2020; Abdo et al., 2021). 

The composite diurnal cycle of three sequential daughter/parent ratios in the radon decay 

chain (218Po/222Rn, 214Pb/218Po, and 214Bi/214Pb) is shown in Fig. 5.3. The ratios of successive 

radionuclide pairs exhibit distinct diurnal variations, reflecting changes in atmospheric 

conditions and radioactive decay dynamics. The 218Po/222Rn ratio (Fig. 5.3b) ranges from 

0.43 to 0.53, remains low during the night and high during the day, similar to that of Feq. It 

begins to increase sharply after 08:00, reaching a peak between 13:00 and 14:00, before 

declining again and stabilizing at lower values during the night. The 214Pb/218Po ratio shows 
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a different pattern, ranging from 1.13 to 1.20. It consistently increases from 0.00, reaches its 

peak at 13:00 and then gradually decreases throughout the afternoon and evening. The 
214Bi/214Pb ratio diurnal patten ranges from 0.84 to 0.88 and begins to increase in early 

morning around 4:00, peaks around 14:00, and then declines steadily, becoming relatively 

low and stable overnight. These diurnal cycles reflect the interplay between radioactive 

decay, aerosol attachment rate, and atmospheric mixing, which influence the build-up and 

dispersion of radon progeny throughout the day.  

To evaluate the seasonal variation of these ratios, composite monthly boxplots are presented 

in Fig. 5.4. As expected, the 218Po/222Rn ratio displays a seasonal pattern similar to that of 

the Feq (Fig. 5.4b). In contrast, the 214Pb/214Po ratio shows a different trend, remaining 

relatively stable from March to September, with a slight increase observed during the winter 

months (Fig. 5.4c). Meanwhile, the 214Bi/214Pb ratio exhibits a more pronounced seasonal 

variation, with lower values recorded during the colder months while higher values observed 

during the warmer months (Fig. 5.4d). These seasonal trends likely reflect changes in 

atmospheric mixing conditions and aerosol concentrations, which influence the behaviour 

and equilibrium of radon progeny in ambient air. 

5.4. Radon progeny interaction with particulate matter 

As radon progeny attach to fine aerosols, their atmospheric transport, deposition and 

inhalation dynamics are bound to the host aerosols. This association is important because 

both radon progeny and particulate matter (PM) are major carcinogens that contribute to air 

pollution-related health risks (Zoran et al., 2013). The ability of radon progeny to attach to 

fine PM facilitates its inhalation and deposition in the respiratory system. Despite extensive 

knowledge of the behaviour of these carcinogens in the atmosphere and their associated 

health risks, their interactions and relationships remain poorly understood. For example, 

several studies (Tokonami, 2000; 2000; Yu et al., 2023; 2013; Zoran et al., 2013) have 

investigated the variability of radon/radon progeny in relation to PM. In this thesis, 

simultaneous observations of radon progeny with PM2.5 and PM10 are considered, and their 

relationship is investigated. 

For visualization purposes, the hourly time series of EEC, along with PM2.5 and PM10, is 

plotted in Fig. 5.5 for the period of one year (May 2020 – April 2021).  Certain periods 

exhibit high EEC levels, accompanied by similarly elevated PM concentrations. This is 

further investigated through the Pearson correlation heatmap shown in Fig. 5.6. A moderate 
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positive correlation, with Pearson’s r ranging from 0.48 to 0.50, was observed between short-

lived radon progeny and PM. This suggests that high radon progeny concentrations are 

associated with high pollution events. 

 

Fig. 5.5 (a) Hourly EEC (a weighted average of three short-lived radon progenies) (b) 
hourly PM2.5 and (c) hourly PM10 displayed for the period from May 2020 to May 2021. 

 

 

Fig. 5.6 Pearson correlation heatmap among radon progeny, Feq and PM based on the 
hourly data for the entire measurement period. 
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To assess the seasonal variation of radon progeny in relation to PM, their monthly variations 

are shown in Fig. 5.7. Both radon progeny and PM concentrations exhibit clear seasonal 

patterns, with the highest concentrations typically occurring during the colder months (e.g., 

autumn and winter) and the lowest during the warmer months. The monthly means of PM10 

range from 12.9 µg.m−3 in August 2021 to 35.4 µg.m−3 in February 2021, with an arithmetic 

mean of 20.0 µg.m−3. As expected, the PM2.5 concentration is lower than PM10, ranging 

from 7.26 µg.m−3 in September 2022 to 22.8 µg.m−3 in February 2021, with an arithmetic 

mean of 13.05 µg.m−3. Periods with higher PM10 and PM2.5 concentrations generally 

correspond to elevated radon progeny levels. This implies a likely positive correlation, where 

higher PM levels may facilitate attachment of radon progeny to particles, thereby increasing 

their measurable activity concentrations in the air. 

 

Fig. 5.7 Monthly variation of a) short-lived progeny, and b) PM10 and PM2.5. 

To analyse the relationship between the concentrations of PM and radon progeny, in the first 

step, a Pearsons’s correlation analysis was performed (Fig. 5.8). Additionally, the BLH and 

key meteorological parameters were also included in further analysis. The short-lived radon 

progeny shows moderate positive correlation with PM10, PM2.5 and RH and a strong 

negative correlation with BLH. The correlations between radon progeny and other 

meteorological variables are weak and statistically insignificant. A previous study also 
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reported a positive correlation between short-lived radon progeny and PM concentration (Yu 

et al., 2023). This positive correlation could be attributed to the fact that PM acts as a carrier 

of radon progeny (i.e., the radon progeny readily attaches to fine PM). Several studies have 

investigated the size distribution of aerosols to which the radon progeny preferentially attach. 

For example, Porstendörfer et al. (2000) found that the radon progeny is primarily attached 

to aerosols with aerodynamic diameters between 0.1 and 1 µm, while another study reported 

that a significant fraction of radon progeny is also attached onto aerosols with aerodynamic 

diameters greater than 1 µm (Kagerer et al., 2005). Taking this into account, pollution events 

may lead to higher concentrations of aerosol-attached radon progeny. In addition, the 

atmospheric behaviour of radon is similar to that of PM, further increasing the positive 

correlation between them.  

Fig. 5.8 Pearson’s correlation heatmap between monthly means of radon, its progeny and 

particulate matter. 

Furthermore, to evaluate the relationship between radon decay products and PM 

concentrations, canonical correlation analysis (CCA) was applied to the monthly values. 

CCA is a multivariate statistical method used to examine the relationship between two 

comprehensive sets of variables (Uurtio et al., 2017). It derives two comprehensive variables 

from the sets, capturing their overall correlation. The results include canonical correlation, 

canonical loadings, and standardized/unstandardized coefficients, revealing the relationship 
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between the two groups and the contribution of each variable to the respective group. In this 

study, radon decay products (218Po, 214Pb, 214Bi) were considered as one group (Y group) 

and PM2.5, PM10, BLH and key meteorological factors as another group (X group).  

Table 5.2 Results of the canonical correlation analysis (part 1). 

Correlation Eigenvalue Wilks Statistic F Sig. 

0.87 3.27 0.09 3.9 <0.001 

The CCA reveals a statistically significant and strong positive association between the two 

groups of variables with a correlation coefficient of 0.87 (p < 0.001). This indicates a robust 

shared variance structure between the two sets of variables. As shown in Table 5.3 and 

illustrated in Fig. 5.9, the canonical loadings and cross-loadings help to identify which 

variables contribute significantly to this relationship. Among the variables in group X, the 

strongest contributor is BLH followed by RH and PM. These variables show the highest 

canonical loadings in group X, highlighting their importance in shaping the shared variance 

with group Y. Within the Y group, the strongest contributors to the canonical variate are 
214Pb, followed by 214Bi, 218Po. This CCA suggests that meteorological and air quality 

conditions, especially low BLH, high RH, and high PM concentrations are strongly 

associated with elevated concentrations of radon progeny (214Bi, 214Pb, and 218Po). Given the 

positive correlation coefficient, the negative canonical loadings of radon progeny and PM 

suggest a positive correlation between radon progeny and PM concentration. This 

relationship is consistent with findings from other studies, such as (Yu et al., 2023), which 

also reported positive associations between PM levels and radon progeny. One plausible 

explanation is that atmospheric conditions that favour higher particulate concentrations, such 

as lower mixing height and higher relative humidity, also promote the accumulation of radon 

decay products near the ground. The slightly weaker relationship observed for 218Po can be 

attributed to its short half-life (3.1 minutes), which restricts how much it can attach to aerosol 

particles before it decays. Nevertheless, its contribution to the canonical structure remains 

significant. 
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Fig. 5.9 Graphical representation of canonical correlation analysis, including canonical 
correlation and canonical loadings for each variable. 

 

Table 5.3 Results of the canonical correlation analysis (part 2). 

Canonical 

Weights 

Canonical 

loadings 

Canonical 

variate 
(X) 

Canonical 

correlation 
 

Canonical 

variate 
(Y) 

Canonical 

loadings 

Canonical 

Weights 

0.27 -0.58 PM10 

0.87 

218Po -0.95 -0.15 
-0.55 -0.55 PM2.5 214Pb -0.99 -0.57 
0.078 -0.18 P 214Bi -0.99 -0.29 
-0.45 -0.71 RH    
-0.95 0.26 T    
0.28 0.26 Prec     
-0.53 -0.10 WS     
0.8 0.82 BLH     

5.5. Regression analysis of radon progeny  

To further analyse the behaviour of radon progeny in relation to PM concentration and other 

influencing factors, regression modelling was employed. The regression analysis includes 

both conventional and ML techniques such as MLR, GAM, RF, and XGBoost, each 

discussed in detail in Chapter 2. 

Table 5.4 Multicollinearity between radon progeny predictors. 

Predictor PM10 P RH T Prec WS BLH 

VIF 1.10 1.19 1.75 1.54 1.02 1.49 1.85 



Result and discussion  Radon progeny 

93 | P a g e  

 

5.6. Multiple linear regression applied to radon progeny 

MLR, as discussed in Section 2.8.5, was applied to model the relationship between radon 

progeny, PM, and other environmental factors. For the sake of brevity, only EEC was 

considered, rather than discussing all three short-lived radon progenies. 

Before applying the MLR analysis, multicollinearity among the independent variables was 

assessed using the variance inflation factor (VIF) discussed in Section 4.5. The VIF results 

showed that most of the variables exhibited a relatively low degree of multicollinearity. 

Values ranged from 1.1 to 1.85, indicating an acceptable level of multicollinearity between 

the predictors (Table 5.4).  

Table 5.5 Summary of MLR for radon progeny. 

Variables 
Standardized 

Coefficients 
t-value p-value 

PM10 0.515 89.8 0.00 
P -0.082 -13.7 0.00 

RH 0.369 51.13 0.00 
T 0.145 21.3 0.00 

Prec -0.052 -9.4 0.00 
WS 0.077 11.6 0.00 

BLH -0.186 -25 0.00 

The summary of MLR for radon progeny is shown in Table 5.5. The MLR model for EEC 

demonstrated statistical significance (p-value < 0.05) with a correlation coefficient of R� 	0.43, indicating that 43% of the variability in EEC was explained by the predictors. The 

MLR analysis revealed significant relationships between various environmental variables 

and EEC, reflecting the physical processes that govern radon progeny behaviour in the 

atmosphere. Among the predictors, PM10 exhibited the strongest positive association 

(standardized beta coefficient = 0.51, p < 0.001), indicating that higher levels of PM are 

linked to increased radon concentrations. It is likely due to reduced atmospheric dispersion 

and the role of particles in carrying radon progeny. RH also showed a substantial positive 

effect (0.37, p < 0.001), while BLH had a notable negative association (-0.186, p < 0.001), 

suggesting that enhanced atmospheric mixing reduces radon progeny accumulation near the 

surface. The positive effect of RH on radon progeny concentrations may be attributed to the 

hygroscopic growth of aerosol particles, which enhances the attachment of radon progeny to 

these particles (Khan et al., 1988). High RH causes hygroscopic aerosol particles to grow, 

which increases their surface area and enhances the attachment of radon progeny leading to 

elevated concentrations of attached progeny in the atmosphere. Temperature and wind speed 
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had moderate and weak positive effects (0.145 and 0.077, respectively), potentially 

enhancing radon exhalation from soil, whereas atmospheric pressure and precipitation 

showed weak negative relationships (-0.082 and -0.052), likely due to suppressed soil gas 

flow and washout mechanisms. All variables were statistically significant (p < 0.001), 

indicating that both meteorological and pollution-related factors play a critical role in 

influencing radon levels. However, the MLR prediction is not very strong which could be 

related to the existence of non-linearity between predictors and radon progeny and other 

complex interactions not captured by the model. These limitations suggest that the MLR 

approach may not fully account for the intricate relationships between environmental 

variables and radon EEC, potentially leading to suboptimal predictive accuracy. To better 

capture the non-linear relationships between radon EEC and the potential predictors, a GAM 

analysis was conducted discussed below. 

Table 5.6 Multicollinearity among the EEC predictors. 

Concurvity s(PM10) s(P) s(RH) s(T) s(Prec) s(WS) s(BLH) 

worst 0.23 0.28 0.52 0.50 0.09 0.47 0.55 
observed 0.23 0.20 0.49 0.42 0.05 0.38 0.48 
estimate 0.16 0.15 0.45 0.40 0.03 0.37 0.41 

5.7. Generalised additive model applied to radon progeny 

Following the MLR analysis, a penalized GAM was applied to further investigate the 

modelling of EEC and its potential predictors. A penalized GAM incorporates a penalty term 

to control the smoothness of the fitted functions, helping to prevent overfitting. This is 

achieved by adding a "wiggleness" penalty to the model, which allows for more flexible 

fitting while maintaining generalization to new data. Prior to the GAM analysis, the 

concurvity diagnostics were performed to evaluate potential dependencies among the 

smooth terms in the GAM (Table. 5.6). The analysis revealed that certain predictors, notably 

s(RH), s(T), s(WS), s(BLH), exhibited moderate levels of concurvity, with worst-case values 

ranging from 0.47 to 0.55. This indicates that these smooth terms share some nonlinear 

predictive structure, which may affect the precision and interpretability of their individual 

effects. In contrast, variables such as s(PM10), s(P), and s(Prec) demonstrated low 

concurvity values, suggesting minimal redundancy and stable estimation. As there was no 

strong multicollinearity, all these predictors were included in the GAM analysis.  

The summary of the GAM analysis is shown in Table 5.7. The model explained 49% of the 

deviance with an adjusted R2 of 0.49, indicating a moderate but meaningful fit. The expected 
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value of the response variable, also known as the intercept, was statistically significant 

(estimate = 2.9, p < 0.001), and all smooth terms were also highly significant (p < 0.001), 

suggesting each variable substantially contributes to explaining the variations in EEC. 

Among the predictors, PM10 (edf = 7.5, F = 1052), RH (edf = 7.0, F = 415), and BLH (edf 

= 7.5, F = 85) showed particularly strong nonlinear effects. These findings underscore the 

complex interplay between atmospheric conditions and radon EEC, emphasizing the 

importance of considering PM and other environmental factors in radon exposure 

assessments. 

Table 5.7 Summary of the GAM analysis results for radon progeny. 

Family 
Link 

function 
Formula adj. R2 

Deviance 

explained 

Gaussian Identity 
EEC ~ s(PM10)+s(P)+s(RH)+s(T)+ 

s(Prec)+s(WS)+s(BLH) 
0.49 49% 

Parametric coefficients  
 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.9 0.009 337.5 <0.001 

Approximate significance of smooth terms 

Predictors edf Ref.df F p-value 
s(PM10) 7.5 8.3 1051.8 0.001 

s(P) 8.6 8.9 34.1 0.001 
s(RH) 7.0 8.0 414.6 0.001 
s(T) 7.8 8.6 49.8 0.001 

s(Prec) 2.8 3.4 27.3 0.001 
s(WS) 6.3 7.2 42.7 0.001 

s(BLH) 7.5 8.4 85.2 0.001 

The estimated smooth terms from the GAM provide insights into the nonlinear effects of 

meteorological and PM concentration on radon EEC (Fig. 5.10). The effect of PM10 shows 

a strong positive association with EEC, especially at concentrations of up to ~60 µg.m-3, 

after which the relationship plateaus, indicating saturation. Relative humidity and 

temperature also exhibit clear positive trends, suggesting higher EEC values under more 

humid and warmer conditions. However, the effect of temperature is not as strong as that of 

RH. In contrast, precipitation shows a consistently negative association with EEC, likely 

reflecting the washout effect of rain on radon progeny and reduced radon exhalation rate. 

Atmospheric pressure has a slightly decreasing trend, while WS shows a moderate positive 

effect up to around 4 m.s-1, after which there is a reversal of the trend. Lower values of BLH 
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appear to be negatively associated with EEC; however, this trend disappears beyond 

approximately 700 m. These plots highlight the complex, nonlinear interactions between 

environmental factors and radon progeny dynamics, reinforcing the necessity of flexible 

modelling approaches such as GAMs for accurate assessments of radon progeny exposure. 

 

Fig. 5.10 Estimated smooth functions of the predictors in the GAM for radon EEC. The 
solid lines represent the estimated smooth effects while the dashed lines indicate the 95% 
confidence intervals. 

5.8. Machine learning methods in radon progeny analysis 

Conventional regression models such as MLR and GAM revealed important relationships 

and nonlinear patterns between radon progeny and environmental factors. However, their 

predictive accuracy remained limited, likely due to inherent model constraints in capturing 

complex interactions and higher-order dependencies. To gain deeper insights into the 

relationship between radon progeny, PM, and other environmental parameters, two widely 

used machine learning regression models (XGBoost and RF) were employed. 

 The XGBoost model was employed after cleaning the dataset and splitting it into training 

and testing subsets, at a ratio of 80:20. The XGBoost model was trained with 1000 boosting 

rounds. Hyperparameters, including a maximum tree depth of 6 and a learning rate of 0.1, 

were selected to optimize performance. Model evaluation on the testing subset showed 
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strong predictive accuracy, with performance assessed using metrics such as MSE, RMSE, 

MAE and R². Feature importance was evaluated using its respective internal importance 

metrics. 

In parallel, the RF regression model was employed, using the same input variables and 

normalized data. It was trained with 500 trees and a mtry value of 3. In this case, too, the 

model’s performance was evaluated usingMSE, RMSE, MAE and R². Feature importance 

was determined based on the percentage increase in mean squared error (%IncMSE). To 

enhance interpretability, SHAP (SHapley Additive exPlanations) values were calculated to 

assess the impact of each feature on response variable. Additionally, Partial Dependence 

Plots (PDPs) were generated to illustrate how variations in each input variable influence the 

predicted EEC values. 

Both the XGBoost and RF models performed well in predicting the radon EEC based on 

PM10, BLH, and key meteorological factors, with adjusted R² values of 0.70 and 0.74, 

respectively (prediction based on test dataset). The scatter plots for these models and 

conventional regression models (MLR and GAM) along with their corresponding feature 

importance, are shown in Figs. 5.11 and 5.12. Among the regression models, the RF 

exhibited the strongest predictive power (adj. R² = 0.74), followed by XGBoost, GAM; the 

weakest predictive power was observed in MLR. The feature importance rankings from all 

four models showed that PM10 and RH are the two strongest predictors, with precipitation 

being the weakest. Other features, such as BLH, T, P, and WS, ranked in the middle, with 

some differences depending on the model. 
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Fig. 5.11 Scatter plots of the regression models showing the predicted vs. measured EEC. 

 

Fig. 5.12 Feature importance rankings from four regression models used in radon progeny 
analysis: a) MLR, b) GAM, c) XGBoost, and d) RF. PM10 and RH consistently appear as 
the most influential features across models. 
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5.9. SHAP analysis of the random forest model 

The SHAP analysis, described in Section 4.9, was employed to interpret the RF model 

developed for predicting EEC. Fig. 5.13 presents the SHAP summary visualization 

composed of two parts: a bar chart showing the mean absolute SHAP values, and a so-called 

‘beeswarm’ plot showing the distribution of SHAP values for each feature.  These combined 

plots provide a comprehensive view of both the direction and magnitude of each feature’s 

influence on model predictions.  The features are ordered by their average contribution to 

the model output, with PM10 emerging as the most impactful variable, having the highest 

mean SHAP value and the widest spread of SHAP effects. This implies that PM10 has a 

consistently strong influence on EEC predictions, with both positive and negative effects 

depending on its value. RH and BLH follow in importance, while Prec, T, P and WS have 

moderate influences. The beeswarm plot uses a colour gradient to represent the normalized 

feature values, providing additional insight into how different magnitudes of a feature impact 

the prediction. Overall, the SHAP summary enhances model interpretability by quantifying 

the contribution of each feature and illustrating how they interact with the prediction process. 

 

Fig. 5.13 SHAP summary plot, illustrating the contribution of each feature to the predicted 

EEC for the Random Forest model. The right-hand panel shows a beeswarm plot displaying 

the distribution and direction of SHAP values for each feature. The left-hand panel shows a 

bar chart of the mean absolute SHAP values, ranking features by their overall importance.  
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Fig. 5.14 SHAP dependence plots for the RF model used for the prediction of EEC. 

 

 

Fig. 5.15 Partial dependence plots for the RF model used in the prediction of EEC. The 
predictor values on the x-axis have been normalised. 
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5.10. SHAP dependence plots for the random forest 

Fig. 5.14 presents SHAP dependence plots for the RF used to predict EEC, illustrating the 

impact of various input features on the model’s output. Each subplot visualizes how the 

value of a specific feature influences the predicted EEC, with blue dots representing 

individual data points and red dashed lines indicating average trends. The plots reveal 

nonlinear relationships between EEC and almost all features in the RF model. For example, 

certain features (PM, RH, T) showed a clear positive correlation with EEC, where higher 

feature values lead to increased predicted radon levels, while others demonstrate a negative 

or threshold-like effect, suggesting diminishing influence beyond a specific range. 

5.11. Partial dependence plot for the random forest  

Fig. 5.15 presents the partial dependence plots for the RF model used in predicting EEC, 

illustrating the marginal effect of each individual feature on the model’s output. A similar 

result was observed in the GAM component smooth function plots and SHAP dependence 

plot (Figs. 5.10 and 5.14), where nearly all predictors exhibited a non-linear relationship 

with radon EEC. PM10 shows a strong positive effect, with predicted EEC levels increasing 

sharply at lower concentrations and plateauing at higher levels, indicating a saturation effect. 

Atmospheric pressure has an approximately linear and negative influence on EEC, where 

higher pressure values correspond to lower EEC predictions, possibly due to reduced radon 

exhalation under high-pressure conditions.  RH demonstrates a consistent positive effect on 

EEC, suggesting that more humid conditions favour radon progeny accumulation. WS shows 

a non-linear trend, with a slight decrease in predicted EEC at lower speeds, followed by an 

increase at moderate levels, implying complex dispersion dynamics. BLH exhibits a sharp 

negative effect at low values, indicating that shallow boundary layers trap radon progeny 

near the surface, whereas higher BLH values promote dispersion. The effect of temperature 

on the predicted EEC is more complex. At lower temperatures, the relationship is negative, 

i.e. EEC decreases as temperature increases. However, once a certain threshold is reached, 

this effect reverses: increased temperatures are associated with higher predicted EEC, 

potentially due to enhanced radon exhalation from the soil. Finally, precipitation has a 

negative effect on EEC: increased rainfall is linked to lower EEC levels, likely due to 

washout or suppression of the radon exhalation rate from the soil. These patterns collectively 

highlight the non-linear and variable influence of each predictor on radon behaviour. 
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Chapter 6 

 

6. Radon as a tracer in atmospheric research 

In this chapter, the use of radon as tracer will be discussed. Specifically, the measurement 

outdoor radon will be used to determine the MLH based on the so-called box model. The 

result will be compared to a different dataset, and the strength and limitation of this model 

will be discussed. In the second part of this chapter, residence time of aerosols in the 

atmosphere will be estimated based on the concentration of outdoor radon and its progeny. 

6.1. MLH based on radon - results 

The MLH was determined using the box model introduced in Section 2.7.2. This model 

takes RAC and radon flux as inputs to calculate the MLH. The accuracy of the model heavily 

depends on both radon concentration and radon flux measurements. A major challenge in 

applying this model is the limited availability of continuous and precise radon flux data. 

Several studies have assumed a constant radon flux throughout the year (e.g., Gregorič et al., 

2020; Salzano et al., 2016; Sesana et al., 2003; Vecchi et al., 2019). However, radon flux 

exhibits distinct seasonal variations that depend mainly on the soil moisture, as reviewed in 

(Čeliković et al., 2022). Neglecting these variations and using a fixed value throughout the 

year can result in significant overestimation or underestimation of MLH. To account for the 

seasonal variability of radon flux, this study utilized the daily radon flux values from the 

European radon flux map (Karstens et al., 2023). The European radon flux map was created 

using data on soil uranium content, soil properties and two different soil moisture reanalyses 

(ERA5 and GLDAS-Noah v2.1). The data for our locality was downloaded from the 

Integrated Carbon Observation System (ICOS) portal3.  

 
3 traceRadon daily radon flux map for Europe 2017 (based on ERA5-Land soil moisture) | ICOS 



Result and discussion   Radon as a tracer 

103 | P a g e  

 

 

Fig. 6.1 Hourly evolution of MLH and RAC in August 2020. 

The temporal variation of MLH in relation to RAC for August 2020 is illustrated in Fig. 6.1. 

On a day-to-day basis, a low RAC corresponds to a high MLH, and vice versa. When the 

MLH is shallow, radon tends to accumulate near the surface, resulting in higher 

concentrations. In contrast, when the MLH is high, radon disperses rapidly, causing its 

concentration near the ground to decrease. Fig. 6.2 shows the composite diurnal cycles for 

each month of the year averaged over the entire study period (2018-2023). Generally, the 

MLH is shallow and stable during the nighttime, starts growing after the sunrise, reaches its 

peak in the mid-afternoon, and decreases as the solar radiation intensity diminishes. This is 

due to the fact that after the sunrise the solar radiation warms the Earth’s surface, which in 

turn heats the air parcels near the surface and generates turbulent mixing. This turbulence 

expands the boundary layer vertically, forming a convective boundary layer (CBL) whose 

depth peaks in the mid−afternoon. As solar intensity diminishes towards evening, the CBL 

begins to collapse. After sunset, the surface cools rapidly via thermal radiation, creating a 

temperature inversion (colder air near the surface, warmer air above). This inversion 

stabilises the atmosphere, suppresses turbulence and reduces the BLH to a shallow stable 

boundary layer (SBL), typically 200–300 m deep.  

A distinct diurnal cycle of MLH can be observed for each month of the year. While the 

nighttime MLH remains relatively constant throughout the year, ranging from approximately 

200 to 400 m, the daytime MLH varies in both range and duration, depending on solar 

exposure. For example, the mean daytime MLH peaks at around 500 m during the cold 

months of December and January, due to lower temperatures and limited mixing. From 

February onwards, however, the peaks begin to increase, reaching approximately 1500 m in 

the summer months, before gradually decreasing towards autumn. 
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Fig. 6.2 Composite diurnal cycles of MLH for each month of the year averaged over the 
entire study period (2018-2023). The box shows 25th to 75th percentiles, the whisker line 
extended from 10th to 90th percentiles. The black dots show the median while the red dots 
show the mean values. 

 

The seasonal variation of MLH is shown in Fig. 6.3 in the form of monthly boxplots. A clear 

seasonal variation can be observed i.e., MLH is usually higher in spring and summer and 

lower in autumn and winter. The mean MLH is lowest during December-February (around 

400 m). It then begins to rise steadily in early spring, reaching its peak of approximately 

700 m in July. Over the following months, the mean MLH declines steadily until it reaches 

its lowest point again in December. The seasonal variation of MLH is mainly governed by 

the solar radiation, surface heat flux and temperature lapse rate (Lee 1986; Vecchi et al. 

2018; Kim 2022). 
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Fig. 6.3 Composite monthly boxplot of MLH created based on data covering the entire 
study period. 

 

6.2. Comparison of MLH with BLH-ERA5 

In this section, the MLH based on radon was compared with the MLH/BLH based on the 

ERA5 reanalysis dataset (BLH-ERA5). It should be noted that the terms mixing layer height 

and boundary layer height are used interchangeably but refer to the same atmospheric layer. 

The ERA5 reanalysis dataset, produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF), provides a high-resolution global atmospheric reanalysis from 1940 to 

the present (Hersbach et al., 2020). One of its valuable products is BLH calculated based on 

the Bulk Richardson number, with a spatial resolution of 0.25°×0.25° and a temporal 

resolution of one hour. The BLH-ERA5 dataset has been used extensively worldwide in 

atmospheric research in recent years. Several studies conducted the intercomparison between 

BLH-ERA5 and experimental BLH data obtained using various instruments, such as 

ground-level LIDARs, sodars, ceilometers and radiosondes. Despite some differences, good 

agreement is generally reported between the BLH-ERA5 and experimental results e.g., 

(Allabakash at al., 2020; Madonna et al., 2021; Guo et al., 2021; Sinclair et al., 2022; Li et 

al., 2023).  

The hourly BLH-ERA5 data were extracted for our locality (latitude: 48° 9′N, longitude: 

17° 4′E), covering the years 2018-2023, which coincides with the period for which radon-

based MLH was calculated. The composite diurnal cycles of both approaches are shown in 
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Fig. 6.4. During the nighttime (20:00–6:00), when the MLH is stable, the mixing height 

obtained by both methods showed strong agreement, ranging between 200 and 400 m. 

However, during the daytime, some differences can be observed. For example, the summer 

trends align closely and reach highest values of ~1500 m around 14:00. However, compared 

to MLH, the daily peaks of BLH-ERA5 show higher values: up to 100 m in spring and 200 m 

in winter. Conversely, in autumn, the MLH-Rn peak is up to ~150 m higher than that of 

BLH-ERA5. Another difference is that the BLH-ERA5 model exhibits more rapid evolution 

after sunrise compared to the MLH-Rn. This discrepancy aligns with the findings of Vecchi 

et al. (2019), who observed a similar pattern when comparing the diurnal cycle of MLH 

based on radon with a turbulence model. This difference may be attributed to the slower 

measurement rate of radon due to larger sampling interval, compared with the faster 

measurement rate of variables used in the BLH-ERA5 calculation.  Such differences in the 

evolution of mixing layer height are expected, as the two methods rely on different measured 

variables with different dynamics, i.e., radon in the box model in one approach versus 

potential temperature and two wind components in the other approach. A linear regression 

analysis was conducted between the two datasets to further understand their relationship 

(Fig. 6.5). There was a strong correlation between the two variables (Pearson’s r = 0.90). 

Further, a non-parametric Mann-Whitney U test (Mann& Whitney, 1947) was performed on 

the composite diurnal cycles of both approaches, considering each season independently. At 

a 95% confidence level, no significant differences were found between the two datasets, 

except for the winter season. 

 

Fig. 6.4 Composite diurnal cycles of a) BLH-ERA5 and b) MLH-Rn for each season of the 

year. The data were aggregated across the entire study period. 
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Fig. 6.5 Correlation between the composite diurnal cycles of MLH-Rn and BLH-ERA5 for 

each season of the year. 

The mean values for individual months of 2018-2023, as well as composite monthly means 

of MLH and BLH-ERA5, are shown in Fig. 6.6 and Fig. 6.7, respectively, along with their 

respective scatter plots. Despite some differences, the overall seasonal trends are in good 

agreement. From December to July, the BLH-ERA5 values are higher than the MLH values, 

but lower during the rest of the year. The higher values of BLH-ERA5 in cold or very stable 

conditions has also been reported by (Sinclair et al., 2022). However, the non-parametric 

Mann-Whitney U test at a 95% confidence level revealed no significant difference when 

applied to the monthly values. Linear regression analysis of the monthly mean and composite 

monthly mean values for these two approaches shows a positive correlation (Pearson’s r > 

0.75), as illustrated in the right sides of Fig. 6.6 and Fig. 6.7, respectively. 

 

Fig. 6.6 Monthly variations of MLH-Rn compared to BLH-ERA5 for the entire study 

period (2018-2023). 
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Fig. 6.7 Composite monthly values of MLH-Rn and BLH-ERA5 for the entire study 

period. 

 

Fig. 6.8 Pearson correlation heatmap between monthly concentrations of radon and its 

progeny. 

6.3. Aerosols residence time - results 

The mean residence time of aerosols (TR) was estimated using the weekly data on radon and 

radon progeny ratios, in accordance with the methodology outlined in Section 2.7.3. A 

strong correlation (Pearson’s r > 0.7; Fig. 6.8) was observed between the monthly means of 
210Pb and short-lived radon progeny, indicating the presence of steady-state conditions 

necessary for applying the aerosols residence time model (Kim et al. 2000). Descriptive 

statistics for TR are summarized in Table 6.1. Weekly TR values range from 0.35 to 6.73 

days. Fig. 6.9 displays the frequency distributions of the residence times calculated using 

different radon/radon progeny ratios, along with corresponding boxplots. All these 
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distributions can be approximated by a normal distribution. The boxplots showed consistent 

TR estimates across all three ratios, with a slightly higher interquartile range and median for 

the 210Pb/214Bi ratio. This variation is likely due to the relatively low variability of 214Bi 

compared to other short-lived radon decay products. 

Table 6.1 Descriptive statistics of ¹· [days] based on three ratios of radon and its progeny. 

Ratio No. Mean Median 
Std. 

Deviation 
Minimum Maximum 

210Pb/214Pb 129 3 2.86 1.16 0.36 6.73 
210Pb/214Bi 129 3.41 3.17 1.23 0.37 6.7 
210Pb/222Rn 126 3 2.87 1.15 0.35 6.68 

 

Fig. 6.9 Frequency distribution of aerosol residence times and corresponding boxplots 

calculated from weekly data using three different radon/radon progeny ratios. 

Table 6.2 presents a comparison of our results with those found in the literature. In general, 

the studies have demonstrated that the TR ranges from a few hours to several weeks. In most 

cases, our results are in good agreement with those reported in the literature i.e., methods 

based on the ratios of 210Pb/214Pb, 210Pb/214Bi and 210Pb/222Rn yield a TR of less than 10 days. 

As suggested by several authors, these ratios are more reliable for the determination of TR 

(Ahmed et al., 2004; Crova et al., 2021; Sýkora et al., 2017). Using the ratios of long−lived 

radon progeny, such as 210Bi/210Pb and 210Po/210Pb, longer residence times up to several 

weeks were observed. The large discrepancies in this case were observed to be due to 

extraneous sources of radon decay products (e.g., resuspension of soil dust, volcanic 

eruptions, biomass burning and fossil fuel combustion) (Lambert et al., 1983; Papastefanou, 

2009b; Poet et al., 1972; Długosz−Lisiecka, 2016; Baskaran & Shaw, 2001; Moore et al., 

1973). Methods employing ratios of radon and its short−lived progeny, such as 214Pb/222Rn, 

often underestimate aerosols residence time, yielding the TR values of the order of a few 

hours. This underestimation could be due to the following reasons: First, the short−lived 
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radon progeny (218Po, 214Pb, 214Bi) decay rapidly to 210Pb before significant atmospheric 

removal occurs. Second, the method used in this study assumes a secular equilibrium 

between radon and its short−lived progeny. To reach this equilibrium and ensure the 

steady−state conditions, more than 3 hours must elapse (Baskaran, 2011). This implies that 

the residence time we are tracing is much longer than 3 hours. The 210Pb/214Pb, ²¹⁰Pb/²¹⁴Bi 

ratios used in this study may be more reliable due to their combination of the short− and 

long−lived decay products, which contrasts with the limitations of the ²¹⁴Pb/²²²Rn ratio, as 

well as due to far fewer extraneous sources of ²¹⁰Pb compared to ²¹⁰Po. It should also be 

noted that the aerosols residence time cannot be a fixed value as it depends on several factors, 

such as sampling altitude, size distribution, air mass history and regional meteorological 

conditions (Anand & Mayya, 2015; Baskaran, 2011; Moore et al., 1973; Rastogi & Sarin, 

2013; Wu et al., 2023).  

Table 6.2 Comparison of aerosol residence times obtained in this study with those 

published in the literature. 

Reference Method Range (Day)  
Mean 

(Day) 
Study location 

Present 

210Pb/214Pb 0.36 – 6.73 3 Bratislava, Slovakia 
210Pb/214Bi 0.37 – 6.7 3.41 Bratislava, Slovakia 
210Pb/222Rn 0.35 – 6.68 3 Bratislava, Slovakia 

Aba et al., (2020)  3 − 5  Kuwait 

Sýkora et al. (2017)  3.7 – 5.6 4.5 Bratislava, Slovakia 

Kim et al. (2000)  1.3 – 4.5  Delaware, USA 

Rastogi & Sarin, (2013)  2 − 8  Ahmadabad, India 

Poet et al., (1972) 222Rn/210Pb 2.2 – 3.4  
Belin−Halensee, 

Germani 
Crova et al. (2021) 210Pb/214Bi 0.5 – 2.3 1.22 Milan, Italy 

Vecchi et al. (2005) 210Pb/214Pb 1 − 2  Milan, Italy 

Aba et al., (2020)  3 − 5  Kuwait 

Ahmed et al., (2004)  1.5 – 13 10.5 El−Minia, Egypt 

Mohery et al., (2016)  1.04 – 15.6 9.9 Jeddah, Saudi Arabia 

Gäggeler et al., (1995)  1 – 15 6 
Jungfraujoch, 
Switzerland 

Papastefanou, (2006) 210Bi/210Pb 4.8 – 15.3 8.2 
Oak Ridge, 
Tennessee 

Poet et al., (1972) 210Po/210Pb 11−77  
Belin−Halensee, 

Germani 
Baskaran & Shaw, (2001)  0 − 39  Arctic 

Długosz−Lisiecka, (2016) 
Corrected TR (210Bi, 210Pb 

and 210Po) 
1 − 25  Lodz, Poland 

Barba−Lobo et al., (2024) 214Pb/222Rn 0.04 – 0.13  Huelva, Spain 

Crova et al. (2021) 
Deposition velocity and 

MLH 
0.3 – 4.4 2 Milan, Italy 

Winkler et al., (2001) AMD of 7Be and 210Pb. 4− 5  
Neuherberg, 

Germany 
Aba et al., (2020) AMD of 7Be  4.2 Kuwait 
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Conclusion 

This study investigated outdoor 222Rn and its short-lived progeny (218Po, 214Pb, and 214Bi) in 

Slovakia, with the aim of understanding their behaviour and assessing their potential as 

tracer of environmental processes. Long-term measurements were carried out, with radon 

activity concentration (RAC) continuously monitored over a six-year period (2018–2023) 

using a 4-liter scintillation detector. Additionally, the activity of short-lived radon progeny 

was measured using alpha spectrometry over a three-year span (2020–2022). These datasets 

enabled a comprehensive analysis of temporal variations and the factors influencing radon 

and its progeny levels. 

The descriptive statistics revealed an annual mean RAC of 5.6 ± 3.9 Bq.m-3 (range: 

0-31 Bq.m-3), which is well below the often-cited global average (~10 Bq.m-3). This indicates 

that the study area is a low-background region in terms of radon. The mean activity 

concentrations of 218Po, 214Pb, and 214Bi were 2.78, 3.21, and 2.75 Bq.m-3, respectively, with 
214Pb showing the largest variability (σ 	 1.95 Bq. m�q). The mean equilibrium equivalent 

radon concentration was 3.01 ± 1.70 Bq. m�q, and the radon equilibrium factor (Feq) 

averaged 0.54 ± 0.28 (range: 0.04–7.5) over the study period. The observed mean value of 

Feq is slightly below the 0.6 suggested by UNSCEAR (2000). 

A pronounced diurnal cycle was observed in radon and its progeny concentrations: peak 

values generally occurred in the early morning (03:00–05:00) and minima in the 

mid-afternoon (14:00–16:00). This diurnal variation is mainly governed by atmospheric 

mixing processes. During the day, solar heating increases convection and turbulence, 

increasing the boundary layer height (BLH) and diluting near-surface radon. This 

interpretation is supported by strong negative correlations between RAC and BLH (and 

likewise for RAC-wind speed and RAC-temperature). At night, the absence of solar heating 

leads to surface cooling and stable stratification with temperature inversions; this causes 

radon and its progeny to accumulate near the ground, thereby producing the observed 

early-morning concentration peaks. 

Seasonal patterns in the concentration of radon and its progeny were also evident. Radon 

and its progeny concentrations were lowest in spring (April) and increased through autumn, 

reaching a maximum in November and remaining high during the winter months. This 

suggests that cooler, more stable conditions favour higher radon levels. Statistically, these 

seasonal variations were mainly attributed to seasonal changes in radon flux, atmospheric 
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mixing and stability i.e., RAC correlated strongly with measured radon flux and relative 

humidity, and negatively with BLH. Neither the air temperature nor the wind speed were 

significant predictors of the seasonal cycle. A moving-average smoothing revealed 

synoptic-scale fluctuations in radon levels on timescales ranging from days to weeks, 

indicating that large-scale weather patterns modulate radon levels beyond the diurnal cycle. 

Regression analysis was conducted using both conventional and machine learning 

approaches to identify the most influential drivers of hourly radon variability. Multiple linear 

regression quantified the strength and direction of the predictors but exhibited limited 

predictive power. The generalized additive model (GAM) was effective in revealing the 

non-linear relationships between RAC and its predictors, resulting in slightly improved 

performance. However, the best performance was achieved using machine learning methods 

such as the Gradient Boosting Machine, Extreme Gradient Boosting (XGBoost), and the 

Random Forest. All these models outperformed the conventional approaches, achieving 

strong predictive power �R� y 0.75 for hourly data�. Across all models, boundary layer 

height (BLH) emerged as the strongest predictor of outdoor radon levels, while precipitation 

was the least influential variable. Both the GAM and the Shapley Additive Explanations 

(SHAP) analysis of the XGBoost model confirmed that each meteorological predictor affects 

RAC in a non-linear manner, underscoring why simpler linear models are insufficient to 

fully describe the observed behaviour. 

The use of radon and its progeny as tracers of atmospheric mixing layer height (MLH) and 

aerosols residence time were investigated. Using the so-called box model with hourly RAC 

and daily modelled radon flux as inputs, the MLH was retrieved. The radon-derived MLH 

effectively captured the diurnal and seasonal evolution of atmospheric mixing processes. 

However, a comparison with independent data revealed both strengths and weaknesses of 

the radon-based MLH method. Generally, the radon-derived MLH agreed well with BLH 

from the ERA5 reanalysis dataset on diurnal and seasonal scales. The hourly MLH based on 

radon was not reliable due to large uncertainties arising from the model’s sensitivity to RAC 

measurement errors. Moreover, the model’s seasonal variation depends strongly on the 

assumed radon flux. Since continuously measured radon flux data are not available, this 

further distorts the results. 

The mean residence time of aerosols obtained from the ratios 210Pb/222Rn, 210Pb/214Pb, and 
210Pb/214Bi in Bratislava, Slovakia was 3.15 days (range: 0.35–6.73 days). This result is 

consistent with previously reported aerosol residence times based on radon progeny in other 
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locations. However, the absence of an independent model for estimating aerosol residence 

time makes it difficult to validate this finding. 

In summary, these findings provide deep insights into the dynamics of outdoor radon and its 

progeny in a low-background environment, shedding light on their interactions with 

environmental factors. The results support the use of radon and its progeny as tracers of 

boundary-layer processes and aerosol dynamics. However, precise measurements are 

essential for their effective use in this way. 
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Future research directions 

The use of radon as an environmental tracer requires the development of highly accurate and 

traceable instrumentation, alongside the implementation of long-term measurement 

campaigns. Current study suggests that reliable radon concentration and radon flux 

measurements are critical, as they significantly influence estimation of atmospheric mixing 

layer height. Future research should prioritize improving detector sensitivity and automated 

radon flux monitoring systems that can collect continuous, traceable data to support 

atmospheric science. 

A deeper understanding of radon progeny interactions with various air pollutants is essential, 

as both are known carcinogens associated with significant health risks. However, these 

interactions remain poorly characterized. Comprehensive laboratory and field studies under 

diverse pollution scenarios are needed to better understand these dynamics. Such efforts are 

crucial for improving radiation dose modelling and for advancing our understanding of the 

potential synergistic effects between radon progeny and air pollutants. 

In parallel, long-term epidemiological investigations should examine the combined health 

impacts of radon exposure and air pollution. While both radon and fine particulate matter 

are individually linked to respiratory and cardiovascular diseases, their synergistic effects 

are not well understood. Emerging evidence suggests that elevated radon levels significantly 

exacerbate PM-associated mortality (Blomberg et al., 2019). Future research should 

integrate high-resolution, continuous radon and PM data with health outcome metrics (e.g., 

hospital admissions, disease incidence, mortality rate) to quantify these interactions across 

different spatial and temporal scales.  

Machine learning offers promising avenues for advancing radon research. Beyond the 

regression methods used in this thesis, future work could apply machine learning-based 

clustering to long-term datasets of radon, its progeny, meteorological variables, and air 

quality data. This would clarify how meteorological and air quality regimes influence radon 

and progeny variability, providing insights for predictive models and risk mitigation.
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