Univerzita Komenského Fakulta matematiky, fyziky a informatiky Katedra jadrovej fyziky a biofyziky

Využitie¹⁴C v environmentálnych štúdiach

Dizertačná práca

Bratislava 2006

RNDr. Alexander Šivo

OBSAH

Ú٧	OD		4		
1.	Súč	ičasný stav problematiky			
	1.1	Produkcia kozmogénneho ¹⁴ C	8		
	1.2	Produkcia antropogénneho ¹⁴ C	13		
		1.2.1 Skúšky jadrových zbraní	13		
		1.2.2 Jadrová energetika	15		
	1.3	Migrácia ¹⁴ C v biosfére	16		
		1.3.1 CO ₂ v prízemnej vrstve atmosféry	18		
		1.3.2 Súvislosť medzi exhaláciou CO ₂ a ²²² Rn	19		
		1.3.3 ¹⁴ CO ₂ v prízemnej vrstve atmosféry	21		
	1.4	Metódy detekcie ¹⁴ C	23		
		1.4.1 Proporcionálne detektory	23		
		1.4.2 Kvapalinové scintilačné detektory	25		
		1.4.3 Urýchľovačová hmotnostná spektrometria	27		
	1.5	Rádiotoxicita ¹⁴ C	30		
2.	Cie	e dizertačnej práce	33		
3. Zvolené metódy spracovania		lené metódy spracovania	34		
	3.1	Zariadenia na meranie nízkych aktivít ¹⁴ C	34		
	3.2 Automatizácia merania a spracovanie dát		36		
	3.3 Korekcie neistôt a reprodukovateľnosť merania		38		
3.4 Príprava plynových náplní pre proporcionálne detektory		Príprava plynových náplní pre proporcionálne detektory	41		
		3.4.1 Príprava a čistenie oxidu uhličitého	41		
		3.4 2 Príprava a čistenie metánu	44		
	3.5	Možnosti zvýšenia citlivosti proporcionálnych detektorov	47		
	3.6	Nízkopozaďový tieniaci kryt pre proporcionálne detektory	49		
4.	Výsledky práce s uvedením nových poznatkov				
	4.1	Variácie kozmogénneho ¹⁴ C v prírode	52		
	4.2	Variácie antropogénneho ¹⁴ C v prírode	62		
		4.2.1 Bombový efekt	62		
		4.2.2 Reaktorový efekt	66		
	4.3	Monitorovanie ¹⁴ C v atmosfére	70		

		4.3.1	Separácia ¹⁴ CO ₂ z atmosféry	70		
		4.3.2	Výsledky monitorovania ¹⁴ C v atmosfére	72		
		4.3.3	Harmonická analýza ¹⁴ C variácií	85		
	4.4	Monito	provanie ¹⁴ C v pôdnom vzduchu	90		
		4.4.1	Výsledky monitorovania ¹⁴ C v pôdnom vzduchu	91		
		4.4.2	Meranie hĺbkového profilu CO ₂ , ¹⁴ C a ²²² Rn v pôde	96		
		4.4.3	Výsledky merania CO ₂ , ¹⁴ C a ²²² Rn v pôde	99		
5.	Rác	liouhlí	kové datovanie a rôzne aplikácie ¹⁴ C	103		
	5.1	Rádic	uhlíkové datovanie organických vzoriek	104		
	5.2	Rádic	uhlíkové datovanie podzemných vôd	105		
	5.3	Výsle	dky rádiouhlíkového datovania	111		
6.	Zho	dnote	nie dosiahnutých výsledkov	115		
LITERATÚRA						
Zoznam publikácií autora súvisiacich s dizertačnou prácou						
PRÍLOHY						

ÚVOD

V súčasnom období prudkého rozvoja vedy a techniky sa do popredia dostávajú otázky ochrany a tvorby životného prostredia. Nové technológie, zdroje energie a výrobky popri svojich nesporných kladoch majú v mnohých prípadoch aj negatívny vplyv na životné prostredie. Je preto nutné venovať ekologickým otázkam celosvetovú pozornosť.

Jednou z kontraverzných otázok, ktorá znepokojuje ľudstvo od čias objavenia štiepenia uránu a začatia využívania jadrovej energie na vojenské aj mierové účely, je znečistenie životného prostredia rádionuklidmi a ich radiačný vplyv na obyvateľstvo. V súvislosti s prudkým nástupom jadrovej energetiky a jej veľkých perspektív rozvoja v blízkej budúcnosti je potrebné starostlivo študovať tento zdroj znečistenia životného prostredia.

Rádioaktivita v životnom prostredí je vytváraná dvoma základnými zložkami. Prvú skupinu tvoria primordiálne a kozmogénne rádionuklidy, ktoré majú prirodzený pôvod, druhú antropogénne rádionuklidy vyprodukované ľudskou činnosťou. K najdôležitejším prírodným rezervoárom, v ktorom sa hromadí veľké množstvo rádionuklidov, patrí atmosféra. Po skúškach jadrových bômb v päťdesiatych a šesťdesiatych rokoch minulého storočia sa v atmosfére podstatne zvýšila koncentrácia viacerých rádionuklidov. Po obmedzení skúšok jadrových zbraní v atmosfére sa hlavným zdrojom znečistenia atmosféry stáva jadrová energetika a jej jadrovo-palivový cyklus. Najnebezpečnejšie sú dlhožijúce rádionuklidy ako ³H, ¹⁴C, ⁸⁵Kr, ⁹⁰Sr a ¹²⁹I, ktoré globálne a dlhodobo znečisťujú atmosféru.

Jadrová energetika ako každá priemyselná činnosť popri svojich kladoch prináša so sebou aj škodlivé faktory, potenciálne nebezpečie pre človeka a životné prostredie. Rádioekologické problémy môže spôsobiť kumulácia dlhožijúcich rádionuklidov v životnom prostredí, uloženie vysokoaktívnych odpadov, tepelný odpad, prípadne možné havárie na jadrových zariadeniach. Je potrebné zdôrazniť, že otázkam radiačnej bezpečnosti v jadrových elektrárňach a kontrole rádionuklidov v životnom prostredí sa venuje mimoriadna pozornosť. Predpisy, normy, štandardy atď. v jadrovom priemysle sú ďaleko najprísnejšie v porovnaní s ostatnými zdrojmi znečistenia. Aj keď jadrová energetika v súčasnosti v porovnaní s klasickou energetikou vylepšuje životné prostredie, predsa len existujú ešte mnohé

nevyriešené rádioekologické problémy a nesmie sa podceňovať ani vplyv malých radiačných dávok, pretože ich vplyv na budúce generácie zatiaľ nie je známy.

Dôležitú úlohu v rádioaktívnom znečistení prírodného prostredia má rádionuklid ¹⁴C. Uhlík patrí k dôležitým biogénnym prvkom a hrá podstatnú úlohu vo všetkých formách života. Zúčastňuje sa množstva biologických, biochemických a bioekologických procesov prebiehajúcich na Zemi. Je základom zloženia všetkých organických hmôt. V dôsledku toho rádioaktívne izotopy uhlíka, dostávajúce sa do prírodného prostredia, môžu mať určitý vplyv na životné pochody a vývoj živých organizmov a teda aj na človeka.

Výskum ¹⁴C má svoje opodstatnenie práve v dnešnej dobe, kedy sa začínajú prejavovať nežiadúce dôsledky ľudskej činnosti na Zem ako celok, predovšetkým na atmosféru. V snahe o zvyšovanie životného štandardu rastú nároky ľudstva na množstvo energie. Vynímajúc jadrovú, vodnú a alternatívnu energetiku, väčšina energie sa v súčasnosti produkuje oxidáciou uhlíka na CO2. Tento zdanlivo neškodný plyn, ktorý je okrem iného metabolickým produktom živých organizmov, má však nepriaznivý vplyv na vývoj globálnej klímy, nakoľko jeho vysoký GWP (Global Warming Potential) ho radí medzi skleníkové plyny. Práve ¹⁴C by mohol napomôcť k sledovaniu emisií fosílneho CO₂ do atmosféry, k čomu ho predurčujú jeho zvláštne vlastnosti. Rámec aplikácií rádiouhlíka je však značne širší. Okrem využitia na environmentálne ciele má aj vedecko-výskumné uplatnenie. Súhrn jeho charakteristík ho napríklad predurčuje na datovanie najrôznejších predmetov organického (zriedkavo aj anorganického) pôvodu, skupenstva či chemickej formy. Využitím rôznych metód sa dá dosiahnuť rôzna citlivosť a v prípade tých najsofistikovanejších metód možno datovať vzorky staré až 50000 rokov. Vhodný polčas premeny a chemické vlastnosti predurčujú rádiouhlík aj na výskum dynamiky výmenných procesov medzi zemskými rezervoármi. Za túto možnosť paradoxne vďačíme nukleárnym testom v atmosfére Zeme, pri ktorých sa nárazovo uvoľnilo obrovské množstvo ¹⁴C. Odozvy ostatných rezervoárov (oceán, biosféra, stratosféra, a iné) potvrdzujú, že naše modelové predstavy o geometrii, rozhraniach a vzájomnej interakcii rezervoárov sú správne. Použitím vhodných detektorov a koncentrácií možno jeho dobré stopovacie vlastnosti využívať aj v biológii či medicíne na sledovanie špecifických procesov, v chémii, v geológii a v mnohých ďalších oblastiach.

Na riešení týchto problémov sa dlhodobo podieľa aj Katedra jadrovej fyziky a biofyziky FMFI UK v Bratislave v rámci riešenia viacerých výskumných úloh: P09-408-159-211-02/01 Komplexná rádionuklidová analýza, VI-3-5/11 Rádioaktívne znečistenie atmosféry Bratislavy, 1/7653/20 Environmentálne rádionuklidy, ich využitie ako stopovačov a modelovanie radiačného rizika pri nízkych dávkach, Environmentálne _ variácie. 1/0246/03 rádionuklidy radiačné riziko a mnohokomponentné metódy ich aplikácií v environmentálnych štúdiách, a mnohé ďalšie. Predkladaná dizertačná práca obsahuje výsledky, ktoré autor dosiahol pri riešení uvedenej problematiky. Väčšina dosiahnutých výsledkov bola publikovaná v odborných časopisoch a prednesená na domácich a zahraničných konferenciách.

Dizertačná práca je rozdelená na šesť kapitol. V prvej kapitole je zhodnotená produkcia prírodného a antropogénneho ¹⁴C a jeho radiačný vplyv na obyvateľstvo. Ďalej je tu popísaná migrácia ¹⁴C medzi jednotlivými rezervoármi biosféry. V prvej kapitole je tiež urobený podrobný prehľad a zhodnotenie metód merania ¹⁴C, ktoré sa v súčasnosti používajú vo svete.

V druhej kapitole sú uvedené ciele dizertačnej práce.

V tretej kapitole sú uvedené metódy, ktoré boli vyvinuté v rámci práce na meranie nízkych aktivít ¹⁴C. Sú tu uvedené parametre používaných proporcionálnych detektorov a metodiky prípravy pracovných plynov (oxid uhličitý, metán) pre proporcionálne detektory. V závere kapitoly sú diskutované možnosti zvýšenia citlivosti proporcionálnych detektorov. Jednou z možností zvýšenia citlivosti detektora je zníženie jeho pozadia, preto bol zhotovený nový nízkopozaďový kryt pre proporcionálne detektory a sú tu uvedené jeho parametre.

Vo štvrtej kapitole sú zhrnuté výsledky práce. Sú tu uvedené výsledky merania ¹⁴C v letokruhoch stromov za účelom objasnenia variácií ¹⁴C s periódou 11 rokov a zhodnotenia bombového efektu v rámci Slovenska. Ďalej sú tu uvedené výsledky merania ¹⁴C v komíne jadrovej elektrárne V-1 a V-2 v Jaslovských Bohuniciach ako aj merania aktivít tohto rádionuklidu v blízkom okolí jadrovej elektrárne. Dlhodobé monitorovanie ¹⁴C v atmosfére Bratislavy a v okolí JE v Jaslovských Bohuniciach ukazuje na dlhodobý trend koncentrácie ¹⁴C v atmosfére a vplyv priemyselného centra na sezónne variácie tohto rádionuklidu. Monitorovanie ¹⁴C v pôdnom vzduchu ukázalo na variácie ¹⁴C aj v pôde.

V piatej kapitole sú uvedené výsledky aplikácie ¹⁴C v iných vedných odboroch a pri riešení úloh z praxe. Detekčný systém na meranie nízkych aktivít ¹⁴C

6

a vypracované metodiky spracovania vzoriek organického aj anorganického pôvodu nám umožňujú využívať rádionuklid ¹⁴C aj na rádiouhlíkové datovanie. Sme jediné pracovisko tohto druhu na Slovensku. Doteraz bolo urobených niekoľko stoviek rádiouhlíkových analýz a niektoré výsledky sú v uvedené v priložených tabuľkách.

V šiestej kapitole sú v krátkosti zhrnuté dosiahnuté výsledky práce. Prevádzkovaný systém merania ¹⁴C a rutinne zvládnuté metodiky merania umožňujú monitorovanie ¹⁴C vo všetkých zložkách prírodného prostredia.

Záverom úvodnej časti si dovoľujem poďakovať prof. RNDr. P. Povincovi, DrSc. a prof. RNDr. J. Masarikovi, DrSc. za odborné vedenie a všestrannú pomoc pri vypracovaní dizertačnej práce, doc. RNDr. K. Holému, CSc., vedúcemu katedry Jadrovej fyziky a biofyziky FMFI UK, za vytvorenie dobrých podmienok pre realizáciu práce a tiež za odbornú pomoc, RNDr. M. Richtárikovej za spoluprácu pri vedeckých experimentoch. Moja vďaka patrí aj technickým pracovníkom katedry p. Haškovi a p. Šulcovi za technickú pomoc pri prevádzkovaní rádiouhlíkového laboratória.

1. Súčasný stav problematiky

1.1 Produkcia kozmogénneho rádiouhlíka

Interakcie častíc kozmického žiarenia s atómami zemskej atmosféry podmieňujú vznik mnohých rádionuklidov. Za produkciu týchto rádionuklidov je v hlavnej miere zodpovedná sekundárna zložka kozmického žiarenia, resp. kaskádne procesy vyvolané účinkami primárnych častíc kozmického žiarenia [1].

V najväčšom množstve sa produkujú rádionuklidy cez exotermické reakcie prebiehajúce na jadrách, ktoré sú v atmosfére v najväčšej miere zastúpené ako N, O, Ar, Kr. Produkované množstvá rádionuklidov závisia od mnohých faktorov, ako napríklad od toku a energetického zastúpenia častíc primárneho a sekundárneho kozmického žiarenia, od účinných prierezov príslušných reakcií a pod.

Jedným z najdôležitejších rádionuklidov produkovaných v atmosfére je ¹⁴C. Tento rádiounklid môže v atmosfére vznikať prostredníctvom niekoľkých jadrových reakcií, ktoré sú uvedené v tab. 1.1 [2].

		Relatívny	Relatívna	Relatívna
Dookoio	Energia	izotopický	reakčná	reakčná
Reakcia	[MeV]	výskyt	rýchlosť na	rýchlosť
		[¹⁴ N=1]	jadro	v atmosfére
¹⁴ N (n, p) ¹⁴ C	0,626	1	1	1
¹⁶ O (n, ³ He) ¹⁴ C	-14,6	2,64·10 ⁻¹	1·10 ⁻²	3·10 ⁻³
¹⁷ O (n, α) ¹⁴ C	1,82	9,9·10 ⁻⁵	2,3·10 ⁻¹	2,3·10 ⁻⁵
¹⁵ N (n, d) ¹⁴ C	-7,98	3,7·10 ⁻³	1·10 ⁻²	4·10 ⁻⁵
¹³ C (n, β) ¹⁴ C	8,17	2,8·10 ⁻⁶	5·10 ⁻⁴	1,1·10 ⁻⁹
^{20, 21, 22} Ne-štiepenie		1,2·10 ⁻⁵	1·10 ⁻²	1,2·10 ⁻⁷

Tab. 1.1 Relatívne produkčné rýchlosti ¹⁴C.

Na základe hodnôt uvedených v tab. 1.1 charakterizujúcich relatívne produkčné rýchlosti je zrejmé, že s výnimkou reakcie ¹⁴N(n,p)¹⁴C, ostatné jadrové reakcie prispievajú k celkovej produkcii ¹⁴C len nepatrne a z toho dôvodu je možné ich príspevok zanedbať.

Reakcia ¹⁴N(n,p)¹⁴C je exotermická s účinným prierezom 1,8.10⁻²⁰ m⁻² pre tepelné neutróny. Podľa prác [3,4] približne 60 % všetkých neutrónov sa zúčastňuje na tvorbe ¹⁴C, okolo 25 % sa pohltí v reakciách pri vzniku ³H, ¹¹B, ¹²C, ¹³C a približne 15 % uniká späť do atmosféry. Zo 60 % "rádiouhlíkových" neutrónov 58 % produkuje ¹⁴C pri energiach menších ako 1 MeV a len 2 % pri energiach 1-10 MeV.

Na základe vzťahov charakterizujúcich produkciu rádionuklidov v zemskej atmosfére bola stanovená stredná produkčná rýchlosť tvorby ¹⁴C viacerými autormi. Lingenfelter a Ramaty [5] udávajú strednú produkčnú rýchlosť ¹⁴C pre 19-ty slnečný cyklus (2,17±0,44).10⁴ atómov ¹⁴C na m²/s.

Produkované množstvo ¹⁴C a jeho koncentrácia v atmosfére môže byť do určitej miery ovplyvnená niektorými špecifickými faktormi, ako sú:

1. zmena v produkčnej rýchlosti ¹⁴C v atmosfére

2. rýchlosť premiestňovania ¹⁴C medzi jednotlivými rezervoármi

3. časová zmena objemov výmenných rezervoárov (atmosféra, biosféra, hydrosféra)

Rýchlosť premiestňovania ¹⁴C a časová zmena objemov výmenných rezervoárov sú problémy úzko súvisiace so zmenou klimatických podmienok na Zemi, pričom podľa de Vriesa chladnejšiemu podnebiu odpovedá väčšia koncentrácia ¹⁴C ako teplejšiemu [6]. Damon [7] ukázal, že aj keď tento efekt môže hrať dôležitú úlohu v období doby ľadovej, za posledných ~10⁴ rokov je prakticky nepozorovateľný.

Za predpokladu, že sa zloženie atmosféry za posledných ~10⁴ nezmenilo, zmeny produkcie ¹⁴C budú spôsobované hlavne zmenami toku kozmického žiarenia, ktoré v atmosfére vytvára ¹⁴C. S ohľadom na produkciu rádionuklidov má význam uvažovať hlavne:

 variácie kozmického žiarenia, ktoré sú zapríčinené zmenami zdrojov kozmického žiarenia

2/ zmeny geomagnetického poľa Zeme

3/ variácie kozmického žiarenia vyvolané zmenami slnečnej aktivity.

Produkčná rýchlosť kozmogénnych rádionuklidov je závislá od toku častíc kozmického žiarenia, ktoré iniciujú jadrové reakcie. Rozlišujeme primárne a sekundárne kozmické žiarenie. Primárne kozmické žiarenie sa delí na dve zložky podľa pôvodu, na galaktické a slnečné. Galaktická zložka je tvorená z 87 % protónmi, 12 % alfa časticami a zvyšné percento sú ťažšie jadrá s atómovým číslom od 3 do 90 [8]. 98 % solárnej zložky predstavuje tok protónov a ostávajúce 2 %

predstavujú ťažšie jadrá. Častice slnečného žiarenia majú typické energie 1 až 100 MeV. Pôsobením magnetického poľa Zeme sa s takýmito relatívne nízkymi energiami do atmosféry dostávajú iba vo veľkých zemepisných šírkach (nad 60°) a aj tu je produkcia nuklidov obmedzená len na najvyššie vrstvy atmosféry.

Primárne kozmické žiarenie vstupujúce do atmosféry je tvorené najmä protónmi s energiami okolo 1 GeV. Pri takýchto incidenčných energiách vznikajú sekundárne častice, ktoré nazývame sekundárne kozmické žiarenie. Mnohé z týchto častíc majú dostatočnú energiu na produkciu ďalších a takto vzniká hadrónová kaskáda. Táto sa skladá z protónov, neutrónov a piónov. Je sprevádzaná elektromagnetickou kaskádou tvorenou elektrónmi, pozitrónmi, miónmi, fotónmi a neutrínami. Tok sekundárnych neutrónov je o dva rády vyšší ako tok protónov, takže drvivá väčšina kozmogénnych rádionuklidov je produkovaná neutrónovými reakciami.

Primárne kozmické žiarenie galaktického pôvodu bolo za posledných 10⁵ rokov konštantné v rámci ±10 %, pričom v období pred 1-4 miliónmi rokov sa predpokladajú väčšie zmeny toku galaktického kozmického žiarenia [8]. Veľmi pravdepodobnou príčinou variácií galaktického kozmického žiarenia sú výbuchy supernov, pri ktorých dochádza vo zvýšenej miere k emisii žiarenia gama a korpuskulárneho žiarenia. Dlhodobé variácie kozmického žiarenia súvisiace so zmenami zdrojov kozmického žiarenia, môžu byť do určitej miery vydedukované z variácií v koncentráciách rádionuklidov vo vzorkách mimozemského pôvodu, resp. zemského pôvodu (meteority, mesačné horniny, morské sedimenty a iné).

Slnečná aktivita ovplyvňuje produkciu kozmogénnych rádionuklidov dvoma spôsobmi:

1/ priamo –emisiou protónov počas erupčnej činnosti Slnka

2/ nepriamo – moduláciou galaktického kozmického žiarenia slnečným vetrom.

Vplyv slnečnej modulácie na galaktickú zložku kozmického žiarenia klesá s rastúcou energiou častíc. Počas typického 11-ročného slnečného cyklu sa tok nízko-energetických častíc galaktického žiarenia mení až v rozmedzí jedného rádu. Slnečná modulácia galaktického kozmického žiarenia sa vyjadruje pomocou modulačného parametra. Hodnota modulačného parametra sa pohybuje od 50 MeV po 12 GeV a ako dlhodobý priemer sa berie hodnota 550 MeV. V zemepisných šírkach pod 30° je vplyv slnečnej modulácie malý, zatiaľ čo vo vyšších zemepisných

šírkach je táto modulácia významná. Slnečná modulácia má okrem 11-ročného cyklu slnečnej magnetickej aktivity ešte Gleisbergov 90-ročný cyklus a 207-ročný cyklus, ktorý má pôvod vo variáciách magnetického poľa Zeme.

Veľmi dôležitú úlohu tu hrá aj tzv. Forbuschov pokles, súvisiaci s pohybujúcimi sa oblakmi slnečnej plazmy, ktoré často spôsobujú podstatné zníženie toku častíc kozmického žiarenia vo veľkých vzdialenostiach od Zeme. Forbuschov pokles je silne závislý na stupni aktivity slnečného povrchu. Hodnota tohto poklesu mimo magnetosféry je niekedy väčšia ako 40 %. Spomínané zmeny sú silne závislé na tvrdosti častíc primárneho kozmického žiarenia.

Produkcia rádionuklidov v zemskej atmosfére môže byť do značnej miery ovplyvnená aj zmenami geomagnetického poľa Zeme, ktoré čiastočne chráni Zem pred účinkami kozmického žiarenia. Magnetické pole Zeme odkláňa prichádzajúce častice kozmického žiarenia v závislosti od ich elektrického náboja, energie a uhlu dopadu. Existuje kritická hodnota energie častice v závislosti od zemepisnej šírky a uhlu dopadu, pod ktorou už tieto častice nemôžu preniknúť do atmosféry Zeme. Najvyššie hodnoty dosahuje v nízkych zemepisných šírkach a má klesajúcu tendenciu k vyšším zemepisným šírkam. To má za následok vyššie toky častíc kozmického žiarenia a následne aj väčšiu produkčnú rýchlosť v okolí magnetických pólov Zeme a naopak nižšie hodnoty v rovníkovej oblasti. Vďaka tomuto odklonu sa do atmosféry nižších zemepisných šírok dostanú len častice s energiami nad 10 Gev a modulačný efekt slnka na takéto vysoko-energetické častice je malý. Vo vysokých zemepisných šírkach vstupujú do atmosféry takmer všetky častice primárneho kozmického žiarenia a keďže nízko-energetické spektrum je silno modulované a zároveň reprezentuje značnú časť celkového toku, je výsledný efekt slnečnej modulácie v tejto oblasti relatívne veľký.

Z hľadiska zmien toku častíc kozmického žiarenia má najväčší význam uvažovať periódu, súvisiacu s 11-ročným slnečným cyklom. Medzi 11-ročným slnečným cyklom a produkciou ¹⁴C by mala existovať antikorelačná závislosť. Lingenfelter [9] ukázal, že rýchlosť produkcie ¹⁴C možno spojiť s počtom slnečných škvŕn nasledujúcim vzťahom:

$$Q(W) = Q_{max}(1 - \alpha W)$$
(1.1)

kde Q_{max} je maximálna rýchlosť produkcie v období minima slnečných škvŕn, W je priemerná ročná hodnota počtu slnečných škvŕn, koeficient α=1,14.10⁻³ Rýchlosť produkcie ¹⁴C počas minima slnečnej aktivity v rokoch 1953 až 1954 predstavovala (2,42 \pm 0,48).10⁴ atómov ¹⁴C m⁻²s⁻¹ a pre maximum slnečnej aktivity v rokoch 1957 až 1958 (1,93 \pm 0,39).10⁴ atómov ¹⁴C m⁻²s⁻¹ [5].

Hoci sa rýchlosť produkcie ¹⁴C počas 11-ročného slnečného cyklu mení o ±12 %, koncentrácia ¹⁴C v atmosfére a biosfére môže ostať konštantná. Je to spôsobené tým, že atmosféra pôsobí ako filter, ktorý potláča krátkodobé variácie ¹⁴C.

Houtermans a kol. [10, 11] použitím dvojrezervoárového modelu výmenného procesu uhlíka ukázali, že amplitúda variácií ¹⁴C počas 11-ročného slnečného cyklu sa zmenšuje približne 100-krát. Analýza urobená Dergačevom a Stupnevovou [12] s optimálnym dynamickým modelom zotrvávania ¹⁴C v rôznych častiach výmenného systému ukazuje, že model použitý Houtermansom a kol. je len hrubým priblížením pre sledovanie krátkodobých variácií ¹⁴C. Koeficient zoslabenia atmosféry závisí od počtu rezervoárov použitých v modeli. Pre 5-6 rezervoárový model (stratosféra - troposféra –povrchové vody oceánov –hĺbkové vody oceánov –biosféra) a krátkodobé variácie, koeficient zoslabenia atmosféry môže dosiahnuť hodnotu aj 10⁻¹. Oeschger [13] použil difúzny model a dosiahol výsledky, ktoré tiež ukazujú na to, že koeficient zoslabenia atmosféry pre krátkodobé variácie môže byť väčší ako 10⁻². To znamená, že krátkodobé variácie ¹⁴C môžu existovať.

Doteraz publikované výsledky o krátkodobých variáciách ¹⁴C sú veľmi rôzne. Lerman a kol. analyzovali vzorky letokruhov z rokov 1894-1917. Ich výsledky vykazujú periodicitu v ¹⁴C koncentrácii v priebehu 11-ročného slnečného cyklu s amplitúdou okolo 0,4 % a fázovým posuvom 4 roky [14].

Stuiver meral ¹⁴C vo vzorkách letokruhov z rokov 1868-1886 a zistil amplitúdu variácií 0,23±0,04 % s antikorelačným posuvom 2 roky [15].

Suess meral koncentráciu ¹⁴C v letokruhoch z obdobia 1860-1888, ale krátkodobé variacie nepozoroval [16].

Baxter a Walton analýzou ¹⁴C v škótskej whisky zistili antikoreláciu pri fázovom posuve o 1 rok s amplitúdou 0,3 % [17].

Baxter a Farmer merali koncentráciu ¹⁴C v letokruhovh duba z rokov 1829-1865. Amplitúda variácií im vyšla 0,5 % a korelácia pri posuve o 5 rokov [18].

Damon meral koncentráciu rádiouhlíka v letokruhoch kanadskej jedle z rokov 1940-1954 a zistil antikoreláciu pri posuve o 2 roky s amplitúdou 0,3 % [19]. Podobné

výsledky dosiahli Burčuladze a spol. [20] s použitím gruzínskych vín (amplitúda 0,43±0,11 % a posuv 2 roky).

Uvedené výsledky merania koncentrácie ¹⁴C jednoznačne ukazujú na antikorelačnú závislosť koncentrácie ¹⁴C od počtu slnečných škvŕn (Wolfove čísla).

1.2 Produkcia antropogénneho ¹⁴C

Využívanie jadrovej energie na vojenské i mierové účely má za následok produkciu rádionuklidov a teda aj ¹⁴C. Hlavnými zdrojmi antropogénneho ¹⁴C sú skúšky jadrových zbraní a jadrová energetika. Ďalším antropogénnym efektom, ktorý ovplyvňuje koncentráciu ¹⁴C je tzv. Suessov efekt. Jeho vplyv sa začal podstatnejšie prejavovať v 90-tych rokoch predminulého storočia. Spaľovaním veľkého množstva fosílnych palív (uhlie, ropa, plyn) sa dostáva do atmosféry neaktívny uhlík, ktorý znižuje pomer ¹⁴C/¹²C, čo spôsobuje pokles atmosferickej koncentrácie ¹⁴C. Tento efekt prvýkrát experimentálne dokázal Suess [21] a dostal názov "priemyslový efekt" alebo "Suessov efekt". Podľa Suessa spôsobil tento efekt do roku 1950 až 3 % pokles atmosferickej koncentrácie ¹⁴C. Odhad Suessovho efektu previedli viacerí autori. Fergusson [22] udáva strednú hodnotu tohto efektu pre celú atmosféru -2,03 %. Hodnota Suessovho efektu podľa [23] je $-3,2\pm0,4$ %. Po roku 1950 je Suessov efekt zatienený zvýšenou produkciou ¹⁴C v dôsledku skúšok jadrových zbraní.

1.2.1 Skúšky jadrových zbraní

Pri jadrových výbuchoch sa uvoľňuje veľké množstvo neutrónov, ktoré sa pohlcujú okolitým prostredím. ¹⁴C sa v tomto prípade produkuje analogicky ako prírodný ¹⁴C hlavne záchytom neutrónov na jadrách ¹⁴N v reakcii ¹⁴N(n,p)¹⁴C. Libby [24] vypočítal, že pri výbuchu jadrovej bomby o ekvivalente 1 Mt TNT sa vytvorí asi 3,2.10²⁶ atómov ¹⁴C. Lejpunsky [25] udáva pre výbuch takej istej bomby produkciu 1,4.10²⁷ atómov ¹⁴C. Časový priebeh a počet jadrových testov vykonaných jednotlivým štátmi vo svete je zobrazený na obr. 1. 1.

Množstvo vytvoreného ¹⁴C nezávisí len od veľkosti bomby, ale aj od typu jadrovej nálože, od výšky v akej bomba vybuchne a od niektorých ďalších faktorov. Preto je presný odhad tvorby ¹⁴C problematický. Pri pozemných jadrových výbuchoch sa za inak rovnakých podmienok vyprodukuje o polovicu menšie množstvo ¹⁴C ako

pri skúškach v atmosfére, lebo pri pozemných skúškach sa asi 50 % vzniknutých neutrónov pohltí zemským povrchom.

Obr. 1.1 Časový priebeh a počet jadrových skúšok vykonaných jednotlivými štátmi.

Pri skúškach jadrových bômb v atmosfére sa produkovaný ¹⁴C prakticky všetok transportuje do stratosféry spolu s dvíhajúcim sa plynovým mrakom. Po jadrových skúškach urobených v rokoch 1945-1963 bolo vytvorených (30-150).10²⁷ atómov ¹⁴C, čo predstavuje aktivitu (148-740) PBq [26]. Veľké množstvo antropogénneho ¹⁴C, ktorý sa dostal do atmosféry pri jadrových testoch spôsobilo, že koncentrácia ¹⁴C v atmosfére začala prudko vzrastať.

Prvé experimentálne údaje o zvýšení koncentrácie ¹⁴C v atmosfére boli publikované v roku 1956 Rafterom a Fergussonom [27]. Neskôr bolo zvýšenie koncentrácie ¹⁴C v atmosfére severnej a potom aj južnej pologule zmerané viacerými autormi [28]. Časový priebeh koncentrácie ¹⁴C v atmosfére severnej pologule je znázornený na obr. 1.2 [29].

Maximálna koncentrácia ¹⁴C bola pozorovaná v roku 1963, kedy došlo k 90-100 % prevýšeniu prírodnej hladiny ¹⁴C. Po podpísaní dohody o zákaze skúšok jadrových zbraní v atmosfére, v kozmickom priestore a pod vodou koncom roku 1963, začala koncentrácia ¹⁴C v atmosfére severnej pologule klesať. Koncentrácia ¹⁴C v atmosfére južnej pologule vzrastala pomalšie ako na severnej pologuli. Je to spôsobené tým, že väčšina jadrových skúšok bola urobená na severnej pologuli. Rovnováha medzi severnou a južnou pologuľou sa dosiahla približne v rokoch 1967-1968 [30]. Za predpokladu, že nebudú obnovené skúšky jadrových bômb v atmosfére, koncentrácia ¹⁴C bude klesať k prírodnej hodnote.

Obr. 1.2 ¹⁴C aktivita v atmosfére severnej pologule udaná ako percentuálne prevýšenie nad prírodnou aktivitou 0,225 Bq g⁻¹ uhlíka.

1.2.2 Jadrová energetika

Ďalším významným zdrojom antropogénnej rádioaktivity je jadrová energetika, ktorá sa po zákaze skúšok jadrových zbraní stala hlavným zdrojom rádionuklidov. Celý jadrovo-energetický palivový cyklus (dobývanie a príprava rúd, výroba palivových článkov, prevádzka reaktora, prepracovanie palivových článkov, uloženie rádioaktívneho odpadu) je zdrojom rádionuklidov a teda potencionálnym zdrojom kontaminácie prírodného prostredia. V súčasnosti je vo svete v prevádzke 443 jadrových reaktorov s celkovým výkonom približne 370 000 MW. V nich sa vyrába okolo 16 percent svetovej produkcie elektrickej energie. V blízkej budúcnosti sa počíta s výstavbou ďalších nových jadrových reaktorov.

Množstvo vzniknutých rádionuklidov v rôznych častiach palivového cyklu je značne odlišné.¹⁴C sa produkuje hlavne pri prevádzke jadrového reaktora. V aktívnej zóne jadrových reaktorov ľubovolného typu je veľká hustota toku neutrónov. Neutróny pri interakcii s konštrukčnými materiálmi reaktora , chladivom, moderátorom a prímesami môžu vytvárať ¹⁴C nasledujúcimi jadrovými reakciami: ¹⁴N(n,p)¹⁴C, ¹⁷O(n, α) ¹⁴C, ¹³C(n, γ) ¹⁴C. V závislosti od typu a konštrukčných odlišností reaktora príspevok každej tejto reakcie k celkovej produkcii ¹⁴C môže byť rôzny. ¹⁴C sa

v ľahkovodných reaktoroch tvorí hlavne reakciami neutrónov na jadrách ¹⁷O, ¹⁴N a ¹³C, ktoré sa nachádzajú ako prímesi v chladive, v palivových článkoch a v konštrukčných materialoch. Počas normálnej prevádzky jadrového reaktora sa uvoľňuje do atmosféry len ¹⁴C vyprodukované v chladive. ¹⁴C sa v exhalátoch ľahkovodných reaktorov vyskytuje v dvoch formách a to ako ¹⁴CO₂ alebo ako ¹⁴CH₄ a vyššie uhľovodíky. V exhalátoch tlakovodných jadrových reaktorov sa na aktivite ¹⁴C podieľa ¹⁴CO₂ 10-30 % a u varných reaktorov tvorí podiel ¹⁴CO₂ viac ako 95 % [31]. Napriek tomu, že aktivita ¹⁴C vypúšťaná do atmosféry je oveľa menšia ako aktivity ³H a rádioaktívnych vzácnych plynov (RVP), čo dokumentuje tab. 1.2, vo viacerých štátoch sa už viac rokov robia pravidelné merania ¹⁴C v exhalátoch jadrových elektrární [32,33,34].

Tab. 1.2 Aktivity ³H, ¹⁴C a RVP vypúšťané do atmosféry z rôznych jadrových reaktorov (TBq Gwe⁻¹r⁻¹).

Reaktor	³ H	¹⁴ C	RVP
VVER	7,4-33,3	0,22-0,37	(1,1-2,7).10 ²
RBMK	22,2	18,5-29,6	2,7.10 ³
PWR	8,14	0,185	5,1.10 ²
BWR	5,18	0,37	8,5.10 ³

1.3 Migrácia ¹⁴C v biosfére

Uhlík ako chemický prvok sa nachádza všade v celej biosfére. Pod biosférou sa rozumie tenký obal Zeme kde sa nachádzajú živočíchy. Pojem biosféra zahŕňa v sebe atmosféru až do výšky 14000 m, litosféru do hĺbky až 30 m, celú hydrosféru a aj olejové ložiská. Všetky formy života na Zemi potrebujú na svoju existenciu minimálne šesť takzvaných biogénnych prvkov (H, O, C, N, S, P). Uhlík je biogénnym prvkom, takže všetky podstatné časti živočíchov obsahujú uhlík ako jeden z najzákladnejších stavebných kameňov života.

Celé zásoby uhlíka na Zemi môžeme rozdeliť na dve dosť nerovnomerné časti:

- statický uhlíkový rezervoár ("nevýmenný"), obsahuje uhlík, ktorý sa prakticky nezúčastňuje výmenných procesov, alebo len minimálne. Sem patrí uhlík

organického pôvodu, napríklad fosílne palivá – uhlie, nafta a pod. a uhlík anorganického pôvodu (sedimenty uhličitanov).

- dynamický uhlíkový rezervoár ("výmenný"), obsahuje uhlík, ktorý sa zúčastňuje výmenných procesov, medzi jeho dielčími časťami: atmosférou, biosférou a hydrosférou.

Každý z týchto veľkých rezervoárov môže byť rozčlenený na menšie časti, charakterizujúce špecifickosť správania sa uhlíka v nich. V dynamickom uhlíkovom rezervoáre sa sústreďuje len 0,17 % z celkového množstva uhlíka na Zemi, pričom z uhlíka vo výmennom cykle sa 94,5 % nachádza v hlbinných vodách oceánov, 1,7 % v atmosfére a približne 1 % biosfére [26,35]. Hlavné zásoby biologicky viazaného uhlíka sa nachádzajú v drevinách. Uhlík povrchových vôd je sústredený hlavne v biomase mikroorganizmov.

Existuje mnoho modelov opisujúcich správanie sa uhlíka v dynamickom rezervoáre. Tieto modely sa navzájom odlišujú v detailnosti delenia rezervoárov uhlíka na špeciálnejšie časti. Zaujímavý je model B. Bolina, ktorý zahŕňa nielen dynamický uhlíkový rezervoár, ale aj uhlík statického rezervoára, ktorý vďaka činnosti človeka (spaľovanie fosílnych palív) čiastočne sa zúčastňuje výmenných procesov.

Uhlíkový cyklus v prírode je poháňaný slnečnou energiou. Pri fotosyntéze sa slnečná energia viaže do chemickej podoby (do cukrov) a touto energiou sú kryté spotreby všetkých živých organizmov na Zemi. Fotosyntéza sa deje vždy v tesnej blízkosti morského alebo zemského povrchu, teda atmosférický ¹⁴C sa dostáva do látkového obehu živých organizmov vždy bezprostredne. Anorganické oxidované formy uhlíka (CO₂) z atmosféry, rozpustné hydrogénuhličitany a uhličitany vo vodách sa transformujú na redukované organické zlúčeniny. Pri ich následnej oxidácii dochádza k redukcii kyslíka naspäť na vodu. Hlavne zelené rastliny na súši a jednobunkové riasy vo vodách sa zúčastňujú na týchto premenách svojím dýchaním.

Pri mineralizácii organickej hmoty v procese dýchania sa okrem rastlín a rias zúčastňujú aj mnohé aeróbne baktérie a huby, ktoré dokážu organický uhlík oxidovať až na konečné CO₂ a určitú časť využiť na stavbu svojich buniek. Anaeróbne baktérie môžu rozkladať organický uhlík kvasením, pričom sa koncové produkty oxidujú anaeróbnou respiráciou (v prítomnosti akceptorov vodíka NO₃⁻, SO₄²⁻, CO₃²⁻).

Uhličitanové ióny v morskej vode reagujú s rozpustnými iónmi Ca²⁺ za vzniku nerozpustného CaCO₃, ktorý sa čiastočne ukladá biologickou cestou v schránkach prvokov, korálov a mäkkýšov. Do obehu sa môže dostávať zčasti zvetrávaním, alebo

počas mikrobiálnych procesov napríklad pri nitrifikácií, kedy sa pri zníženom pH produkuje H_2CO_3 [$H_2CO_3 + CaCO_3 \leftrightarrow Ca(HCO_3)_2$]. V opačnom prípade napríklad pri denitrifikácii, kedy dochádza k alkalizácii prostredia, má $CaCO_3$ tendenciu ukladať sa na dne oceánov.

Organické látky v pôde, ktoré vznikali mikrobiálnym rozkladom majú názov "humus". Humus je dôležitý pre udržiavanie úrodnosti pôdy. K jeho hromadeniu napomáha veľké vlhko, nedostatok kyslíka a prítomnosť vhodného substrátu. Za vhodných fyzikálno-chemických a geologických podmienok tak vznikli v prírode v minulosti rašeliniská, postupne uhlie, alebo ložiská ropy a zemného plynu.

Uhlík sa vyskytuje v atmosfére hlavne v podobe CO₂ a na túto formu prechádzajú aj atómy ¹⁴C vyprodukované kozmickým žiarením (napríklad pomocou OH•). Stredná doba zotrvania CO₂ v ovzduší sa odhaduje medzi 50 až 200 rokov . Výmenné časy medzi rôznymi časťami atmosféry sú zobrazené na obr. 1.3 [36].

Obr. 1.3 Výmenné časy CO₂ medzi rôzymi časťami atmosféry.

Z toho vyplýva, že CO₂ je "mierne premenlivou" zložkou atmosféry a kozmogénny ¹⁴C je prakticky rovnomerne rozptýlený v atmosfére. To platí tiež pre horné (1000 m) vrstvy oceánov.

1.3.1 CO₂ v prízemnej vrstve atmosféry

Meteorológovia definujú prízemnú vrstvu ako dolnú časť troposféry siahajúcu od povrchu do výšky 50 až 100 m, výnimočne i viac, v ktorej sú vertikálne toky hybnosti, tepla, vodnej pary a atmosférických prímesí s výškou takmer konštantné. V prízemnej vrstve sa pozorujú najväčšie denné chody (zmeny) meteorologických prvkov. Je súčasťou hraničnej vrstvy ktorá siaha do výšky 500 až 1500 m. Možno to nazvať aj vrstvou turbulentného premiešavania, rýchlosť vetra tu narastá logaritmicky s výškou. Denné variácie CO₂ sú ovplyvnené predovšetkým stabilitou atmosféry, exhaláciou pôdneho CO₂, fotosyntézou a respiráciou rastlín. Denné variácie sú oveľa výraznejšie v lete, ako počas zimných mesiacov. Počas letných mesiacov sa najvyššia koncentrácia CO₂ dosahuje počas noci, kedy v dôsledku radiačnej inverzie je potlačené vertikálne premiešanie a tak sa nahromadí CO₂ uvoľnené z pôdy a rastlinnou respiráciou. Zvyčajne sa najnižšia koncentrácia CO₂ počas dňa objaví v prípade slnečného, bezveterného dňa. V zimných mesiacoch sú potlačené denné variácie preto, lebo počas dňa nedochádza k výraznému premiešaniu vzduchu v prízemnej vrstve atmosféry a taktiež je oslabená fotosyntéza rastlín. Sezónne variácie koncentrácie CO₂ vykazujú letné minimum, ktoré je obyčajne v júli a zimné maximum [37,38].

Pri určovaní exhalácie pôdneho CO₂ atmosféry je dôležité odhadnúť vplyv rastlinnej pokrývky na celkový tok CO₂ do vonkajšej atmosféry. Jedna z metód ako spoľahlivo určiť exhalácie pôdneho CO₂, je súčasné meranie hĺbkových profilov CO₂, ²²²Rn v pôdnom vzduchu a exhalačnej rýchlosti ²²²Rn z pôdy. Ukazuje sa, že takéto meranie dáva vierohodnejšie výsledky o exhalácii CO₂ z pôdy ako priame meranie exhalácie CO₂. Výnimkou sú pôdy bez rastlinnej pokrývky, kde priame meranie exhalačnej rýchlosti CO₂ z pôdy vykazuje veľmi dobrú zhodu s meraniami exhalačnej rýchlosti pomocou pôdnych profilov [39].

1.3.2 Súvislosť medzi exhaláciou ²²²Rn a CO₂

Exhalačná rýchlosť radónu závisí od geologických parametrov a meteorologických prvkov náhodného charakteru [40]. Radón je v pôde rovnomerne produkovaný, takže závislosť objemovej aktivity radónu od hĺbky z má tvar [41]:

$$A_{Rn}(z) = \frac{K_e A_{v,Ra}}{F_p - w} \left(1 - \exp\left(\frac{-z}{L}\right) \right)$$
(1.2)

kde A_{v,Ra} je objemová aktivita rádia v pôde, K_e je emanačný koeficient ²²²Rn, F_p je porozita pôdy, w je vlhkosť pôdy a $L = \sqrt{(D_{ef}/\lambda_{Rn})}$ je difúzna dĺžka ²²²Rn v pôde, D_{ef} je efektívny difúzny koeficient. Pre z >> L objemová aktivita radónu dosahuje nasýtenú hodnotu, vtedy môžeme predchádzajúcu rovnicu používať zjednodušene v tvare:

$$A_{S,Rn}(z) = \frac{K_e A_{v,Ra}}{F_p - w}$$
(1.3)

Nakoniec pre exhalačnú rýchlosť ²²²Rn z pôdy môžeme odvodiť:

$$E_{S,Rn} = -\lambda_{Rn} K_e A_{v,Ra} L. \tag{1.4}$$

Predpokladajme, že platí nasledujúca zjednodušená závislosť koncentrácie CO₂ od hĺbky [40]:

$$C_{CO_2}(z) = C_{0,CO_2}(1 - \exp(-z/z_{CO_2})) + C_{atm}$$
 (1.5)

kde C_{atm} je koncentrácia CO_2 na povrchu pôdy, z_{CO2} je difúzna dĺžka a $C_{0,CO2}$ vyjadruje rozdiel medzi hodnotou koncentrácie CO_2 v hĺbke z >> z_{CO2} a koncentráciou CO_2 v atmosfére.

Potom pre exhalačnú rýchlosť CO₂ z pôdy platí:

$$j_{0,CO_2} = -\frac{(F_p - w) \cdot D_{ef,CO_2} \cdot C_{0,CO_2}}{z_{CO_2}}$$
(1.6)

Z predchádzajúcich závislostí vyplýva, že pomer exhalačných rýchlostí CO₂/²²²Rn je vyjadrený vzťahom:

$$\frac{\dot{J}_{0,CO_2}}{E_{S,Rn}} = \frac{D_{ef,CO_2}}{D_{ef,Rn}} \cdot \frac{C_{0,CO_2}}{A_{S,Rn}} \cdot \frac{L}{z_{CO_2}}$$
(1.7)

Pomer efektívnych difúznych koeficientov $D_{ef,CO2}/D_{ef,Rn}$ pri teplote 15 °C je 1,3 a pomer exhalačných rýchlostí $CO_2/^{222}$ Rn nezávisí od parametrov pôdy [42].

Na základe predchádzajúcich úvah, možno z priebehu hĺbkového profilu určiť exhalačnú rýchlosť CO₂, ktorá nie je ovplyvnená rastlinnou pokrývkou povrchu. Produkcia CO₂ závisí od rastlinnej aktivity, ktorá je ovplyvnená teplotou, takže exhalačná rýchlosť CO₂ z pôdy závisí lineárne od teploty. Merania, ktoré uskutočnili Dörr a Münnich [43], vykazujú vysokú koreláciu medzi teplotou a exhalačnou rýchlosťou CO₂ z pôdy. Táto korelácia nezávisí od typu pôdy alebo od rastlinnej pokrývky. Typ pôdy a rastlinnej pokrývky ovplyvňuje iba závislosť exhalácie CO₂ od atmosférických zrážok. Vlhkosť pieskových pôd iba v malej miere ovplyvňujú zrážky. U ílovitých pôd sa naopak zvýšené množstvo zrážok dlho prejavuje na obsahu vlhkosti v pôde [43].

Druhý spôsob, ako určiť exhaláciu pôdneho CO₂ do vonkajšej atmosféry je založený na meraní exhalačnej rýchlosti ²²²Rn z pôdy a súčasne meraní objemovej aktivity ²²²Rn a koncentrácie CO₂ vo vonkajšej atmosfére. Tento spôsob vychádza

z predpokladu, že pomer koncentrácie CO₂ a objemovej aktivity ²²²Rn vo vonkajšej atmosfére je rovnaký ako pomer ich exhalačných rýchlostí z pôdy [44].

Aj v tomto prípade je možné ohodnotiť vplyv fotosyntézy rastlín na pokles koncentrácie CO₂ v prízemnej vrstve atmosféry počas dňa. Môžeme predpokladať, že exhalácia z pôdy a respirácia rastlín ostáva počas dňa aj počas noci rovnaká a počas dňa sa na koncentrácii CO₂ v prízemnej vrstve atmosféry prejaví vplyv fotosyntézy. Takže sa dá predpokladať, že večerný nárast koncentrácie CO₂ a objemovej aktivity ²²²Rn bude v inom pomere ako ranný pokles koncentrácie CO₂ a objemovej aktivity ²²²Rn. Merania, ktoré uskutočnili Dörr a Münnich [44] ukazujú iba malý rozdiel týchto pomerov. Z toho možno vyvodiť záver, že koncentrácia CO₂ v prízemnej vrstve atmosféry je výsledkom atmosférickej stability a nie fotosyntézy rastlín.

1.3.3 ¹⁴CO₂ v prízemnej vrstve atmosféry

Koncentrácia ¹⁴CO₂ v prízemnej vrstve atmosféry je výsledkom pôsobenia časovo sa meniacich faktorov ako je transport vzdušných más zo stratosféry do troposféry, emisia CO₂ zo spaľovania fosílnych palív s nulovým obsahom ¹⁴C, exhalácia biogénneho CO₂ z pôdy do atmosféry, fotosyntéza rastlín a atmosférické rozptylové podmienky.

Dlhodobé trendy hodnôt Δ^{14} C vo vonkajšej atmosfére pre Európsky kontinent sú merané v Nemecku na stanici Jungfraujoch a Schaunisland [38]. Tieto hodnoty sú odvodené z dlhodobých meraní koncentrácií ¹⁴C v atmosfére. Údaje merané na týchto staniciach sa selektujú na základe dlhodobých meraní rýchlosti vetra. Do spracovania sa berú iba údaje, ktoré boli namerané v prípade rýchlosti vetra väčšej ako je dlhodobý priemer pre danú stanicu a sezónu (leto/zima). Tieto dáta predstavujú tzv. Európsky čistý vzduch, ktorý predstavuje pozaďovú hodnotu ¹⁴C v atmosfére.

Aby sme mohli interpretovať namerané údaje o ročnom priebehu ¹⁴CO₂ treba správne ohodnotiť príspevok od jednotlivých zložiek. Napriek tomu, že koncentrácia ¹⁴CO₂ v prízemnej vrstve atmosféry je vo výraznej miere ovplyvňovaná exhaláciou pôdneho CO₂, hodnota Δ^{14} C v atmosfére je iba v malej miere ovplyvňovaná hodnotou Δ^{14} C v pôde [45]. Hodnota Δ^{14} C v pôdnom CO₂ sa v letnom období blíži k atmosférickej hodnote Δ^{14} C. Zimné obdobie sa vyznačuje znížením hodnoty Δ^{14} C následkom zníženia biologickej aktivity. Exhaláciu pôdneho CO₂ možno rozdeliť na dve zložky, na rýchlu a pomalú. Rýchlu zložku tvorí okamžitý rozklad organickej hmoty a koreňové dýchanie, pomalú zložku tvorí dlhšie sa rozkladajúca organická hmota. V letnom období je CO₂ produkované predovšetkým rýchlou zložkou a preto je hodnota Δ^{14} C blízka atmosférickej hodnote Δ^{14} C. V zimnom období prispieva ku koncentrácii CO₂ hlavne pomalá zložka, ktorá sa vyznačuje nižšou koncentráciou ¹⁴C. V ročnom priemere exhalovaného CO₂ tvorí príspevok rýchlej zložky približne 40% a príspevok pomalej zložky približne 60% [43].

Znižovanie hodnoty Δ^{14} C vo vonkajšej atmosfére v zimnom období je spôsobené prísunom fosílneho CO₂ s nulovým obsahom ¹⁴C. V lete naopak Δ^{14} C vykazuje vyššie hodnoty aj v dôsledku výraznejšieho vertikálneho premiešania prízemnej vrstvy atmosféry [38].

Ak chceme správne ohodnotiť prísun fosílneho CO₂ do vonkajšej atmosféry, je dôležité poznať stupeň stability atmosféry. To nám umožňuje určiť mieru premiešania jednotlivých atmosférických vrstiev a následne príspevok jednotlivých rezervoárov CO₂. Ak poznáme vzťah atmosférickej stability k objemovej aktivite radónu v prízemnej vrstve atmosféry, potom môžeme mieru premiešania jednotlivých atmosférických vrstiev určiť na základe merania radónu v prízemnej vrstve atmosféry.

Odhad fosílnej zložky CO₂ v atmosfére [38] vychádza opäť z predpokladu , že pomer koncentrácie fosílneho CO₂ v prízemnej vrstve atmosféry k objemovej aktivite ²²²Rn je v rovnakom pomere ako exhalačné rýchlosti fosílneho CO₂ a pôdneho ²²²Rn. Pritom vychádza z predpokladu, rovnomerného rozloženia exhalácie ²²²Rn z pôdy do prízemnej vrstvy atmosféry a približne rovnomerného rozloženia zdroja fosílneho CO₂. Na základe meraní objemovej aktivity ²²²Rn vo vonkajšej atmosfére (c_{Rn}) a exhalačných rýchlostí ²²²Rn z pôdy (j_{Rn}), môžeme určiť exhaláciu fosílneho CO₂ zo vzťahu:

$$j_{fos} = j_{Rn} \cdot \frac{c_{fos}}{c_{Rn}}$$
(1.8)

 c_{fos} predstavuje fosílnu zložku CO₂ v atmosfére, ktorú je možné určiť na základe merania Δ^{14} C v atmosférickom CO₂ a merania pozaďovej hodnoty Δ^{14} C v atmosfére (Európsky čistý vzduch) [38].

1.4 Metódy detekcie ¹⁴C

Rozvoj experimentálnych zariadení na meranie nízkych aktivít v 50-tych rokoch minulého storočia bol iniciovaný vývojom rádiouhlíkovej metódy určovania veku archeologických objektov [46]. Po veľmi krátkej dobe začali touto metódou datovať mnohé laboratóriá na celom svete. Pôvodná Libbyho aparatúra a aparatúry tohto obdobia využívali techniku Geiger-Müllerových proporcionálnych detektorov, tienených látkovými krytmi a GM detektormi v antikoincidencii. Z meranej vzorky sa extrahoval uhlík a ten sa potom nanášal na steny detektorov. Iná cesta viedla cez spálenie vzoriek. Takto získaný rádiouhlíkom značený CO₂ poslúžil ako pracovná náplň proporcionálnych detektorov. Fyzikálne podmienky merania si však vyžadujú zvýšenie obsahu uhlíka v pracovnej náplni. Dosahuje sa to zvýšením náplne detektorov, alebo premenou vzorky na také plynné médium, ktorého molekuly obsahujú čo najviac uhlíka. Zavedenie scintilačných metód detekcie ¹⁴C v šesťdesiatych rokoch viedlo k syntéze značeného benzénu ako rozpúšťadla V šesťdesiatych v scintilačných detektoroch. rokoch a v prvej polovici sedemdesiatych rokov sa naplno rozvinula metodika interných plynových proporcionálnych detektorov rozmanitých konštrukcií. V druhej polovici sedemdesiatych rokov sa rozvinuli principiálne nové metódy merania obsahu ¹⁴C, založené na využití urýchľovačov a laserovej spektrometrie, ale aj na obohatení vzoriek využitím laserov. Klasické metódy plynových a scintilačných detektorov pokročili využívaním miniatúrnych detektorov (mikrosystémov) a komôr s veľkým účinným objemom (megasystémov).

1.4.1 Proporcionálne detektory

Najväčšou výhodou proporcionálnych detektorov je ich vysoká citlivosť na registráciu nízkoenergetického beta žiarenia a veľká detekčná účinnosť. Používa sa niekoľko typov proporcionálnych detektorov, ktoré sa líšia usporiadaním vnútorného a obalového detektora. Vnútorný detektor, v ktorom sa meria aktivita vzorky, je chránený proti kozmickému žiareniu obalovým detektorom, zapojeným s vnútorným detektorom do antikoincidencie. Za najjednoduchší obalový detektor môže slúžiť niekoľko GM trubíc [47,48], alebo možno obalový detektor vytvoriť v priestore medzi dvoma cylindrami. Vnútorný cylinder má úlohu spoločnej katódy vnútorného aj

obalového detektora [49,50]. Takéto usporiadanie je výhodnejšie, lebo odstraňuje nekrytý priestor medzi GM trubicami. Obalový detektor vytvára potom niekoľko anódových vlákien medzi dvoma cylindrami. Tento pracuje obvykle v proporcionálnej oblasti a pri vhodnej voľbe priemeru anódy vnútorného a obalového detektora stačí použiť len jeden vysokonapäťový zdroj. Pozadie takéhoto detektora určuje najmä žiarenie z katódy vnútorného detektora. Nahradením vnútorného kovového cylindra pokovenou polyetylénovou fóliou možno jeho hodnotu podstatne znížiť. Houtermans a Oeschger [51] dosiahli s 1,5 litrovým detektorom naplneným acetylénom na tlak 0,1 MPa pozadie 0,013 imp/s. Hrúbka steny katódy sa volí podľa maximálnej energie beta-elektrónov skúmaného rádionuklidu. Pri meraní ¹⁴C sa vyžaduje hrúbka ~10 mg.cm⁻². Obalový detektor možno zhotoviť aj plastického scintilátora, čím sa zvýši účinnosť registrácie miónov, gama žiarenia a neutrónov [52].

Vývoj proporcionálnych detektorov pokračoval využívaním aj inej ako valcovej geometrie. Používa sa matricové usporiadanie katódových a anódových vlákien [53]. Multielementný proporcionálny detektor, ktorý pozostáva z viacerých elementov v tvare šesťuholníkových hranolov, umožňuje ďalšie zvýšenie citlivosti registrácie beta žiarenia [54].

Plynová náplň proporcionálnych detektorov obsahuje vzorkový uhlík. Najčastejšie sa používa oxid uhličitý, metán, acetylén a etán. Najjednoduchšia je príprava oxidu uhličitého, ktorý je však veľmi citlivý na elektronegatívne prímesi (O₂, H₂O, halogény, oxidy síry a pod.) a preto vyžaduje dôkladné a časovo náročné čistenie [49]. Viacerí autori vyvinuli metódu na prípravu metánu z oxidu uhličitého a vody za prítomnosti ruténiového katalyzátora [55,56]. Acetylén možno pripraviť podľa Suessa [57] alebo Tamersa [58] z oxidu uhličitého cez karbid stroncia alebo lítia. Veľmi dobré výsledky dosiahol s etánovou náplňou Geyh [59]. V počítači Oeschgerovho typu objemu 4,5 l pri tlaku 0,31 MPa dosiahol pozadie 0,066 imp/s.

Detektory sa dajú porovnávať z hľadiska ich použiteľnosti na meranie nízkych aktivít ¹⁴C pomocou koeficientu kvality definovaného ako F=S₀/B^{1/2} [60]. Kde S₀ je početnosť impulzov pri meraní vhodne zvoleného etalónu, B je pozadie detektora. Pre porovnanie detektorov určených na meranie nízkych aktivít ¹⁴C sa za etalón volí súčasný etalón ¹⁴C dodávaný National Bureau of Standards vo Washingtone, USA (NBS etalón). Podľa medzinárodnej dohody 95 % aktivity tohto etalónu predstavuje tzv. "nulový vek", t. j. prírodnú aktivitu ¹⁴C, ktorá bola v atmosfére v roku 1890, nameranú v roku 1950 a korigovanú na polčas premeny.

Vplyv objemu detektora a chemickej formy plynovej náplne je vyjadrený závislosťou S_0 a B na týchto charakteristikách detektora. V tomto zmysle je výhodný detektor s veľkým množstvom vzorkového uhlíka v plynovej náplni detektora. Plynová náplň detektora sa musí vyznačovať dobrými počítačovými charakteristikami a možnosťou jednoduchej prípravy bez izotopovej frakcionácie.

1.4.2 Kvapalinové scintilačné detektory

Technika kvapalných scintilátorov tvorí dnes dôležitú časť metodík používaných na meranie nízkych aktivít ¹⁴C. Od roku 1950, kedy sa objavili prvé práce upozorňujúce na možnosť využitia kvapalných scintilačných látok pre detekciu žiarenia, prešla táto metóda rýchlym vývojom a dnes je v niektorých oblastiach merania veľmi nízkych aktivít najpoužívanejšou metódou. Kvapalné scintilátory našli široké využitie pre pomerne jednoduchú prípravu vzoriek a možnosť automatizácie merania.

Zariadenia (spravidla komerčné) používané pre meranie metódou kvapalných scintilátorov obvykle predstavujú viac kanálový koincidenčný spektrometer. Vzorka tvoriaca súčasť scintilačného systému sa automatický vsúva do meracej komory medzi dva fotonásobiče sledujúce scintilácie v kyvete so vzorkou. Impulzy z fotonásobičov prichádzajú na koincidenčný obvod a obvod sumujúci ich amplitúdy. Súčtový signál sa ďalej analyzuje troma amplitúdovými analyzátormi, ktorých okná možno nastaviť na požadovanú oblasť amplitúd. Hradlový obvod ovládaný impulzmi z koincidenčného obvodu prepustí na počítač len impulzy odpovedajúce koincidencii z obidvoch fotonásobičov. Cieľom takéhoto zapojenia je znížiť príspevok šumových impulzov od fotonásobičov k pozadiu spektrometra. Vyhovujúce parametre pri meraní nízkych aktivíť ¹⁴C sa dosahujú aj s pomerne jednoduchou elektronickou aparatúrou, ktorá je veľmi často jednokanálová (obsahuje len jeden fotonásobič

Kvapalný scintilátor má dve základné zložky:

 rozpúšťadlo, ktoré má absorbovať energiu uvoľnenú v objeme roztoku ionizujúcou časticou a odovzdať ju látke scintilátora

- scintilátor, ktorý transformuje túto energiu na viditeľné svetlo.

Väčšina účinných scintilátorov má emisné spektrum posunuté voči oblasti maxima spektrálnej citlivosti fotokatód smerom k menším vlnovým dĺžkam. Z toho

dôvodu je účelné využívať sekundárny scintilátor, ktorý posúva spektrum emitovaných fotónov k väčším vlnovým dĺžkam. Rozpustnosť vzorky v scintilačnom systéme môže ovplyvniť sekundárne rozpúšťadlo. Jeho pridanie neovplyvňuje proces emisie svetla. Niektoré látky zhoršujú prenos energie medzi rozpúšťadlom a scintilátorom, iné chemicky reagujú so scintilátorom alebo rozpúšťadlom. Všetky látky takto ovplyvňujúce vlastnosti scintilačného systému nazývame zhášadlá. K silným zhášadlám patrí napríklad voda, zlúčeniny dusíka, chlórované uhľovodíky a kyslík rozpustený v kvapalnom scintilátore.

Jednou z metód znižovania detekčného limitu pri meraní nízkych aktivíť ¹⁴C je zväčšovanie množstva vzorkového uhlíka v citlivom objeme detektora. Metódy prípravy scintilačného systému možno rozdeliť podľa vlastností chemickej formy, v ktorej sa vzorkový uhlík dostáva do scintilátora. Skupinou najjednoduchších metód sú metódy založené na rozpúšťaní CO₂ alebo acetylénu (ktoré sú obyčajne východzím produktom spracovania vzoriek) v kvapalnom scintilátore, alebo suspendovanie uhličitanu pripraveného zo vzorkového CO₂ v scintilačnom géle. Pre rýchle stanovenie ¹⁴C vo vzduchu možno primiešať priamo hydroxid použitý na zachytenie CO₂ do kvapalného sintilátora [61].

Druhú skupinu tvoria metódy, pri ktorých sa vzorkový uhlík prevedie do látok, ktoré sú v scintilátore dobre rozpustné a spôsobujú len minimálne zhášanie. Takýmito látkami sú napr. metanol, metylborát, etanol a paraldehyd. Napríklad metanol možno pripraviť so 70 % výťažkom redukciou oxidu uhličitého [62]. Metanol obsahuje 37,5 % vzorkového uhlíka a môže sa pridať do kvapalného scintilátora v množstve do 25 %.

Do tretej skupiny patria metódy syntézy rozpúšťadiel (toluén, etylbenzén, benzén), obsahujúcich vzorkový uhlík. Toluén je bežne používaný ako rozpúšťadlo. Konverzia uhlíka zo vzorky na toluén by preto bola ideálna. Príprava toluénu obsahujúceho všetkých 7 atómov vzorkového uhlíka je však neobyčajne zložitá. Jednoduchšia je príprava toluénu obsahujúca jeden atóm uhlíka zo vzorky (13 % vzorkového uhlíka) [63]. Etylbenzén, obsahujúci dva atómy uhlíka zo vzorky má obsah 23 % vzorkového uhlíka [64]. Benzén, podobne ako toluén, je ideálne rozpúšťadlo pre kvapalné scintilačné systémy [65]. Obsahuje 92 % uhlíka. Jeho príprava polymerizáciou acetylénu dovoľuje dosiahnuť, že všetky atómy uhlíka sú vzorkové. Bežne sa dosahuje výťažok na úrovni 80 %.Táto metóda je preto dnes

26

najpoužívanejšia pre meranie veľmi nízkych aktivít ¹⁴C a umožňuje dosiahnuť výsledky, ktoré sú zrovnateľné s proporcionálnymi detektormi [66].

1.4.3 Urýchľovačová hmotnostná spektrometria (UHS)

Začiatkom 70-tych rokov skupina pracovníkov Stanfordskej univerzity podnikla sériu experimentov s využitím klasického hmotnostného spektrometra na určovanie obsahu ¹⁴C v prírodných vzorkách [67]. Snažili sa merať ¹⁴C vo forme ¹⁴C¹⁵N⁻, avšak nedosiahli podstatnejších úspechov. Ani ďalšie pokusy pracovníkov Oxfordskej univerzity [68] s urýchlením zväzku iónov C⁺ na energiu zhruba 30 keV a následným prenábojovaním do stavu C⁻ neviedli k uspokojivým výsledkom. Ukázalo sa totiž, že pri použití klasických hmotnostných spektrometrov existujú limitujúce faktory (interferujúce izobary, interferujúce molekuly, rozptyl iónov na stenách iónovodov, vysoké pozadie), ktoré prakticky nie je možné odstrániť. Experimenty, ktoré simultánne prebiehali na malých urýchľovačoch, jasne ukázali, že tieto problémy je možné odstrániť zvýšením energie iónového zväzku na energie ~MeV [69].

Na základe tohto zistenia boli rozbehnuté široké interdisciplinárne programy založené na určovaní kozmogénnych rádionuklidov s použitím urýchľovačov, ktoré zahrňovali rozličné vedné odbory, ako geológiu, archeológiu, kozmochronológiu, paleontológiu, hydrológiu a mnohé ďalšie. S pomocou UHS sa v súčasnosti určuje nielen koncentrácia ¹⁴C, ale aj ďalších nuklidov, ktoré sú uvedené v tab. 1.3.

Nuklid	Polčas premeny	UHS	Koncentrácia
		detekčný limit	v prir. vzorkách
¹⁰ Be	1,6.10 ⁶	7.10 ⁻¹⁵	10 ⁻⁸ -10 ⁻¹⁴
¹⁴ C	5,7.10 ³	0,3.10 ⁻¹⁵	10 ⁻¹² -10 ⁻¹⁶
²⁶ AI	7,2.10 ⁵	10.10 ⁻¹⁵	10 ⁻¹⁴
³⁶ CI	31.10 ⁵	0,2.10 ⁻¹⁵	10 ⁻¹² -10 ⁻¹⁷
⁴¹ Ca	1,3.10 ⁵	500.10 ⁻¹⁵	10 ⁻¹⁵ -10 ⁻¹⁶
129	15,9.10 ⁶	100.10 ⁻¹⁵	10 ⁻¹⁶

Tab. 1.3 Nuklidy detegované metódou urýchľovačovej hmotnostnej spektrometrie.

Urýchľovačová hmotnostná spektrometria v sebe kombinuje vysokú účinnosť klasickej hmotnostnej spektrometrie s vynikajúcim rozlíšením izobarov a molekulárnych interferencií. Dosahuje využívaním to záporných iónov. disociovaním molekulárnych iónov a ich nabíjaním na vysoké kladné úrovne a využívaním dvojfázového systému detekcie individuálnych iónov. Typická bloková schéma systémov UHS je na obr. 1.4 [68].

Obr. 1.4 Typická bloková schéma systémov UHS.

Princíp činnosti UHS je nasledovný: v iónovom zdroji vzorka prechádza procesom rozprašovania vplyvom bombardovania atómami cézia. Následne sa obohacuje o elektróny (vznikajú záporné ióny). Ióny sú následne predurýchlené na 30 až 200 keV a separované magnetickým poľom. Pole je nastavené tak, aby pri príslušnej geometrii systému prešli do ďalšej časti len ióny s požadovaným pomerom e/m. Vyselektované ióny sú urýchľované ku kladnej časti vysokonapäťového tandemového urýchľovača a prelietavajú tenkou uhlíkovou fóliou (resp. plynom pod nízkym tlakom). Tu strácajú určité množstvo elektrónov a menia sa na kladné ióny. Molekulárne ióny v dôsledku preletu fóliou disociujú. Vzniknuté kladne nabité atómy

uhlíka sú urýchľované ku zápornému potenciálu tandemového urýchľovača. V magnetickom separátore sa opäť oddeľujú nežiaduce izotopy a izobary. Detektor zaznamenáva počet iónov, ktoré naň dopadli. Používajú sa hlavne ionizačné komory, silikónové detektory, TOF systémy a RTG detektory.

Hoci určovanie koncentrácie ¹⁴C metódou UHS si nachádza v súčasnosti najširšie uplatnenie, neprejavujú sa v tomto prípade prednosti UHS tak podstatne, ako v prípade ostatných nuklidov. Aj keď sa pri datovaní vzoriek pomocou ¹⁴C dosahuje presnosť 1 %, pretrvávajú ešte stále určité problémy s "pamäťovým efektom" iónových zdrojov a s nebezpečenstvom kontaminácie vzoriek súčasným uhlíkom. Kontaminácia 75 000 rokov starej vzorky 0,1 % súčasného uhlíka spôsobí totiž chybu v určení veku vzorky zhruba 5 000 rokov. Po odstránení týchto technických nedostatkov sa však predpokladá, že bude možné datovať vzorky staré až 100 000 rokov.

Široké uplatnenie pri datovaní ¹⁴C má však UHS v tom prípade, keď nie je k dispozícii väčšie množstvo vzorky. Na datovanie 40 000 rokov starej vzorky metódou UHS postačuje 15 mg vzorky, pričom v prípade použitia klasických detekčných metód treba niekoľko gramov uhlíka vo vzorke. Táto skutočnosť otvorila nové možnosti získavania poznatkov z datovania extrémne malých vzoriek z oblasti histórie, geológie, geochémie a pod. Okrem toho, že pomocou UHS je vôbec možné datovať tak malé vzorky (~ mg), zhruba o rád sa zvyšuje počet vzoriek, ktoré je možné spracovať pri rovnakom personálnom obsadení laboratória [70]. Vďaka týmto prednostiam je UHS v súčasnosti najlepšou a najperspektívnejšou metódou merania nízkych aktivít ¹⁴C.

1.5 Rádiotoxicita ¹⁴C

Chemická toxicita a rádiotoxicita látok je veľmi rozdielna. Mnohé prvky majú toxický účinok len vo forme určitých chemických zlúčenín. Napríklad uhlík a vodík, ktoré sú odstatou všetkých živých tkanív, sú úplne neškodné, ale ak sa zlúčia na benzén (C_6H_6), vznikne toxická látka, ktorá pri inhalácii pôsobí na krvotvorné tkanivá. Ak benzén plne zoxiduje, jeho chemická toxicita zmizne a vytvoria sa dve nové, pomerne a alebo úplne nezávadné zlúčeniny CO_2 a H_2O . Molekula C_6H_6 pripravená z aktívnych atómov ¹⁴C a ³H je však aj po zoxidovaní rádioaktívna, resp. zmena chemickej stavby RA molekúl neovplyvňuje ich základné rádiotoxické vlastnosti.

K potlačeniu chemickej toxicity látok stačí ich chemická neutralizácia bez vylúčenia z organizmu, rádioaktívne látky však musia byť z organizmu vylúčené. Ďalším podstatným rozdielom je, že rádioaktívne látky sú toxické aj vo veľmi malých koncentráciách. Tento rozdiel je často veľmi markantný, ako napríklad pre olovo: v pracovnom ovzduší je povolená koncentrácia neaktívneho olova až 10² mg.m⁻³, ale pre RA olovo ²¹⁰Pb je najvyššia prípustná koncentrácia približne 5.10⁻⁶ mg.m⁻³. Rádiotoxicita jednotlivých nuklidov závisí najmä od polčasu premeny, druhu a energie žiarenia, metabolizmu prvku a biologickej rýchlosti vylučovania rádionuklidu z organizmu. Všeobecne môžeme konštatovať, že rádionuklid je tým nebezpečnejší, čím sa selektívnejšie ukladá v určitej časti organizmu a čím ťažšie sa dá odtiať odstrániť.

V prírode má uhlík osobitú biologickú funkciu. Je základom štruktúry všetkých organických zlúčenín, a teda aj živých organizmov. Nepretržite sa zúčastňuje výstavby bielkovín a energeticky významných štruktúr. V molekulách bielkovín sa nachádza priemerne okolo 52 % uhlíka, v molekulách DNA a RNA okolo 37 %. Jeho priemerný obsah v ľudskom organizme predstavuje 23 hmotnostných percent. Rovnovážna koncentrácia prírodného rádiouhlíka v celej biosfére ja daná rovnovážnym izotopovým zložením uhlíka – má hodnotu približne 0,25±0,02 Bq/g uhlíka. Táto koncentrácia izotopu ¹⁴C je viac-menej zachovaná v každom orgáne a tkanive ľudského tela.

Do organizmu preniká rádiouhlík dvoma cestami. Prvou z nich je potravinová cesta. Touto formou tento izotop postupuje vo forme zložitých organických zlúčenín rastlinného a živočíšneho pôvodu. Denne človek skonzumuje potravu, ktorá obsahuje cca. 300 g uhlíka. To zodpovedá 6 až 7.10⁶ premenám za deň. Ak rádiouhlík vstupuje do organizmu potravinovým reťazcom, zdrží sa v tele niekoľko hodín až rokov. Prírodný rádiouhlík, ktorý vstupuje do tela dýchaním nemá veľký význam, nakoľko za 24 hodín presávame cez pľúca len okolo 3,2 g uhlíka. Cesta inhaláciou je významná len vtedy, ak antropogénny rádiouhlík vstupuje vo forme chemických zlúčenín, ktoré dobre prenikajú do krvi cez pľúca (CO, uhľovodíky,...).

Rádiouhlík sa zúčastňuje výmenných procesov spolu s atómami stabilného uhlíka a tak preniká do všetkých orgánov a tkanív ľudského organizmu. Hoci je množstvo rádiouhlíka v rôznych častiach tela takmer rovnaké, najväčšmi je zastúpený v kostnej dreni a tukových tkanivách. Má v organizme dvojaký účinok: - radiačný účinok častíc beta a jadier dusíka, ktoré vznikli rozpadom ¹⁴C

30

 - účinok zmien chemického zloženia molekúl, vyvolaných zmenou atómov uhlíka na atómy dusíka.

Radiačné účinky jadrového žiarenia v ľubovolnom organizme sú určené absorbovanou dávkou a koeficientom kvality daného žiarenia. Mutácie vyvolané beta žiarením majú tú istú molekulárno-genetickú štruktúru ako pri vonkajšom RTG žiarení. Podľa súčasných predstáv sú genetické mutácie výsledkom radiačnochemických modifikácií, alebo strát dusíkových väzieb DNA s potenciálnym narušením genetického kódu. Týmto spôsobom sa rádioaktivita beta častíc ¹⁴C v biologických systémoch neodlišuje od účinku vonkajších zdrojov RTG žiarenia a vysokoenergetického beta žiarenia. Pri ionizujúcom žiarení sa rozlišuje jeho priamy a nepriamy účinok. Priamy účinok sa vysvetľuje priamou absorpciou žiarenia v kritických, biologicky dôležitých molekulách, ich štiepením, ionizáciou a vznikom voľných radikálov: RH + energia žiarenia \rightarrow R[•] + H[•], kde RH je ľubovolná organická molekula.

Nepriamy účinok ionizujúceho žiarenia v organizme spočíva v jeho pôvodnej interakcii s prítomnými molekulami vody. Žiarenie tieto molekuly ionizuje a uvoľnené elektróny sú nakoniec zachytené inou molekulou vody. To isté platí aj pre elektróny beta premeny. Ani H_2O^+ ani H_2O^- nie sú stabilné a veľmi rýchlo vytvárajú ión a voľný radikál: $H_2O^+ \rightarrow H^+ + OH^{\bullet}$ resp. $H_2O^- \rightarrow H^{\bullet} + OH^{\bullet}$, pričom H^{\bullet} je vodíkový atóm so svojím jedným elektrónom. Bodkou je v iných prípadoch označovaný voľný radikál s jedným nepárnym elektrónom. Voľné vodné radikály môžu reagovať s okolitými molekulami živého tkaniva, alebo s vlastnými produktami, napr.:

 $H^\bullet + H \to H_2$

 $OH^{\bullet} + OH \rightarrow H_2O_2$

 $H^{\bullet} + OH \rightarrow H_2O$

 $H_2O+H \rightarrow H_2+OH$

 $H_2O_2 + OH \rightarrow H_2 + OH$

Z hľadiska konečného efektu nie je dôležité, či je kritická biomolekula poškodená priamym alebo nepriamym účinkom ionizujúceho žiarenia.

V dôsledku zmeny ¹⁴C na ¹⁴N dochádza k zmene chemického zloženia príslušnej molekuly DNA a RNA s pravdepodobnými genetickými dôsledkami. Pri rozpade ¹⁴C sú možné tieto typy transmutačných zmien:

- tvorba azozlúčenín bez porušenia základných väzieb

- tvorba azozlúčenín s rozštiepením aminoskupín a porušením základných väzieb

- tvorba azozlúčenín so zmenou kódou základných zlúčenín

- konfiguračné zmeny.

Genetické účinky týchto transmutačných zmien ešte nie sú preskúmané. Možno však predpokladať, že značná časť transmutačných zmien DNA pri rozpade ¹⁴C spôsobí genetické mutácie. Jeden z prvých, ktorí poukázali na pravdepodobnú existenciu transmutačných účinkov ¹⁴C bol Pauling [71]. Podľa jeho údajov tento proces vyvoláva takmer 10 % všetkých zmien (somatických aj genetických), vzniknutých v dôsledku ožiarenia v organizme nahromadeným uhlíkom.

Pri zmene ¹⁴C na stabilný dusík sú transmutácie DNA charakterizované predovšetkým lokálnymi zmenami ich chemického zloženia. Pravdepodobnosť zmien, spôsobených časticami beta emitovanými pri rozpade jadier uhlíka je veľmi malá [72]. Energia spätného nárazu pri premene beta väčšinou nestačí na roztrhnutie chemických väzieb. Preto vzniknuté jadro dusíka zostane v zložení molekuly DNA na mieste pôvodného uhlíka.

2. Ciele dizertačnej práce

Dizertačná práca mala nasledovné ciele:

- 1. Zhodnotiť zdroje ¹⁴C, jeho migráciu a vplyv na životné prostredie.
- 2. Na základe vývoja proporcionálnych detektorov na katedre, navrhnúť a skonštruovať proporcionálne detektory na meranie nízkych aktivít ¹⁴C. Vypracovať metódy separácie ¹⁴C zo všetkých zložiek prírodného prostredia (atmosféra, biosféra, hydrosféra, litosféra). Vypracovať metodiky a skonštruovať vákuové aparatúry na prípravu pracovných plynov pre proporcionálne detektory (oxid uhličitý, metán). Vybudovať nízkopozaďový tieniaci kryt pre plynové detektory.
- Na základe merania ¹⁴C v letokruhoch stromov prispieť k objasneniu krátkodobých variácií ¹⁴C v atmosfére a biosfére, vyhodnotiť Sueesov efekt (obdobie rokov 1900-1950), a zmerať priebeh "bombového" efektu v oblasti Slovenska.
- 4. Vypracovať metodiku na sledovanie ¹⁴C v komíne jadrovej elektrárne vo forme oxidu uhličitého ako aj vo forme vyšších uhľovodíkov. Zmerať koncentráciu ¹⁴C v komíne jadrovej elektrárne V-1 a V-2 v Jaslovských Bohuniciach a v jej blízkom okolí. Sledovať koncentráciu ¹⁴C v atmosfére Bratislavy a v okolí JE Jaslovské Bohunice (dozimetrická stanica Žlkovce).
- 5. Na základe dlhodobých meraní ¹⁴C v atmosfére objasniť sezónne variácie, určiť ich amplitúdu a perspektívne trendy v budúcom období. Na základe merania ¹³C posúdiť vplyv fosílneho CO₂ na koncentráciu ¹⁴C v atmosfére.
- 6. Vypracovať metodiku sledovania ¹⁴C v pôdnom vzduchu (exhalované CO₂ a hĺbkové CO₂) a získať údaje o priebehu ¹⁴C v pôdnom vzduchu. Analýza Δ^{14} C dát vo vonkajšej atmosfére a v pôdnom vzduchu a štúdium využitia Δ^{14} C a ²²²Rn dát pre určovanie emisií fosílneho CO₂ do atmosféry.
- 7. Vybudovaný detekčný systém na meranie ¹⁴C využívať na rádiouhlíkové datovanie vzoriek a monitorovanie ¹⁴C v prírodnom prostredí (ako jediné pracovisko tohto druhu na Slovensku) pre rôzne pracoviská.

3. Zvolené metódy spracovania

3.1 Zariadenia na meranie nízkych aktivít ¹⁴C

V rádiouhlíkovom laboratóriu KJFBF používame na meranie nízkych aktivít ¹⁴C dva typy proporcionálnych počítačov. Uvediem niektoré ich základné charakteristiky.

Veľkoobjemový proporcionálny počítač

Telo počítača tvorí cylinder z nehrdzavejúcej ocele o priemere 124 mm,hrúbke steny 3 mm a dľžke 400 mm. Spoločnú katódu vnútorného a obalového počítača tvorí fólia z elektrolytickej medi o hrúbke 35 µm. Priemer vnútornej katódy je 104 mm. Celkový objem vnútorného počítača je 3,3 l, z toho citlivý objem je 2,9 l. Celkový objem vnútorného a obalového počítača je 4,6 l. Anódové vlákno vnútorného počítača má priemer 100 µm. Obalový počítač má 40 anód o priemere tiež 100 µm. Anódové vlákna sú z pozláteného volfrámu. Vnútorný a obalový počítač nie sú vakuovo oddelné, takže v obidvoch počítačoch sa používa rovnaká plynová náplň. Pozdĺžny rez proporcionálnym počítačom je na obr. 3.1.

Obr. 3.1 Pozdĺžny rez veľkoobjemovým proporcionálnym počítačom. 1-anódové vlákno VP, 2-katóda, 3-anódové vlákna OP, 4-obal, 5-VN kontakt, 6-príruba, 7-teflónové tesnenie, 8-VN kontakt, 9-zemniaci kontakt, 10-prívod k vákuovému ventilu Pre dosiahnutie lepšej homogenity elektrického poľa na koncoch vnútorného počítača sú v počítači umiestnené korekčné elektródy. Napätie na korekčné elektródy určíme zo vzťahu:

$$U_{k} = U_{p} \frac{\ln r_{k} / r_{a}}{\ln r_{c} / r_{a}},$$
(3.1)

kde U_p je pracovné napätie vnútorného počítača s uzemnenými korekčnými elektródami, r_k je polomer korekčnej elektródy, r_a je polomer anódy a r_c polomer katódy. Pri parametroch počítača: U_p=5,7 kV, r_a =0,1 mm, r_k =52 mm, r_c =5 mm je potrebné korekčné napätie U_k= 3,5 kV.

Počítač je plnený metánom na tlak 0,1 MPa a umiestnený v kryte o hrúbke steny 10 cm olova. Vnútorný počítač má dĺžku plošiny ~ 1000 V a stúpanie plošiny je 1 %. Obalový počítač má plošinu dlhú 400 V so stúpaním 2 %. Pozadie vnútorného počítača umiestneného mimo tieniaceho krytu je 15 imp/s, pozadie počítača v kryte je 5,1 imp/s a pozadie v kryte s aktívnym antikoincidenčným tienením klesne na 0,116 imp/s. Početnosť od ¹⁴C štandardu (NBS) je (0,318±0,001) imp/s. Celková detekčná účinnosť pre ¹⁴C je 93 %.

Minimálnu merateľnú aktivitu detekčného zariadenia môžeme vypočítať podľa vzťahu:

$$A_{\min} = \frac{1 + 2\delta\sqrt{T.B}}{E\delta^2 T},$$
(3.2)

kde E je účinnosť detekcie, δ je relatívna štandardná neistota, T je celková doba merania a B je pozadie detekčného systému. Vzťah pre A_{min} platí pri optimálnom rozdelení celkovej doby merania T na dobu merania T_v aktivity N_v vzorky s pozadím a dobu merania T_p aktivity pozadia N_p podľa vzťahu T_v/T_p=(N_v/N_p)^{1/2}

Pre uvedené parametre počítača: B=(0,116±0,001) imp/s, E=93 %, δ =10 % a celkovú dobu merania T=100 hodín je minimálne merateľná aktivita A_{min}= 0,006 Bq (0,004 Bq/g C).

Proporcionálny počítač z elektrolytickej medi

Ďalší proporcionálny počítač pozostáva z dvoch cylindrov vložených do seba. Vonkajší cylinder z nehrdzavejúcej ocele má priemer 155 mm a hrúbku steny 4 mm. Vnútorný cylinder z elektrolytickej medi má priemer 98 mm, hrúbku steny 3 mm a tvorí katódu vnútorného počítača. V osi katódy je natiahnuté anódové vlákno z pozláteného volfrámu o priemere 50 μm. Účinný objem vnútorného počítača je 2,3 I. Mnohovláknový obalový počítač má 18 anódových vlákien o priemere 100 μm. Vnútorný a obalový počítač sú vákuovo oddelené. Ako plynovú náplň obalového počítača používame neaktívny metán pri tlaku 0,1 MPa. Vnútorný počítač je plnený vzorkovým metánom tiež na tlak 0,1 MPa.

Obalový počítač má plošinu dlhú 500 V a stúpanie plošiny 2,7 %/100 V. Početnosť netieneného počítača pri pracovnom napätí 4,9 kV je 25 imp/s. U vnútorného počítača dosahuje plošina dĺžku 700 V a stúpanie 2,4 %/100 V. Početnosť pri pracovnom napätí 5,3 kV pre počítač mimo kryt je 9,5 imp/s. Početnosť v kryte je 4,3 imp/s a početnosť v kryte s antikoincidenčným tienením je 0,26 imp/s. Celková detekčná účinnosť registrácie ¹⁴C je 90 %.

Minimálna merateľná aktivita pre tento počítač pri parametroch: B=0,26 imp/s E=90 %, δ =10 % a celkovej dobe merania 100 hodín je A_{min}=0,04 Bq (0,033 Bq/g C).

3.2 Automatizácia merania a spracovanie dát

Na registráciu impulzov z proporcionálneho detektora používame elektroniku TESLA systém CAMAC. Elektronická aparatúra je dvojkanálová. Bloková schéma elektronickej aparatúry je na obr. 3.2.

Obr. 3.2 Bloková schéma elektronickej aparatúry.

V hlavnom kanáli sa registrujú impulzy z vnútorného počítača, ktoré sa po lineárnom zosilnení vedú na amplitúdový analyzátor , ďalej sa oneskorujú a privádzajú na
antikoincidenčný obvod, kde sa súčasne po zosilnení a tvarovaní privádzajú aj impulzy z obalového počítača. Antikoincidenčný obvod prepustí len tie impulzy z vnútorného počítača, ktoré nie sú blokované impulzmi z obalového počítača. Amplitúdový analyzátor umožňuje registrovať impulzy v integrálnom alebo diferenciálnom režime s nastavením šírky okna. Všetky merania boli robené v integrálnom režime pri vstupnej citlivosti 10 mV na vnútornom počítači a 8 mV na obalovom počítači.

Meranie veľmi nízkych aktivíť ¹⁴C má dlhodobý charakter a preto počas merania môže dôjsť k registrácii rôznych porúch, ktoré môžu ovplyvniť výsledok merania. Preto je potrebné najprv robiť vizuálnu kontrolu nameraných údajov a nesprávne údaje z výpočtu vylúčiť. Namerané údaje sa každých 2000 sekúnd zapisujú mechanickou tlačiarňou a tiež do pamäte počítača. Celková doba merania jednej vzorky je 3-5 dní a namerané údaje predstavujú súbor 100-200 hodnôt, ktoré je potrebné štatisticky spracovať. Z nameraných dát sa najskôr vypočíta stredná hodnota N a stredná kvadratická odchýlka σ . V súbore dát sa môže nachádzať extrémne vyskočená hodnota. Tá sa vylučuje neparametrickým Dixonovým testom. Testovacie kritérium je nasledovné:

 $ak \qquad 2N - x_{min} - x_{max} \ge 2\sigma$

potom niektorá z krajných hodnôt (minimálna resp. maximálna) je vyskočená. Porovnaním N – $x_{min} \sim x_{max}$ – N zistíme, ktorá to je. Tú potom vylúčime, vypočítame N a opäť preveríme Dixonovým testom. V prípade záporného výsledku súbor dát preveríme n σ testom. V našom prípade sme používali 2 σ kritérium < N-2 σ , N+2 σ >. Početnosti, ktoré nespadajú do tohto intervalu, sú potom vylúčené. Podľa teórie Gaussovho rozdelenia by to nemalo byť viac ako 4,56 % dát. Zo zvyšných dát sa opäť vypočíta stredná hodnota, stredná kvadratická odchýlka a relatívna chyba.

Aktivita rádiouhlíka sa v zmysle medzinárodných konvencií udáva vo forme δ^{14} C, čo predstavuje relatívne prevýšenie aktivity vzorky nad prírodnú hladinu ¹⁴C, udávané vzťahom [73]:

$$\delta^{14}C = \frac{A - A_0}{A_0} 1000 \qquad (\%), \tag{3.3}$$

kde A je aktivita vzorky a A₀ je 95 % aktivity rádiouhlíkového štandardu NBS. Po korekcii na izotopovú frakcionáciu sa δ^{14} C vyjadruje ako Δ^{14} C:

$$\Delta^{14}C = \delta^{14}C - \left(2\delta^{13}C + 50\right)\left(1 + \frac{\delta^{14}C}{1000}\right) \quad (\%)$$
(3.4)

kde δ^{13} C vyjadruje pomer stabilných izotopov uhlíka (¹³C, ¹²C) vo vzorke a je definovaná vzťahom:

$$\delta^{13}C = 1000 \cdot \left(\frac{\binom{13}{C}}{\binom{13}{C}_s} - 1\right)$$
(%) (3.5)

kde (¹³C) a (¹²C) sú merné obsahy izotopických foriem uhlíka uvedených vo vnútri zátvoriek, v sledovanej látke. (¹³C)_s a (¹²C)_s sú úmerné obsahy týchto izotopov uhlíka v štandarde-kalcifikovanom rostre belemnitov druhu Belemnitella americana z útvaru Peede v USA, reprezentovaných etalónom Univerzity v Chicagu s označením PDB.

Pre potreby hydrológie bol zavedený pojem pmc (percent modern carbon), ktorý udáva obsah ¹⁴C v hydrologických vzorkách:

$$pmc = \frac{A}{A_0} 100$$
 (%) (3.6)

Niekedy je požiadavka, hlavne pre potreby dozimetrie, udávať aktivitu ¹⁴C vo vzorkách prírodného prostredia ako mernú aktivitu v Bq/m³ pre atmosféru a v Bq/l pre vody. Mernú aktivitu ¹⁴C v atmosfére a vo vodách môžeme určiť podľa vzťahu:

$$A_m = M \frac{N}{N_E} A_E$$
 (Bq/m³, Bq/l) (3.7)

kde M je obsah uhlíka v gramoch v 1 m³ vzduchu, resp. v 1 l vody

N a N_E sú namerané početnosti vzorky resp. štandardu

A_E je aktivita ¹⁴C jedneho gramu uhlíka súčasného rádiouhlíkového štandardu.

3.3 Korekcie neistôt a reprodukovateľnosť merania

Neistoty výsledku merania môžu byť:

- subjektívne -závisia od subjektu ktorý vykonáva meranie. Proces automatizácie merania znižuje subjektívnu chybu na minimum.

 objektívne –systematické –často sa opakujú v každom meraní v rovnakom čase alebo mieste. Pôsobia len v jednom smere. -náhodné –riadia sa Gaussovým zákonom.

Počas merania jednej série vzoriek (pozadie, vzorka, štandard), ktoré môže trvať i niekoľko týždňov, nie je možné docieliť stálosť niektorých veličín ovplyvňujúcich výsledok merania. K parametrom ktoré ovplyvňujú výsledok merania patria: čistota pracovnej náplne počítača, barometrický tlak, nestabilita vstupnej citlivosti elektroniky, pracovné napätie, odchýlky pracovného tlaku od štandardnej hodnoty, zmeny teploty pracovného plynu. Zmeny týchto veličín prispievajú k výslednej neistote a spolu so štatistickou neistotou tvoria experimentálnu neistotu výsledku. Ďalej ohodnotíme príspevok jednotlivých parametrov k výslednej neistote.

1. čistota plynovej náplne- koeficient plynového zosilnenia je veľmi citlivý na obsah elektronegatívnych prímesí v plynovej náplni počítača, najmä v prípade CO₂, ale čiastočne aj u uhľovodíkových plynových náplní. Ako následok kolísania obsahu elektronegatívnych prímesí sa pozoruje zmena detekčnej účinnosti, ktorú možno kompenzovať zmenou pracovného napätia počítača. Pretože nie je možné dosiahnuť rovnakú čistotu plynovej náplne, je potrebné robiť korekcie. Za týmto účelom sme vypracovali metódu externej kalibrácie, ktorá využíva závislosť koeficientu plynového zosilnenia od čistoty plynu a od pracovného napätia. Meraním početnosti impulzov od externého štandardu ¹³⁷Cs umiestneného v reprodukovateľnej polohe na počítači, určuje korekciu pracovného napätia, potrebnú pre dosiahnutie štandardnej hodnoty koeficientu plynového zosilnenia.

2. tlak a teplota plynovej náplne –môžu ovplyvniť meranie z nasledujúcich príčin: nepresnosť v odčítaní tlaku pri plnení počítača, rozdielna teplota počítača pri rôznych plneniach a zmeny teploty počítača počas dlhodobého merania. Nepresnosť v odčítaní tlaku na ortuťovom manometri pri plnení počítača je menšia ako \pm 0,1 kPa, čo môže spôsobiť chybu výsledku \pm 0,05 %. Rôzna teplota počítača pri plnení spôsobuje jednak zmenu počtu atómov ¹⁴C v citlivom objeme počítača a jednak posun pracovného napätia so zmenou tlaku. Teplota v našom laboratóriu sa mení maximálne o \pm 5 °C, takže neistota spôsobená zmenou tlaku a teploty plynovej náplne nepresiahne 0,1 %.

3. barometrický efekt –prejavuje sa ako závislosť pozadia počítača od vonkajšieho barometrického tlaku. Tok častíc kozmického žiarenia a teda aj zložka pozadia proporcionálneho počítača pochádzajúca od kozmického žiarenia sa mení s barometrickým tlakom a inými atmosferickými alebo slnečnými parametrami. Určením závislosti pozadia počítača od barometrického tlaku môžeme pozadie korigovať na barometrický tlak [74].

Počet registrovaných miónov M proporcionálnym počítačom v závislosti na barometrickom tlaku p je daný vzťahom [75]:

$$M=M_0.exp(-p/p_0)$$
 (3.8)

kde p₀ je normálny tlak a M₀ je jemu odpovedajúci počet registrovaných miónov. Hoci antikoincidenčné tienenie proporcionálneho počítača zníži príspevok tvrdej zložky kozmického žiarenia a teda potlačí aj vplyv barometrického tlaku na pozadie detektora, nie je možné ho úplne eliminovať. Pretože rozsah bežných zmien barometrického tlaku nie je väčší ako 4,0 kPa, môžeme predpokladať lineárnu závislosť pozadia počítača B od barometrického tlaku p. Regresná priamka preložená experimentálnymi bodmi má tvar

$$B = a + \alpha.p \tag{3.9}$$

kde α je smernica regresnej priamky a a je absolútny člen.

Experimentálne zistená závislosť B(p) pre veľkoobjemový proporcionálny počítač je na obr. 3.3. Experimentálnymi bodmi bola preložená priamka metódou najmenších štvorcov. Smernica regresnej priamky má hodnotu α = -4.10⁻⁴ s⁻¹.kPa⁻¹. Má zápornú hodnotu, čo znamená, že čím je vyšší tlak tým je nižšie pozadie a naopak.

Obr. 3.3 Barometrický efekt. Závislosť pozadia B od barometrického tlaku p.

V prípade zmeny barometrického tlaku je potrebné korigovať nameranú hodnotu pozadia na tlak pri akom bola meraná vzorka. Korekciu robíme podľa vzťahu: $B = B' + \alpha (P - P')$, kde B' je nameraná početnosť pozadia pri tlaku P', B je korigovaná hodnota pozadia na tlak P.

4. nestabilita elektronickej aparatúry –dlhodobá nestabilita vstupnej citlivosti nepresahuje 1 %, čo môže spôsobiť 0,1 % zmenu v početnosti impulzov. Stabilita vysokého napätia je lepšia ako \pm 5.10⁻⁴, čo môže spôsobiť tiež zmenu 0,1 % v početnosti impulzov.

5. pamäťový efekt –používanie vákuových aparatúr umožňuje znížiť pamäťový efekt na minimum. Zmena početnosti impulzov spôsobená pamäťovým efektom je pod 1%.

Celková neistota merania je daná predovšetkým štatistickým charakterom rádioaktívnej premeny. Pri veľmi precíznych meraniach a vykonaní vyššie uvedených korekcií môžeme dosiahnuť štandardnú neistotu merania na úrovni \pm 0,2 %.

3.4 Príprava plynových náplní pre proporcionálne počítače

Plyny používané ako náplne proporcionálnych počítačov možno rozdeliť do dvoch skupín: oxid uhličitý a uhľovodíky [76]. Pretože všetky merania ¹⁴C vychádzajú z CO₂ zachytenom z atmosféry alebo vznikajúcom pri chemickom spracovaní vzorky, je logicky odôvodnené použitie CO₂ ako pracovného plynu. Oxid uhličitý však nie je veľmi vhodný ako plynová naplň do proporcionálneho počítača, pretože je veľmi citlivý na elektronegatívne prímesi a vyžaduje zdĺhavé čistenie, ktoré môže byť často náročnejšie ako príprava uhľovodíkovej náplne. Ako výhodná pracovná náplň sa CO₂ javí pri použití multielementných proporcionálnych počítačov. Z detektorov používaných v našom laboratóriu môžeme CO₂ používať v počítači z elektrolytickej medi, ktorý má menší priemer vnútornej katódy.

3.4.1 Príprava a čistenie oxidu uhličitého

Oxid uhličitý pripravujeme z organických vzoriek ich spálením v prúde kyslíka. Z anorganických vzoriek, kde je konečným produktom chemického spracovania vzorky obvykle uhličitan bárnatý, pripravujeme CO₂ jeho rozložením kyselinou fosforečnou.

Rozklad BaCO₃ prebieha podľa rovnice:

 $3 \text{ BaCO}_3 + 2 \text{ H}_3 \text{PO}_4 \longrightarrow \text{Ba}_3(\text{PO}_4)_2 + 3 \text{CO}_2 + 3 \text{ H}_2 \text{O}_3$ (3.10)Aparatúra na prípravu a čistenie CO_2 je na obr. 3.4. Do banky B sa nasype uhličitan bárnatý (80 g) a do lievika A sa naleje kyselina fosforečná zriedená destilovanou vodou v pomere 1:1 (200 ml). Celá aparatúra sa evakuuje a potom sa do banky B postupne púšťa kyselina fosforečná. Vznikajúci oxid uhličitý sa vedie cez vymrazovačky V_1 a V_2 , vychladené na teplotu –80 °C (zmes suchý ľad a acetón), kde sa zachytáva voda. CO₂ sa zachytáva pri teplote –196 °C vo vymrazovačke V₃ ponorenej v tekutom dusíku. Po skončení reakcie sa vymrazovačky V1 a V2 odstavia a ohriatím vymrazovačky V₃ na teplotu 30 °C sa CO₂ predestiluje do vymrazovačky V₄ chladenej tekutým dusíkom. Pritom prechádza cez pece P₁ a P₂. Pec P₁ je naplnená kovovou meďou a vyhrievaná na teplotu 450 °C. Pec P2 naplnená striebornou vatou je vyhrievaná na teplotu 350 °C. CO₂ sa tu zbaví ďalších nečistôt elektronegatívnej povahy, ako sú kyslík, vodná para, oxidy dusíka, síry a halogény. Po niekoľko násobnom opakovanom procese sa CO₂ z vymrazovačky V₄ plní do zásobnej fľaše Z.

Obr. 3.4 Aparatúra na prípravu a čistenie CO₂. V₁, V₂, V₃, V₄ – vymrazovačky, P₁elektrická piecka (450 °C) naplnená kovovou meďou, P₂-elektrická piecka (350 °C) naplnená striebornou vatou, M-manometer, Z-zásobná fľaša.

Z organických vzoriek (drevo, obilie a pod.), ktoré sa najprv chemicky upravia a vysušia, pripravujeme CO₂ spaľovaním vzoriek. Vzorky sa spaľujú v kremennej trubici pri teplote 1000 °C v prúde kyslíka. CO₂ vznikajúci horením vzorky prechádza ďalej vrstvou CuO a Cu₂O pri teplote 450 °C, kde sa v prípade nedokonalého spálenia dooxiduje. Ďalej sa oxid uhličitý čistí rovnakým spôsobom a na tej istej aparatúre ako v predchádzajúcom prípade.

Priame použitie takto získaného CO_2 ako plynovej náplne proporcionálneho počítača nie je možné, pretože obsahuje ešte stopy vody, kyslíka a iných elektronegatívnych prímesí. Pre použitie CO_2 ako plynovej náplne sme vyvinuli dvojstupňovú metódu čistenia. Prvým krokom je čistenie CO_2 na aktívnom uhlí a druhým krokom je čistenie cez pece [77].

1. Čistenie CO₂ na aktívnom uhlí

Táto metóda využíva rozdiely v sorpcii plynov na aktívnom uhlí pri teplotách -80 °C a 0 °C. Jej účelom je odstrániť hlavné podiely nečistôt prítomných v plyne.

Vzorka CO₂ privádzaná cez vstup A sa vymrazuje vo vymrazovačkách V₃, V₄ chladených kvapalným dusíkom (-196 °C). Vo vymrazovačkách V₁ a V₂ (chladených zmesou acetónu a suchého ľadu, -80°C) sa zachytávajú vodné pary. Potom sa odstráni dusíkové chladenie a uvoľnený CO₂ sa sorbuje vo vymrazovačke V₆ naplnenej aktívnym uhlím ochladeným na teplu –80 °C. Pri tejto teplote prakticky nedochádza k absorpcii kyslíka a jeho hlavný podiel zostáva v zbytkovom plyne, ktorý odtiahneme vývevou. Kyslík je tiež prítomný v plyne nad vrstvou aktívneho uhlia aj medzi jeho zrnkami. Jeho odstránenie sa dosiahne miernym vákuovaním aktívneho uhlia cez vymrazovačku V₈ chladenú tekutým dusíkom. Pri ďalšom postupe sa CO₂ vákuovo predestiluje z V₈ a V₆ do V₇. Aktívne uhlie je pritom ochladzované na 0 °C. Pri tejto teplote zostanú viazané veľké podiely SO₂, halogénov a oxidov dusíka, ale iba minimálne množstvo CO₂. Táto metóda má veľkú výhodu aj v tom, že odstraňuje z CO₂ radón.

2. Čistenie CO_2 cez pece

Plyn vo vymrazovačke V₇ ešte môže obsahovať stopové množstvá nečistôt, preto sa prečisťuje cez pece P₁ a P₂, naplnené kovovou meďou a striebornou vatou. Ohriatím V₇ na laboratórnu teplotu destiluje CO₂ do vymrazovačky V₅ chladenej tekutým dusíkom. Pritom prechádza cez pece P_1 a P_2 a cez vymrazovačku V_8 chladenú na teplotu –80 °C, kde sa zachytávajú posledné zbytky vodných pár. Po niekoľkokrát opakovanom postupe sa plyn z V_7 plní do počítača cez výstup B alebo je uschovávaný v zásobnej fľaši Z.

Proporcionálny počítač plnený CO₂, ktorý je čistený uvedeným spôsobom vykazoval prakticky rovnaké charakteristiky ako pri naplnení metánom.

3.4.2 Príprava a čistenie metánu

Metán ako plynová náplň proporcionálnych počítačov má v porovnaní s inými používanými plynmi niekoľko výhod. Predovšetkým je málo citlivý na elektronegatívne prímesi, možno ho bezpečne uchovávať a plniť ním počítače do vysokých tlakov. Vyžaduje nízke pracovné napätie a problémy s kontamináciou počas jeho prípravy sú veľmi zriedkavé [77].

Na prípravu metánu máme zhotovené dve aparatúry a môžeme ho pripravovať dvomi rôznymi spôsobmi:

1. metóda prípravy metánu -metán pripravujeme podľa reakcie

 $2 H_2O + CO_2 + 4 Zn \longrightarrow CH_4 + 4 ZnO$ (3.11)

Reakcia prebieha v kovovej reakčnej nádobe o objeme 7 litrov za prítomnosti ruténiového katalyzátora. Vo vnútri reakčnej nádoby sú umiestnené ohrievacie telesá pre zinkový prach (415 °C) a pre ruténiový katalyzátor (480 °C). Do reaktora sa na platinovej podložke vloží 150 g zinkového prachu a ampulka so zatavenou vzorkou neaktívnej vody (10 ml). Reaktor sa vyčerpá na vákuum 1,3 Pa a naplní sa CO₂ na tlak, ktorý odpovedá vypočítaným stechiometrickým množstvám vody a CO₂, potrebným na výrobu metánu. Po zapnutí vyhrievacích telies ampulka s vodou praskne a začne prebiehať reakcia. Reakcia trvá 12-15 hodín, ale pretože od naplnenia reaktora oxidom uhličitým a zapnutí ohrievačov nevyžaduje žiadnu pozornosť, môže prebiehať aj v noci.

Táto reakcia má aj tú výhodu, že okrem metánu "značeného" ¹⁴C, môžeme podľa tejto reakcie pripravovať aj metán "značený" ³H. V tomto prípade však musí byť CO₂ neaktívny a voda pochádzať so vzorky určenej na meranie trícia.

2. metóda prípravy metánu –metán pripravujeme podľa reakcie

$$4 H_2 + CO_2 \longrightarrow CH_4 + 2 H_2O \tag{3.12}$$

44

Metán sa syntetizuje v reakčnej nádobe znázornenej na obr. 3.5. Reaktor tvorí nádoba z nehrdzavejúcej ocele o objeme 7 litrov. Má dvojitý plášť, ktorým pri reakcii preteká chladiaca voda. V centrálnej časti reaktora je vyhrievacie teleso, na ktorom je v drôtenej sieťke uložený ruténiový katalyzátor (0,5 % Ru na Al₂O₃). Za daných podmienok (teplota 480 °C, katalyzátor, nadbytok H₂O) je priebeh reakcie prakticky kvantitatívny (výťažok 99 %).

Obr. 3.5 Reaktorová nádoba na prípravu metánu. K₁, K₂, K₃-kovové ventily, M-manometer.

Do evakuovaného reaktora sa napustí vzorka CO_2 , zapne sa prívod chladiacej vody a vyhrievanie. Po dosiahnutí tepelnej rovnováhy (ustálení tlaku) sa do reaktora napustí z tlakovej fľaše vodík v takom množstve, aby pomer CO_2 : $H_2O = 1 : 5$. Reakcia začne prebiehať okamžite po napustení vodíka. Priebeh syntézy je sledovaný na manometri. Ustálenie tlaku signalizuje ukončenie reakcie. Potom sa vypne ohrievanie a reakčná zmes sa nechá asi 30 minút chladiť. Takto vyrobený metán sa musí očistiť od nezreagovaného vodíka a CO_2 a tiež ďalších prímesí. Čistenie metánu sa pri obidvoch spôsoboch prípravy metánu robí rovnako, na čistiacej aparatúre znázornenej na obr. 3.6.

Po otvorení reaktora metán vákuovo predestiluje do vymrazovačiek V₃ a V₄ ochladených na teplotu tekutého dusíka (-196 °C). Vymrazovačky V₁ a V₂ sú ponorené do zmesi acetónu a suchého ľadu (-80 °C) a slúžia na zachytávanie vodných pár. Parciálny tlak metánu vo vymrazovačkách V₃ a V₄ je približne 2 kPa

a preto nemožno bez strát oddeliť metán od vodíka jednoduchým nahrievaním. Spojením vymrazovačiek V₃ a V₄ s trubicou U₁, obsahujúcou silikagél ochladený na -196 °C , metán predestiluje z V₃ a V₄ do U₁, pretože parciálny tlak metánu v U₁ je 0,13 Pa. Po 15 minútach sa odpojí reaktor od aparatúry a trubica U₁ sa evakuuje smerom od U₁ k reaktoru. Približne po hodine čerpania vymrazovačiek V₃ a V₄ cez trubicu U₁ so silikagélom sa metán vákuovo predestiluje z V₃ a V₄ do U₁. Pritom CO₂ ostane vo vymrazovačkáh V₃ a V₄ a vodík sa odčerpá bez strát metánu. Ohriatím trubice U₁ na laboratórnu teplotu metán predestiluje do trubice U₂ naplnenej zmesou aktívneho uhlia a silikagélu v pomere 1:1 a ochladenej na teplotu –196 °C. trubica U₂ sa odčerpáva asi15 minút, pričom sa odstránia posledné zvyšky nečistôt. Ohriatím trubice U₂ na laboratórnu teplotu metán predestiluje do vymrazovačky V₅ ochladenej na teplotu –196 °C, odkiaľ sa potom nahriatím na laboratórnu teplotu naplní do zásobnej fľaše Z a je pripravený na plnenie do proporcionálneho počítača. Pred prípravou novej vzorky je vždy potrebné trubice U₁ a U₂ regenerovať evakuovaním pri teplote 150 °C.

Obr. 3.6 Vákuová aparatúra na čistenie metánu. V_1 - V_5 –vymrazovačky, U_1 -trubica naplnená silikagélom, U_2 -trubica naplnená zmesou aktívneho uhlia a silikagélu (1:1), M-manometer, Z-zásobná fľaša.

3.5 Možnosti zvýšenia citlivosti proporcionálnych počítačov

Posunutie hranice detekovateľnosti k nižším aktivitám možno dosiahnuť dvoma spôsobmi:

1. izotopickým obohatením vzorky

2. zlepšením parametrov meracieho zariadenia

Pretože ľubovolná forma izotopického obohatenia prináša nový zdroj nepresností do merania a naviac niekedy nie je možné urobiť obohatenie pre malé množstvo vzorky, výhodnejšie je daný spôsob riešiť druhým spôsobom.

Citlivosť detekčného systému môžeme vyjadriť vzťahom [78]:

$$\eta = \frac{1}{2}F\sqrt{t} = \frac{1}{2}\frac{S}{\sqrt{B}}\sqrt{t}$$
(3.13)

kde F je koeficient kvality, S je početnosť od vzorky a t je doba merania, približne rovnaká pre vzorku a pozadie. Z uvedeného vzťahu vyplýva jednoznačná závislosť citlivosti len od koeficientu kvality a od doby merania. Vidíme, že dvojnásobné zvýšenie citlivosti možno dosiahnuť dvojnásobným zväčšením početnosti od vzorky, štvornásobným znížením pozadia, alebo štvornásobným predĺžením doby merania. Pretože dobu merania nie je výhodné z ekonomických príčin zväčšovať nad 50 hodín, možno citlivosť detekčného systému zlepšiť len zväčšením koeficientu kvality.

Pre účely proporcionálnych detektorov je výhodné koeficient kvality chápať komplexnejšie, ako $F = \frac{EMV}{\sqrt{B}}$ (3.14)

kde E je celková detekčná účinnosť, M je počet mólov uhlíka v citlivom objeme detektora a V je pomer citlivého objemu detektora k jeho celkovému objemu. Ako vyplýva zo vzťahu (3.9) koeficient kvality počítača možno zlepšiť zvýšením detekčnej účinnosti, zväčšením počtu mólov uhlíka v citlivom objeme, zväčšením citlivého objemu a zmenšením pozadia. V prvých troch prípadoch bude rásť aj pozadie detektora, ale rozhodujúci význam má však rast koeficientu kvality.

1. zväčšenie účinnosti proporcionálnych počítačov môže priniesť 20-30 % zvýšenie koeficientu kvality. Hoci proporcionálne počítače sa vyznačujú 100 % účinnosťou registrácie mäkkého žiarenia beta, v dôsledku strát primárnych elektrónov okrajovými efektmi, nižšou vstupnou citlivosťou a inými príčinami, celková detekčná účinnosť býva 70-90 %. Použitím nízkošumových elektronických obvodov s vysokou vstupnou

47

citlivosťou a zlepšením konštrukcie počítačov, je možné dosiahnuť približne 100 % detekčnú účinnosť.

2. zväčšenie počtu mólov uhlíka v citlivom objeme počítača možno dosiahnuť zväčšením citlivého objemu detektora, zvýšením tlaku plynovej náplne alebo použitím viacatómovej uhľovodíkovej náplne. Zväčšenie citlivého objemu detektora má však niekoľko nevýhod. Aby boli splnené základné požiadavky na rozmery počítača, dĺžka anódového vlákna by mala byť pod 500 mm a pomer dĺžky anódy k priemeru katódy nad 4:1. Možnosti voľby rozmerov detektora sú teda obmedzené.

Pre dosiahnutie citlivého objemu detektora ~5 l je nevyhnutné použiť priemer katódy nad 100 mm. Takéto zväčšenie priemeru katódy má za následok zväčšenie okrajových efektov, ale najmä zväčšenie pravdepodobnosti záchytu elektrónu na atóme elekronegatívnej prímesi skôr, než bol schopný vyvolať elektrónovú lavínu. Výhodnejšie je preto použiť menší priemer katódy a vyšší tlak plynu aj z tej príčiny, že pri rovnakom M má väčší koeficient kvality detektor s menším objemom, pretože pozadie detektora sa nezdvojnásobí pri dvojnásobnom zvýšení tlaku plynu v detektore. Zvýšenie tlaku plynovej náplne v tradičnom type počítača je tiež obmedzené. Už použitie tlaku ~0,4 MPa vyžaduje pracovné napätie ~10 kV a teda zvýšené požiadavky na izoláciu vysokonapäťových častí. stabilitu vysokonapäťového zdroja, čo je pri vstupnej citlivosti 1 mV často neriešiteľný problém.

Zvýšiť obsah uhlíka v plynovej náplni možno dosiahnuť použitím viacatómovej uhľovodíkovej náplne. Veľmi perspektívnou náplňou je propán. Má výborné vlastnosti ako plynová náplň proporcionálneho počítača a obsahuje najviac uhlíka na liter náplne z vhodných uhľovodíkových plynov.

3. zvýšenie pomeru citlivého objemu k celkovému objemu detektora umožňuje lepšie využitie vzorky, ktorej množstvo býva často veľmi obmedzené.

4. pozadie počítača pochádza z viacerých zdrojov. Ak vylúčime príspevky spôsobené vznikom nepravých impulzov (napr. mikroprierazy v kondenzátoroch a izolátoroch, elektrické poruchy a pod) zostanú štyri hlavné zdroje pozadia: kozmické žiarenie, rádioaktívne prímesi v okolitom prostredí, rádioaktívne prímesi v konštrukčných materiáloch počítača a rádioaktívne prímesi v plynovej náplni. Prvý a posledný zdroj pozadia spôsobujú jeho premenlivý charakter. Zníženie pozadia sa dosahuje absorpciou mäkkého žiarenia v tieniacom kryte a elimináciou tvrdého žiarenia zapojením vnútorného počítača na antikoicidenčný obvod s obalovým počítačom.

Z rádioaktívnych prímesí v okolitom prostredí počítača sú najdôležitejšie tie, ktoré sa nachádzajú v tieniacom kryte a vo vzduchu. Sú to podobne, ako v prípade rádioaktívnych prímesí v konštrukčných materiáloch počítača, predovšetkým U, Th, ²¹⁰Pb, ⁴⁰K, ⁸⁷Rb, ⁶⁰Co a iné. Z rádionuklidov ktoré sa môžu dostať do plynovej náplne sú to predovšetkým radón, trícium a rádiouhlík.

Celkové pozadie počítača teda pozostáva z nasledujúcich zložiek:

$$B = B\mu + B_n + B_f + B_\alpha + B_\beta + B_\gamma$$
(3.15)

B_μ predstavuje zložku pozadia spôsobenú miónmi, ktoré neboli zaregistrované obalovým počítačom. Jej veľkosť závisí od typu použitého počítača a tvorí 5 až 50 % z celkového pozadia. B_n je príspevok od neutrónov, vznikajúcich v tieniacom kryte ako výsledok interakcie vysokoenergetických častíc kozmického žiarenia. B_f reprezentuje príspevok od comptonovských elektrónov, ktoré vznikajú interakciou žiarenia gama s katódou vnútorného počítača a závisí predovšetkým od konštrukcie počítača. Pre hrubostenný počítač môže tento príspevok činiť až 50 % z celkového pozadia. Na druhej strane, ak katódu tvorí len sústava vlákien alebo len tenká polyetylénová fólia, je tento príspevok vzhľadom k celkovému pozadiu zanedbateľný. B_α, B_β, B_γ sú príspevky od kontaminácie počítača žiarením alfa, beta a gama. Rádioaktívna kontaminácia katódy sa prejavuje predovšetkým u hrubostenných počítačov. U tenkostenných počítačov je príspevok od zložiek B_α, B_β, B_γ zanedbateľný.

Zvýšenie citlivosti detekcie bez zvýšenia mólového obsahu aktívnej vzorky v detektore možno dosiahnuť jedine znížením pozadia detektora. Pritom je nutné udržať účinnosť detekcie úmernú 100 %.

3.6 Nízkopozaďový tieniaci kryt pre proporcionálne počítače

Z rozboru urobeného v predchádzajúcej kapitole vyplýva, že jednou z možností zlepšenia citlivosti proporcionálnych počítačov je zníženie pozadia. Za tým účelom bol na KJFBF vybudovaný nový nízkopozaďový tieniaci kryt, ktorý je umiestnený v suteréne pavilónu F-2.

Tento kryt má vonkajšie rozmery 120 x 120 x 200 cm. Hrúbka tieniacej steny je 36 cm a skladá sa z týchto častí: 1 cm železa, 10 cm olova, 5 cm medi, 18 cm neutrostopu, 1 cm medi a 1 cm plexiskla. Vnútorný tienený priestor má rozmery 48 x

56 x 200 cm, čo je dostatočne veľký priestor pre umiestnenie niekoľkých proporcionálnych počítačov. Celková hmotnosť krytu je približne 16 000 kg. Priečny rez krytu je na obr. 3.7.

Obr. 3.7 Priečny rez nízkopozaďovým tieniacim krytom.

V novom tieniacom kryte sme urobili rad meraní, aby sme mohli ohodnotiť jeho tieniace vlastnosti. Na porovnanie sme použili proporcionálny počítač z elektrolytickej medi. Počítač bol naplnený metánom na tlak 0,1 MPa. Premerali sme pracovné charakteristiky počítača mimo krytu, v malom kryte (10 cm olova) a v novom veľkom kryte. Pre porovnanie tieniacich parametrov oboch krytov sme vypočítali koeficient kvality počítača a minimálne merateľnú aktivitu. Minimálne merateľnú aktivitu sme počítali pri parametroch: δ =5%, E=90%, T=100 hodín. Získané výsledky sú uvedené v tab. 3.1.

Parameter	Malý krvt	Veľký krvt
	- 5 5 -	- 5 5 -
Pozadie (imp/s)	43	3.0
	1,0	0,0
Pozadia s ΔKO (imp/s)	0.33	0.23
	0,00	0,20
Koeficient kvality F	0.4	0.5
Rochelent Reality 1	0,7	0,0
Autor (Ba)	0 044	0.036
, min (DQ)	0,044	0,000

Tab. 3.1 Porovnanie parametrov malého a veľkého tieniaceho krytu.

Z tabuľky vidíme, že vo veľkom kryte sa znížilo pozadie počítača z hodnoty 0,33 imp/s na hodnotu 0,23 imp/s. Koeficient potlačenia pozadia je 1,4. Zlepšil sa aj

koeficient kvality počítača a znížila sa minimálne merateľná aktivita. Nový nízkopozaďový tieniaci kryt v porovnaní s malým krytom umožní pri inak nezmenených požiadavkách na meranie skrátiť dobu merania asi o 30 %. Alebo z druhej strany, pri zachovaní doby merania umožní dosiahnuť výsledky s menšou štandardnou neistotou, čo je dôležité hlavne pri rádiouhlíkových analýzach letokruhov.

4. Výsledky práce s uvedením nových poznatkov

4.1 Variácie kozmogénneho rádiouhlíka v prírode

Jednou z najvýznamnejších a perspektívnych metód sledovania variácií kozmického žiarenia v minulosti je metóda stanovenia koncentrácie kozmogénneho rádiuhlíka vo vzorkách presne známeho veku [79, 80]. Rádiouhlíkové analýzy organických vzoriek presne známeho veku už v súčasnosti pomohli pri riešení problému dlhodobých variácií ¹⁴C (s periódou 100 rokov a viac) a tým aj variácií kozmického žiarenia v minulosti [81]. Čo sa týka krátkodobých variácií rádiouhlíka v prírode (s periódou ~ 11 rokov a viac), tento problém nebol dostatočne objasnený.

Krátkodobé variácie ¹⁴C v prírode sú z rôznych príčin ťažko pozorovateľné. Na našej katedre sme vypracovali metodiku merania ¹⁴C v letokruhoch stromov. Letokruhy stromov predstavujú unikátny ekologický materiál, z ktorého sa môžeme veľa dozvedieť o ekologických podmienkach v období rastu stromu. Retrospektívna kontrola atmosferického rádiouhlíka letokruhovým záznamom je metóda založená na dvoch predpokladoch:

1. že aktivita rádiouhlíka v dreve presne zobrazuje aktivitu v atmosfére

2. že vek letokruhov je presne známy

Na tieto účely je vhodné použiť stromy u ktorých sa letokruhy vytvárajú pravidelne každý rok napr. dub, lipa, sosna. Základné komponenty dreva v letokruhoch, t. j. celulóza lignín sa vytvárajú len v čase vegetačnej aktivity a tvoria kompaktný nepohyblivý celok, ktorý obsahuje približne rovnaké izotopové zloženie základných stavebných prvkov (C, O, H. N) aké bolo v atmosfére v čase rastu letokruhu. Okrem týchto zložiek sa nachádzajú v dreve aj sprievodné látky (4-6 %), ako sú živice, glukozidy, triesloviny, organické kyseliny, alkaloidy a pod. [82]. Tieto sprievodné komponenty môžu byť odlišného veku ako celulóza a lignín a preto ich treba z dreva odstrániť a na ¹⁴C analýzu použiť len celulózu a lignín, v ktorých je uhlík pevne viazaný a nemigruje. Na extrakciu týchto rušivých komponentov z dreva sme vyvinuli niekoľko metód:

Metóda 1. Drevo z letokruhu sa nareže na tenké plátky veľkosti zápaliek a suší sa 10-12 hodín pri teplote 80 °C, aby sa odstránila voda viazaná v dreve. Pre kvantitatívne vyluhovanie sprievodných látok sa prevádza extrakcia v Soxhletovom

prístroji. Ako rozpúšťadlo sa používa zmes alkohol + benzén (1:2). Extrakcia prebieha 6-8 hodín. Vzorka po extrakcii sa opäť suší 15 hodín. Takto upravená vzorka sa ďalej varí 1 hodinu v 1 N HCl, aby sa úplne rozrušili ťažko rozpustné zlúčeniny. Po premytí destilovanou vodou sa vzorka varí 1 hodinu v 2 % NaOH a po premytí v jedno normálnej HCl do neutrálnej reakcie, nasleduje premytie destilovanou vodou a 1-2 dni sušenia pri teplote 80 °C. Celkový úbytok hmotnosti vzorky pri tejto metóde je asi 25 %. Nevýhodou tejto metódy je použitie organických rozpúšťadiel, ktoré pri precíznom meraní koncentrácie ¹⁴C v letokruhoch (s presnosťou 0,2 %) môže ovplyvniť výsledok.

Metóda 2. Vzorka dreva sa po vysušení varí 24 hodín v 4 % roztoku HCI a po premytí destilovanou vodou sa 24 hodín varí v 4 % roztoku NaOH. Následne sa premyje destilovanou vodou a varí ešte 6 hodín v 4 % roztoku HCI. Varenie prebieha pri teplote 80 °C. Potom sa vzorka opäť premyje destilovanou vodou a suší 1-2 dni pri teplote 80 °C. Hmotnostný úbytok vzorky býva 30-40 %.

Metóda 3. Chemickou úpravou dreva pomocou roztokov HCI a NaOH sa sice väčšia časť extraktívnych látok rozpustí, ale časť zostáva v jadrovom dreve. Jansen [83] ukázal, že ani zvýšenie koncentrácie HCI a NaOH nie je účinné a teda že úprava dreva iba s NaOH a HCI nie je dostatočná na rozpustenie všetkých látok v jadrovom dreve. Preto na úplné odstránenie extraktívnych látok treba použiť anorganické rozpúšťadlo NaClO₂, ktoré sťahuje všetky extraktívy z dreva ale celulózu a lignín ponecháva takmer neporušenú.

Vzorka dreva sa po vysušení namočí do 4 % roztoku HCl a varí sa 24 hodín pri teplote 80 °C. Potom sa premyje destilovanou vodou, na 5 g vzorky sa pridá 200 ml destilovanej vody a nechá sa variť 1 hodinu. Po uplynutí tejto doby sa vzorka ochladí na teplotu 70 °C a pri tejto teplote sa postupne pridá 0,8 ml ľadovej kyseliny octovej a po premiešaní sa pridá 2 g NaClO₂. Po 45 minútach sa opäť pri tej istej teplote pridá CH₃COOH a NaClO₂ (v rovnakých množstvách ako prvý krát) a tento postup sa opakuje 5 krát. CH₃COOH tu pôsobí ako pufer na udržanie pH hodnoty 4-5. Po poslednom pridaní sa vzorka nechá ochladiť na izbovú teplotu a premýva 3 krát destilovanou vodou. Potom sa namočí na 24 hodín do 4 % roztoku NaOH pri teplote 80 °C. Následne sa premyje destilovanou vodou a namočí na 5 hodín do 4 % roztoku HCl. Po tejto úprave sa niekoľkokrát premyje destilovanou vodou a získaná celulóza sa prefiltruje a vysuší. Hmotnostný úbytok vzorky pri spracovaní touto metódou je až

70 %. Táto chemická úprava odstraňuje všetky kontaminanty a zaručuje, že nameraná koncentrácia ¹⁴C je len z obdobia rastu letokruhu.

Chemicky upravené vzorky dreva sa uzatvoria do prachovnice, aby sa zabránilo kontaminácii vzdušným CO₂ a vlhkosťou. Na analýzu ¹⁴C sa vzorky ďalej upravujú spaľovaním v prúde kyslíka a z takto získaného oxidu uhličitého sa pripravuje metán (viď. kap. 3.4).

V snahe prispieť k riešeniu problému krátkodobých variacií 14C boli urobené merania koncentrácie rádiouhlíka v letokruhoch lipy (Tilia Cordata) z obdobia od roku 1901 až do roku 1953. Získané výsledky sú uvedené v tab. 4. 1. a graficky znázornené na obr. 4.1.

Rok	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]	Rok	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]
1901	-3,4	2,3	1928	-15,4	3,0
1902	-4,1	2,5	1929	-17,6	3,0
1903	-5,6	2,4	1930	-18,7	3,1
1904	-6,1	2,6	1931	-19,6	3,2
1905	-6,6	2,5	1932	-20,5	4,7
1906	-5,6	2,7	1933	-25,1	2,7
1907	-3,0	2,9	1934	-19,8	2,8
1908	-7,6	2,6	1935	-19,2	2,5
1909	-6,8	2,4	1936	-16,3	3,2
1910	-10,1	3,1	1937	-17,9	4,5
1911	-3,4	2,7	1938	-24,5	4,1
1912	-6,6	3,0	1939	-28,9	2,8
1913	-6,4	2,6	1940	-32,0	3,3
1914	-7,5	2,8	1941	-29,9	4,5
1915	-10,8	2,7	1942	-29,6	4,4
1916	-7,9	3,0	1943	-26,9	4,8
1917	-7,2	3,1	1944	-31,1	4,8
1918	-14,5	2,9	1945	-28,6	3,6
1919	-10,9	2,8	1946	-30,8	4,9
1920	-13,0	3,0	1947	-29,9	4,7
1921	-12,0	3,3	1948	-36,8	4,9
1922	-15,1	3,2	1949	-44,8	4,7
1923	-17,2	3,0	1950	-40,0	4,7
1924	-16,1	3,0	1951	-42,3	4,6
1925	-15,0	2,9	1952	-40,5	2,5
1926	-13,7	2,6	1953	-39,1	2,8
1927	-14,1	2,9			

Tab. 4.1 Výsledky rádiouhlíkovej analýzy letokruhov lipy za obdobie 1901-1953.

Obr. 4.1 Koncentrácia ¹⁴C v letokruhoch pre obdobie 1901 až 1953. Údaje boli korigované na polčas premeny. Priamka y=-0,8371x+9,3526 preložená cez zobrazené dáta poukazuje na celkový pokles koncentrácie ¹⁴C spôsobený Suessovým efektom.

Z obr. 4.1 vidieť, že získané experimentálne hodnoty sú rozptýlené mimo limit štandardných neistôt. Najväčší rozdiel v koncentrácii ¹⁴C medzi dvomi letokruhmi je 47,2 ‰. Maximálna hodnota Δ^{14} C=4,9 ‰ bola nameraná pre letokruh z roku 1901 a minimálna hodnota Δ^{14} C=-42,3 ‰ je pre letokruh z roku 1949. Pozorované postupné znižovanie koncentrácie rádiouhlíka je spôsobené Suessovým efektom. Plná čiara preložená cez experimentálne body metódou najmenších štvorcov ukazuje na celkový pokles hodnôt Δ^{14} C za sledované obdobie. Celkový pokles hodnôt Δ^{14} C za sledované obdobie je 43,5 ‰, čo predstavuje pokles o 0,8 ‰ za rok. Pri použití tejto priamky ako referenčnej pre hodnoty Δ^{14} C, môžeme lepšie znázorniť ich cyklický charakter. Na obr. 4.2 sú zobrazené relatívne odchýlky Δ^{14} C od referenčnej priamky spolu s Wolfovými číslami. Je zrejmý cyklický trend nameraných Δ^{14} C údajov. Môžeme vidieť, že relatívne odchýlky Δ^{14} C sa menia v rozsahu asi od –5 ‰ do +5 ‰. Amplitúda týchto variacií je rozdielna pre rôzne slnečné cykly. Z obr. 4. 2 možno vidieť, že medzi 11-ročným slnečným cyklom a koncentráciou rádiouhlíka exituje súvislosť. Je zrejmá záporná korelácia medzi koncentráciou rádiouhlíka a slnečnou aktivitou, to znamená, že maximum Δ^{14} C nasleduje po minime slnečnej aktivity a opačne.

Na prvý pohľad je zrejmé, že rada Δ^{14} C a aj rada Wolfových čísel nie sú ideálnymi goniometrickými variáciami, čo by mohlo znamenať, že na variáciu prvého rádu sa nakladajú vyššie harmonické zložky. Na potvrdenie, či vyvrátenie tejto hypotézy sme skonštruovali amplitúdové spektrum Δ^{14} C rady a aj rady Wolfových čísel na základe Fourierovej harmonickej analýzy. Výsledky tejto analýzy sú ukázané na obr. 4.3 pre Wolfove čísla a na obr. 4.4 pre Δ^{14} C hodnoty.

Z týchto obrázkov vidieť, že rada Wolfových čísel (použili sme súbor Wolfových čísel od roku 1700) vykazuje významnú periódu 99 rokov, čo je známy 100-ročný slnečný cyklus. Ďalej je tu významne zastúpená perióda 11 rokov, ale sú tam významne zastúpené aj periódy 11,9 rokov, 10,6 rokov a 9,9 rokov. Rada Δ^{14} C vykazuje významne zastúpenú periódu 53 rokov, ktorá odpovedá tomu, že bolo analyzovaných 53 hodnôt Δ^{14} C. Ďalej sú tu významne zastúpené periódy 10,6 rokov, 8,8 rokov a 7,6 rokov.

Na základe tejto analýzy sme radu Wolfových čísel a potom aj radu Δ^{14} C fitovali funkciou y=A+B₁cos[2 π (t/99+C₁)]+B₂cos[2 π (t/11+C₂)]+B₃cos[2 π (t/9,9+C₃)], kde A je stredná hodnota rady Wolfových čísel resp. rady Δ^{14} C za sledované obdobie, B₁, B₂, a B₃ sú amplitúdy variácií s periódou 99, 11 a 9,9 rokov a C₁, C₂ a C₃ sú odpovedajúce fázové posuvy. Na obr. 4.5 je ešte raz zobrazená rada Δ^{14} C a rada Wolfových čísel a ich fit vyššie uvedenou funkciou. Hodnoty parametrov A, B, C pre radu Wolfových čísel a radu Δ^{14} C sú uvedené v tab. 4.2.

Obr. 4.2 Relatívne odchýlky Δ^{14} C od referenčnej priamky a Wolfove čísla.

Obr. 4.3 Amplitúdové spektrum rady Wolfových čísel. Počet analyzovaných rokov 297. Význačne zastúpené násobky hlavnej frekvencie: 3, 25, 27, 28, 30. Tomu odpovedajúce periódy: 99, 11,9, 11, 10,6, 9,9 rokov.

Obr. 4.4 Amplitúdové spektrum Δ^{14} C rady. Počet analyzovaných rokov 53. Význačne zastúpené násobky hlavnej frekvencie: 1, 5, 6, 7. Tomu odpovedajúce periódy: 53, 10,6, 8,8 a 7,6 rokov.

∆14C v letokruhoch

Obr. 4.5 Δ^{14} C v letokruhoch a Wolfove čísla. Plynulá čiara je fit uvedených dát funkciou: y=A+B₁cos[2 π (t/99+C₁)]+B₂cos[2 π (t/11+C₂)]+B₃cos[2 π (t/9,9+C₃)], kde parametre uvedenej funkcie pre Δ^{14} C a pre Wolfove čísla sú uvedené v tab. 4.2.

$\Delta^{14}C$				Wolfove čísla				
A	-3,542	σΑ	0,651	A	49,936	σΑ	4,883	
B ₁	6,151	σB_1	0,949	B ₁	20,040	σB_1	3,513	
C ₁	0,531	σC_1	0,012	C ₁	0,259	σC_1	0,056	
B ₂	1,255	σB ₂	0,453	B ₂	38,175	σB_2	3,518	
C ₂	0,103	σC_2	0,059	C ₂	-0,195	σC_2	0,014	
B ₃	2,180	σB_3	0,469	B ₃	19,988	σB_3	3,446	
C ₃	0,565	σC_3	0,033	C ₃	0,412	σC_3	0,028	

Tab. 4.2 Koeficienty vyššie uvedenej funkcie pre Δ^{14} C a pre Wolfove čísla.

Z tab. 4.2 možno určiť, že pre variáciu s periódou 11 rokov je medzi radou Δ^{14} C a radou Wolfových čísel fázový posuv 0,2976. To znamená, že Wolfove čísla predbiehajú radu Δ^{14} C o 3,3 roka, z čoho potom vyplýva, že maximum Δ^{14} C nasleduje 2,2 roka po minime rady Wolfových čísel (minimum slnečnej aktivity) a minimum Δ^{14} C nasleduje 2,2 roka po maxime rady Wolfových čísel (maximum slnečnej aktivity).

Pre variáciu s periódou 9,9 roka je medzi radou Δ^{14} C a radou Wolfových čísel fázový posuv 0,15245, čo znamená, že Wolfove čísla predbiehajú radu Δ^{14} C o 1,5 roka. Z toho vyplýva, že maximum Δ^{14} C nasleduje 3,45 roka po minime rady Wolfových čísel a minimum Δ^{14} C nasleduje 3,45 roka po maxime rady Wolfových čísel.

Na obr. 4.6 sú pre jednotlivé slnečné cykly porovnané hodnoty Wolfových čísel a odpovedajúce hodnoty Δ^{14} C. Dáta sú fitované polynómom piateho rádu a poukazujú na antikoreláciu medzi radou Δ^{14} C a Wolfovými číslami. Nie je tu zobrazený XV-ty slnečný cyklus, pretože pre toto obdobie sú dáta Δ^{14} C nepravidelne rozptýlené a nevykazujú periodicitu. Na uvedenom obrázku možno vidieť aj fázový posuv medzi minimom slnečnej aktivity a maximom rady Δ^{14} C pre jednotlivé slnečné cykly. Tieto údaje sú uvedené v tab. 4. 3, kde Δt_1 je fázový posuv medzi minimom slnečnej aktivity a maximom rady Δ^{14} C, Δt_2 je fázový posuv medzi maximom slnečnej aktivity a minimom rady Δ^{14} C. Δt je stredná hodnota fázového posuvu pre jednotlivý slnečný cyklus.

Δt ₁ (rok)	Δt ₂ (rok)	∆t (rok)
5	4	4.5
Ŭ	1	
4	4	4
3	3	3
1	2	1,5
	Δt ₁ (rok) 5 4 3 1	$\begin{array}{c c} \Delta t_1 (\ rok \) & \Delta t_2 \ (\ rok \) \\ \hline 5 & 4 \\ \hline 4 & 4 \\ \hline 3 & 3 \\ \hline 1 & 2 \\ \end{array}$

Tab. 4.3 Fázový posuv medzi radou Δ^{14} C a Wolfovými číslami.

Najväčší fázový posuv medzi radou Δ^{14} C a Wolfovými číslami je pre XIV-ty slnečný cyklus a najmenší fázový posuv je pre XVIII-ty slnečný cyklus. Stredná hodnota fázového posuvu medzi radou Δ^{14} C a Wolfovými číslami pre celé sledované obdobie je 3,25 roka.

Obr. 4.6 Δ^{14} C a Wolfove čísla pre XIV, XVI, XVII a XVIII slnečný cyklus.

Záverom možno konštatovať, že harmonická analýza dala rozumné hodnoty pre amplitúdu ¹⁴C variácií a pre časový posuv medzi Wolfovými číslami a Δ^{14} C

údajmi pre obdobie 1901-1953. Stredná amplitúda variácií Δ^{14} C, pre slnečné cykly XIV až XVIII, s periódou 11 rokov je (1.25±0,45) ‰. Časový posuv medzi Wolfovými číslami a Δ^{14} C, ktorý ukazuje na antikorelačnú závislosť Δ^{14} C od W, je 2,2 roka. Pre cyklus ¹⁴C s periódou 9,9 roka je stredná amplitúda variácií Δ^{14} C (2,18±0,47) ‰ a časový posuv medzi Wolfovými číslami a Δ^{14} C je 3,45 roka. Maximálna amplitúda (6 ‰) bola nameraná pre XVII. slnečný cyklus.

Hodnoty Δ^{14} C v letokruhoch pre roky 1932-1952 boli prezentované v práci [84], kde tieto údaje boli porovnané s hodnotami Δ^{14} C v gruzínskych vínach. V rámci spolupráce s Tbiliskou štátnou univerzitou boli porovnané výsledky analýz ¹⁴C vo vzorkách letokruhov a vo vzorkách gruzínskych vín. Datovanie vín spočíva zo separácie alkoholu z vína a prípravy benzénu. Vzorky boli merané na kvapalinovom scintilačnom spektrometri Intertechnik SL-30. V TGU urobili rádiouhlíkovú analýzu vzoriek vína z rokov 1909-1952. Rádiouhlíkové dáta získané zo vzoriek vín v Tbilisi, resp, zo vzoriek letokruhov v Bratislave tiež ukázali pravidelné 11-ročné variacie ¹⁴C, ktoré antikorelujú so slnečnou aktivitou. Rádiouhlíkové dáta boli spracované metódou spektrálnej, korelačnej a harmonickej analýzy. Najpresnejšie výsledky pre amplitúdu Δ^{14} C variácií a fázový posuv boli získané pomocou harmonickej analýzy. Stredná amplitúda variácií Δ^{14} C pre slnečné cykly XV, XVI, XVII a XVIII v dobe od 1909-1952 je (4,7±0,5) ‰. Fázový posuv medzi Wolfovými číslami a Δ^{14} C, ktorý ukazuje na antikorelačnú závislosť Δ^{14} C od W, bol určený na 3,5 roka.

4.2 Variácie antropogénneho rádiouhlíka v prírode

4.2.1 Bombový efekt

Ako je uvedené v kap. 1.2. prírodná rovnováha uhlíka ¹⁴C, ktorá sa vytvorila po mnohé tisícročia, bola narušená ľudskou činnosťou a to dvoma formami. V prvom rade to boli skúšky jadrových zbraní, ktoré začiatkom druhej polovice minulého storočia zvýšili koncentráciu ¹⁴C v atmosfére. V roku 1963 bolo v atmosfére severnej pologule namerané až 100 % zvýšenie koncentrácie ¹⁴C nad prírodnú hladinu [27] a v atmosfére južnej polgule 65 % zvýšenie. Po podpísaní moratória o zákaze testov jadrových bômb v atmosfére koncentrácia ¹⁴C v atmosfére klesá v dôsledku výmenných procesov medzi atmosférou a výmennými rezervoármi uhlíka [85,86].

Za účelom upresnenia tohto tzv. "bombového efektu" v našej oblasti, urobili sme rádiouhlíkovú analýzu letokruhov sosny pre roky 1960 -1974. Letokruhy boli spracované metodikou opísanou v predchádzajúcej kapitole cez celulózu do formy metánu. Merania aktivity boli robené veľkoobjemovým fóliovým proporcionálnym počítačom. Získané výsledky relatívneho prevýšenia Δ^{14} C sú uvedené v tab. 4.4.

Rok	letokruhy			vína		
	Δ^{14} C (%)	$\sigma \Delta^{14} C (\%)$	$\ln \Delta^{14}C$	Δ^{14} C (%)	$\sigma \Delta^{14} C$ (%)	$\ln \Delta^{14}C$
1955				2,58	0,29	0,95
1956				8,36	0,42	2,12
1957				8,63	0,42	2,16
1958				29,63	0,43	3,39
1959				27,37	0,42	3,31
1960	31,64	1,25	3,45	25,79	0,38	3,25
1961	25,16	1,18	3,23	26,91	0,34	3,29
1962	22,65	1,17	3,12	37,57	0,29	3,63
1963	78,81	1,55	4,37	83,34	0,43	4,42
1964	97,02	1,76	4,57	89,01	0,49	4,49
1965	77,47	1,52	4,35	77,12	0,39	4,35
1966	72,74	1,46	4,29	64,82	0,46	4,17
1967	68,53	1,52	4,23	59,04	0,53	4,08
1968	61,50	1,42	4,12	57,04	0,47	4,04
1969	56,57	1,41	4,04	51,97	0,31	3,95
1970	60,00	1,42	4,09	57,42	0,32	4,05
1971	51,08	1,38	3,93	53,35	0,33	3,98
1972	50,00	1,36	3,91	52,73	0,32	3,97
1973	56,20	1,32	3,83	43,49	0,24	3,77
1974	43,00	1,28	3,76	39,60	0,28	3,68
1975				68,38	0,25	3,65

Tab. 4.4 Relatívne prevýšenie Δ^{14} C v letokruhoch sosny a vo vínach.

Na obr. 4.7 sú tieto výsledky znázornené vo forme histogramu. Z histogramu vidieť mierne zníženie koncentrácie ¹⁴C po roku 1960 v dôsledku krátkeho moratória v rokoch 1959 –1960. Po veľkej sérii jadrových skúšok v rokoch 1961 –63 koncentrácia ¹⁴C prudko stúpla a roku 1964 dosiahla maximálnu hodnotu 97 %.

Obr. 4.7 Koncentrácia ¹⁴C v letokruhoch sosny v rokoch 1960 –1974.

Obr. 4.8 Koncentrácia ¹⁴ vo vínach (Tbilisi) v rokoch 1955-1975.

Po zastavení skúšok jadrových zbraní v atmosfére v roku 1963 má koncentrácia ¹⁴C klesajúci charakter v dôsledku výmenných procesov medzi atmosférou a ďalšími rezervoármi uhlíka, hlavne oceánom. V tab. 4.5 sú pre porovnanie uvedené aj hodnoty Δ^{14} C v gruzínskych vínach, ktoré sme získali v rámci

spolupráce s Tbiliskou štátnou univerzitou. Na obr. 4. 8 sú tieto hodnoty znázornené vo forme histogramu. Merania boli robené v rádiouhlíkovom laboratóriu Tbiliskej štátnej univerzity. Maximálna hodnota Δ^{14} C bola nameraná v roku 1964 a dosiahla hodnotu 89 %. Z porovnania výsledkov vidíme, že získané hodnoty majú v podstate rovnaký priebeh. Hodnoty koncentrácie ¹⁴C v letokruhoch sú mierne vyššie, čo je pravdepodobne spôsobené rôznou zemepisnou polohou Bratislavy a Tbilisy.

Od roku 1964, kedy bola nameraná maximálna koncentrácia ¹⁴C, koncentrácia rádiouhlíka v atmosfére klesá v dôsledku migrácie rádiouhlíka do iných rezervoárov a v dôsledku rádioaktívnej premeny. Môžeme predpokladať, že Δ^{14} C klesá exponenciálne s časom, čo možno v najjednoduchšom prípade vyjadriť vzťahom:

$$\Delta^{14}C(t) = A.e^{-B.t}$$
(4.1)

Konštanta B má význam pravdepodobnosti prechodu rádiouhlíka z atmosféry do iných uhlíkových rezervoárov, v ktorej je započítaná aj pravdepodobnosť rozpadu jadra ¹⁴C. Konštanta A odpovedá δ^{14} C v čase t=0 (v našom prípade v roku 1964). Táto predstava je správna, pokiaľ do atmosféry nebude pribúdať nový rádiouhlík antropogénneho pôvodu.

Obr. 4.9 Závislosť In Δ^{14} C(t) pre letokruhy, vína a regresná priamka.

Na obr. 4.9 je znázornená závislosť ln $\Delta^{14}C(t)$ pre letokruhy a vína. Medzi veličinami t a ln $\Delta^{14}C(t)$ je lineárna závislosť. Metódou lineárnej regresie sme odhadli

parametre lineárnej funkcie y=a+bx, ktorá aproximuje závislosť ln $\Delta^{14}C(t)$ z nameraných údajov. Koeficienty a a b sú koeficienty regresnej priamky, ktorá pre letokruhy má tvar: y=-0,072x+4,53 a pre vína y=-0,065x+4,44. Obidve regresné priamky určujú priemerný pokles koncentrácie ¹⁴C v sledovanom období.

Smernica regresnej priamky je koeficient, ktorého prevrátená hodnota udáva strednú dobu pobytu atómov ¹⁴C v atmosfére. S použitím smernice priamky pre letokruhy a vzhľadom na štandardné neistoty vypočítaných koeficientov regresnej priamky sme určili strednú dobu pobytu atómov ¹⁴C v atmosfére na (13,9 \pm 3,1) rokov. Koncentrácia rádiouhlíka v atmosfére klesala v tomto období s polčasom 10 rokov.

Rok	Δ^{14} C (%), letokruhy	Δ^{14} C (%), vína
1980	27,5	27,9
2000	6,5	7,6
2020	1,5	2,1

Tab. 4.5 Predpokladaný priebeh koncentrácie ¹⁴C v budúcnosti.

Zo získaných výsledkov bolo možné predpokladať priebeh koncentrácie ¹⁴C v budúcnosti. Za predpokladu, že do atmosféry nebude pribúdať rádiouhlík antropogénneho pôvodu, priebeh koncentrácie rádiouhlíka v atmosfére určený z výsledkov merania ¹⁴C v letokruhoch (bez ohľadu na Suessov efekt) je uvedený v tab. 4.5 V tejto tabuľke je uvedený aj priebeh koncentrácie ¹⁴C určený z hodnôt Δ^{14} C vo vínach.

4.2.2 Reaktorový efekt

Druhým faktorom, ktorý vplýva na narušenie prírodnej hladiny ¹⁴C v atmosfére je jadrová energetika. Vzhľadom na prevádzkovanie veľkého počtu jadrových elektrární (JE) vo svete, dlhý polčas premeny ¹⁴C a jeho prítomnosť v živých organizmoch, je potrebné sledovať produkciu ¹⁴C aj týmto zdrojom. Pretože ¹⁴C sa nachádza v atmosfére vo forme ¹⁴CO₂, vypracovali sme metódu odberu CO₂ z atmosféry do vodného roztoku NaOH. Absorpcia CO₂ prebieha v statickom režime podľa rovnice:

 $2 \text{ NaOH} + \text{CO}_2 \longrightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O}$ (4.2)

Vzniknutý Na₂CO₃ je vo vode rozpustný a preto sa z roztoku vyzráža chloridom bárnatým:

 $Na_2CO_3 + BaCl_2 \longrightarrow BaCO_3 + 2 NaCl$ (4.3)

Zrazenina BaCO₃ sa dobre premyje destilovanou vodou, aby sa zbavila nezreagovaného roztoku NaOH, prefiltruje sa a vysuší. Odvážený BaCO₃ sa ďalej spracuje metódou uvedenou v kap. 3.

Absorpcia CO_2 z atmosféry do roztoku NaOH závisí od mnohých faktorov, ktoré môžeme rozdeliť do dvoch skupín. Prvú skupinu tvoria faktory, ktoré môžeme zvoliť, poprípade meniť a druhú skupinu tvoria od nás nezávisiace prírodné faktory. Pri sledovaní priemerných mesačných hodnôt ¹⁴C aktivity v atmosfére, bolo potrebné zaistiť experimentálne podmienky odberu CO_2 tak, aby k jeho absorpcii dochádzalo počas celého mesiaca a nedošlo k nasýteniu roztoku. Preto sme merali kinetiku tohto procesu s tým, že sme zvolili koncentráciu roztoku, jeho množstvo a povrch. Z údajov, ktoré sme získali pri experimentálnom sledovaní kinetiky absorpcie CO_2 do roztoku NaOH sme zistili, že nádoba s 5 litrami roztoku o koncentrácii 1 mol/l, s povrchom 400 cm² zabezpečuje lineárny priebeh absorpcie počas celého mesiaca a zaručuje dostatočné množstvo zachyteného CO_2 (~8 l). Priebeh absorpcie je závislý najmä od teploty. V priebehu mesiaca s vyššou priemernou teplotou sa naabsorbovalo dostatočné množstvo CO_2 .

Pri krátkodobých odberoch vzoriek, ktoré sa robia hlavne v teréne sa musia podmienky absorpcie voliť tak, aby sa za pomerne krátku dobu naabsorbovalo dostatočné množstvo CO₂. Preto používame nádoby s väčším povrchom (1,6 m²), do ktorých sa naleje 10 l roztoku NaOH s koncentráciou 1 mol/l. Potrebná doba expozície roztoku je asi 3 hodiny.

Po začatí prevádzky jadrovej elektrárne V-1 a V-2 v Jaslovských Bohuniciach sme pravidelne sledovali koncentráciu ¹⁴C v okolí JE. Vzorky CO₂ sme odoberali v mieste maximálnej prízemnej koncentrácie exhalátov z komína JE. Miesto odberu nám určovali podľa smeru a rýchlosti vetra pracovníci na meteorologickej stanici pri JE. Každý rok sme odobrali z okolia JE 3-4 vzorky. Aby sa namerané hodnoty mohli porovnávať, zároveň s odberom vzoriek v Jaslovských Bohuniciach sme robili odber CO₂ z atmosféry aj v Bratislave. Výsledky meraní aktivity ¹⁴C v okolí JE a v Bratislave sú uvedené v tab. 4.6.

67

Dátum odberu vzorky		Objemová aktivita ¹⁴ C (mBq/m ³)			
Rok	Deň	Jaslovské Bohunice	Bratislava		
1984	28.4.	39,7 ± 1,2	37,5 ± 1,1		
	20.7.	39,5 ± 1,2	33,5 ± 1,0		
	7.11.	37,2 ± 1,1	38,0 ± 1,1		
1985	26.6.	37,6 ± 1,1	38,0 ± 1,1		
	18.9.	37,7 ± 1,1	38,9 ± 1,2		
	4.12.	35,9 ± 1,1	36,7 ± 1,1		
1986	27.5.	32,0 ± 0,9	35,2 ± 1,0		
	1.7.	34,9 ± 1,0	32,6 ± 1,0		
	4.9.	42,2 ± 1,3	41,1 ± 1,2		
1987	26.3.	36,4 ± 1,1	35,0 ± 1,1		
	4.7.	40,6 ± 1,2	39,5 ± 1,2		
	10.9.	40,7 ± 1,2	39,2 ± 1,2		

Tab. 4.6 Objemová aktivita ¹⁴C v okolí JE v Jaslovských Bohuniciach a v Bratislave.

Ďalej sme vypracovali metódu merania objemovej aktivity ¹⁴C v komíne JE, ktorá určuje aj podiel jednotlivých jeho foriem a to ¹⁴CO₂, ¹⁴CH₄ a vyšších uhľovodíkov. Na určenie aktivity ¹⁴C v komíne JE stačí vzorka vzduchu o objeme 0,03-0,1 m³, ktorá sa odoberá kompresorom do tlakovej nádoby alebo jednoducho do balóna. Do vzduchu je nutné pridať štandard neaktívneho metánu o objeme asi 50 cm³, pretože jeho objemové zastúpenie vo vzduchu je len 1,4 ppm. Odobratý vzduch sa potom spracováva v laboratóriu na vákuovej aparatúre. Vzduch z balóna alebo tlakovej nádoby sa prečerpáva pomocou rotačnej vývevy cez dve prebublávačky naplnené roztokom NaOH (1 mol/l) o objeme asi 250 cm³, cez kremennú spaľovaciu trubicu a opäť cez dve prebublávačky s roztokom NaOH. V prvých dvoch prebublávačkách sa zachytí CO₂ na základe reakcie (4.2). Objemové zastúpenie CO₂ vo vzduchu je asi 350 ppm, takže pri prečerpaní 0.05 m³ vzduchu získame asi 15 cm³ CO₂. ¹⁴C vo forme CH₄, CO a vyšších uhľovodíkov sa v prázdnej spaľovacej trubici a v trubici naplnenej CuO katalyticky oxiduje v prúde kyslíka pri teplote 600 °C na CO₂, ktorý sa zachytáva v ďalších dvoch prebublávačkách s roztokom NaOH. Roztok NaOH sa ďalej spracuje postupom uvedeným v kap. 3. Aktivita ¹⁴C sa merala 10 cm³. Ako pracovná náplň v proporcionálnom počítači o objeme do

proporcionálneho počítača sa používala zmes 70 % CH_4 + 30 % CO_2 , čo nekladie tak vysoké nároky na čistotu CO_2 ako v prípade keď sa používa len samotné CO_2 . Proporcionálny počítač s pracovnou náplňou 70 % CH_4 + 30 % CO_2 má dobré pracovné charakteristiky a výsledky pri opakovaných meraniach sú reprodukovateľné. Účinnosť registrácie ¹⁴C bola 70 %. Vyvinutá metóda na meranie ¹⁴C aktivity vo forme ¹⁴ CO_2 ako aj ¹⁴ CH_4 a vyšších uhľovodíkov je dostatočne citlivá pre komín JE a minimálny objem vzduchu, ktorý je nutné odobrať je asi 0,03 m³.

Výsledky merania aktivity ¹⁴C v komíne JE V-1 a V-2 v Jaslovských Bohuniciach sú uvedené v tab. 4.7.

JE	Dátum	Objemová a	aktivita (Bq/r	Pomer k sume (%)		
EBO	odberu	CO ₂	C _n H _m	Suma	CO ₂	C _n H _m
V-1	28.4.1984	4,5 ± 0,1				
	18.5.1984	6,4 ± 0,2				
	18.10.1984	6,1 ± 0,2	14,4 ± 0,4	20,5 ± 0,5	29,8	70,2
	7.11.1984	6,3 ± 0,2	17,4 ± 0,5	23,7 ± 0,6	26,6	73,4
V-2	27.51986	6,4 ± 0,2	17,0 ± 0,5	23,4 ± 0,6	27,4	72,6
	4.9.1986	6,1 ± 0,2	15,3 ± 0,4	21,4 ± 0,5	28,5	71,5
	5.11.1987	2,9 ± 0,1	4,0 ± 0,1	6,9 ± 0,2	42,0	58,0
	3.5.1988	1,8 ± 0,1	5,6 ± 0,2	7,4 ± 0,2	24,3	75,7

Tab. 4.7 Objemové aktivity ¹⁴C v komíne JE V-1 a V-2 v Jaslovských Bohuniciach.

Tieto výsledky potvrdili, že prevažnú časť aktivity ¹⁴C v komíne JE s tlakovodným jadrovým reaktorom tvorí metán a vyššie uhľovodíky (70 %) a CO₂ menej ako 30 %. Namerané aktivity ¹⁴C, ako aj podiel jednotlivých foriem sú zhodné s výsledkami, ktoré boli namerané pre tlakovodné jadrové reaktory v zahraničí [87,88]. Celková aktivita ¹⁴C vo výpustiach v komíne JE V-1 a V-2 v Jaslovských Bohuniciach v rokoch 1984 až 1987 bola okolo 20 Bq/m³ vzduchu.

Porovnaním objemových aktivít ¹⁴C v komíne JE a v mieste maximálnej prízemnej koncentrácie exhalátov sme určili, že koeficient zriedenia je v intervale 10^{-3} – 10^{-4} , čo je súlade s údajmi uvádzanými v literatúre pre tlakovodné jadrové reaktory [87,88].

4.3 Monitorovanie ¹⁴C v atmosfére

V roku 1984 sme začali robiť kontinuálne meranie atmosférického ¹⁴C v atmosfére v SR. Tieto merania nadväzujú na merania atmosférického ¹⁴C, ktoré sa začali na katedre už v roku 1966 a boli na určitú dobu prerušené. Odbery vzoriek robíme na dvoch miestach, a to v Bratislave a od roku 1987 aj v Žlkovciach (dozimetrická stanica v blízkosti JE Jaslovské Bohunice).

Bratislava je význačná tým, že je relatívne veľkým mestom s mnohými dopravnými komunikáciami, priemyselnými centrami a predstavuje vysoko priemyselný región. Preto sa javí ako prirodzené predpokladať, že bude oveľa viac znečistená fosílnym uhlíkom ako vidiek, prípadne prírodné prostredie, následkom čoho by mala byť znížená koncentrácia rádiouhlíka v atmosfére mesta. Ďalej sa v tejto oblasti nachádza ďalší zdroj znečistenia okrem Bratislavy. Je to Viedeň, ktorá sa nachádza približne 50 km juhozápadne od Bratislavy. Prevládajúce vetry v Bratislave sú severozápadné a severovýchodné [89]. V Bratislave sa vzorky odoberajú v areáli Fakulty matematiky, fyziky a informatiky v Mlynskej doline. Toto miesto sa síce nenachádza v centre mesta ale hraničná vrstva atmosféry je tu v plnej miere pod vplyvom veľkomestského znečistenia ovzdušia. Zo zemepisného hľadiska areál fakulty sa nachádza v zemepisnej šírke 48° 9′ na sever a v dĺžke 17° 7′ na východ, vo výške 164 m nad hladinou mora.

Žlkovce sa nachádzajú približne 60 km severovýchodne od Bratislavy v rovinnej poľnohospodárskej oblasti, v zemepisnej šírke 48° 29′ na sever a v dĺžke 17° 40′ na východ, vo výške 162 m nad hladinou mora. Najbližší zdroj znečistenia ktorý môže vplývať na koncentráciu ¹⁴C v atmosfére je jadrová elektráreň Jaslovské Bohunice, nachádzajúca sa približne 5 km severozápadne od Žlkoviec. Je teda namieste ak predpokladáme, že prípadné náhodné zvýšenie koncentrácie rádiouhlíka je dôsledkom únikov z tohto zariadenia. Druhým zdrojom znečistenia je priemyselné mesto Trnava, nachádzajúce sa 15 km od stanice severozápadným smerom. Prevládajúce vetry v tomto regióne sú severozápadné a juhovýchodné [90].

4.3.1 Separácia ¹⁴CO₂ z atmosféry

Na odber CO₂ z atmosféry sme používali dynamickú metódu absorpcie CO₂ do roztoku NaOH. Odberové zariadenie pozostáva z čerpadla vzduchu, regulačného

ventilu, prietokomera vzduchu a z dvoch nádob naplnených roztokom hydroxidu sodného (obr. 4.10).

Obr. 4.10 Schéma zariadenia na odber CO_2 z atmosféry. Č – čerpadlo vzduchu, V – ventil na regulovanie prietoku, P – plynomer, N₁ a N₂ – nádoby na zachytávanie CO_2

Vzduchové membránové čerpadlo typ M 401 má v danom usporiadaní výkon približne 2 litre za minútu. Regulačným ventilom možno tento výkon znižovať tak, že časť prečerpávaného vzduchu sa vypúšťa naspäť do atmosféry.

V atmosfére sa nachádza v 1 m³ vzduchu asi 350 cm³ CO₂. Množstvo CO₂, ktoré chceme z atmosféry separovať závisí od objemu detektora, používaného na meranie aktivity ¹⁴C. Keď chceme z atmosféry získať 10 litrov CO₂, vzhľadom na to, že účinnosť separácie je nižšia ako 100%, je potrebné prečerpať cez roztok NaOH asi 40 m³ vzduchu. Pri mesačných odberoch CO₂ z atmosféry sa toto množstvo vzduchu prečerpá pri výkone čerpadla 1 liter za minútu.

Ďalej je potrebné zvoliť vhodnú koncentráciu roztoku NaOH, aby počas celého mesiaca nedošlo k nasýteniu roztoku oxidom uhličitým v prvej odberovej nádobe. Odberová nádoba má objem 2,5 litra a takéto množstvo roztoku koncentrácie 0,5 mol/l je schopné absorbovať až 14 litrov CO₂, čo je postačujúca kapacita po celú dobu expozície roztoku. Exponovaný roztok sa na konci mesiaca spracoval podobne ako v prípade statickej metódy absorpcie. Samostatne sa separoval BaCO₃ v prvej a druhej nádobe. Z naváženého množstva BaCO₃ v prvej a v druhej nádobe vypočítame účinnosť absorpcie CO₂ v roztoku. Keď sa v prvej nádobe zachytí M₁

gramov BaCO₃ a v druhej nádobe sa zachytí M₂ gramov, potom účinnosť absorpcie môžeme vypočítať podľa vzťahu:

$$\eta = 1 - \frac{M_2}{M_1}$$
(4.4)

Potom hodnotu M_1 opravíme na účinnosť absorpcie a získame celkové množstvo BaCO₃, ktoré by sa zachytilo v roztoku pri 100%-nej účinnosti absorpcie. Z tejto hodnoty môžeme vypočítať množstvo CO₂ v prečerpanom objeme vzduchu.

4.3.2 Výsledky monitorovania ¹⁴C v atmosfére

Monitorovanie ¹⁴C v atmosfére Bratislavy sa začalo v máji 1984 a v Žlkovciach boli súvislé mesačné odbery zahájené v júni 1987. Po určitom čase sme začali robiť aj kontinuálne merania pomeru stabilných izotopov uhlíka ¹³C/¹²C, ktorý je vyjadrený hodnotou δ^{13} C, za účelom robiť korekcie hodnôt δ^{14} C na izotopickú frakcionáciu. δ^{13} C analýzy boli robené v Geologickom ústave D. Štúra. V Bratislave sa tak stalo od roku 1997 a v Žlkovciach od roku 2000. Do tých čias boli korekcie robené na strednú hodnotu δ^{13} C = -11 ‰, v odôvodnených prípadoch sa robili korekcie na δ^{13} C = -22 ‰. Výsledky od začatia meraní až po súčasnosť uvádza tabuľka 4.8. Tieto dlhodobé merania koncentrácií ¹³C a ¹⁴C v atmosfére mali za cieľ vysvetliť a kvalitatívne popísať sezónne variácie δ^{13} C a Δ^{14} C v atmosfére, nájsť súvislosti medzi nimi, lokálnymi meteorologickými podmienkami, antropogénnymi ale aj prírodnými vplyvmi. Monitorovanie rádiouhlíka v atmosfére prebieha aj na mnohých miestach v zahraničí. Jedná sa napríklad o nemecký Schauinsland, rakúsky Vermut, rumunskú Bukurešť či austrálsky Wellington [91].

Ďalšie údaje, ktoré sme v práci použili boli ECA (European clean air) dáta ¹⁴C zo stanice Jungfraujoch v Bernských Alpách [92]. Meracie prístroje sa nachádzajú vo výške 3450 m nad morom, čo vylučuje prítomnosť fosílneho CO₂. Okrem toho boli do súborov dát ECA zaradené len také údaje, pri meraní ktorých boli priaznivé rozptylové podmienky a dostatočná rýchlosť vetra. Na základe ECA dát možno overovať výsledky, ktoré poskytujú modely rezervoárovej dynamiky.
Čas		Bra	tislava		Žlkovce			
	δ ¹⁴ C[‰]	δ ¹³ C[‰]	$\Delta^{14}C[\%]$	σΔ ¹⁴ C[‰]	δ ¹⁴ C[‰]	δ ¹³ C[‰]	$\Delta^{14}C[\%]$	σΔ ¹⁴ C[‰]
V/1984	240.0	-11.0	205.3	6.0				
VI/1984	228,0	-11,0	163,6	6,0				
VII/1984	-101,0	-22,0	-106,4	6,0				
VIII/1984	165,0	-11,0	132,4	6,0				
IX/1984	189,0	-11,0	155,7	6,0				
X/1984	168,0	-11,0	135,3	6,0				
XI/1984	178,0	-11,0	145,0	6,0				
XII/1984	141,0	-11,0	109,0	6,0				
I/1985	84,0	-11,0	53,6	6,0				
II/1985	166,0	-11,0	133,4	6,0				
III/1985	268,0	-11,0	232,5	6,0				
IV/1985	186,0	-11,0	152,8	6,0				
V/1985	186,0	-11,0	152,8	6,0				
VI/1985	281,0	-11,0	245,1	6,0				
VII/1985	171,0	-11,0	138,2	6,0				
VIII/1985	112,0	-11,0	80,9	6,0				
IX/1985	78,0	-11,0	47,8	6,0				
X/1985	75,0	-11,0	44,9	6,0				
XI/1985	132,0	-11,0	100,3	6,0				
XII/1985	93,0	-11,0	62,4	6,0				
I/1986	105.0	-11.0	74.1	6,0				
II/1986	-5.0	-22.0	-11.0	6,0				
III/1986	80.0	-11.0	49.8	6.0				
IV/1986	212.0	-11.0	178.1	6,0				
V/1986	157.0	-11.0	124.6	6.0				
VI/1986	126.0	-11.0	94.5	6.0				
VII/1986	26.0	-11.0	-27	6.0				
VIII/1986	146.0	-11.0	113.9	6.0				
IX/1986	89.0	-11.0	58.5	6.0				
X/1986	100.0	-11.0	69.2	6.0				
XI/1986	105.0	-11.0	74 1	6.0				
XII/1986	118.0	-11.0	86.7	6,0				
I/1987	117.0	-11.0	85.7	6.0				
II/1987	-84.0	-22.0	-89.5	6.0				
III/1987	138.0	-11 0	106 1	6.0				
IV/1987	127.0	-11.0	95.4	6.0				
V/1987	182.0	_11 0	148.9	6.0				
VI/1987	171 0	-11.0	138.2	6.0	187.0	-11 0	153.8	6.0
VII/1987	134.0	_11 0	102.2	6.0	164.0	_11 0	131 4	6,0 6 0
\/111/1087	186.0	_11 0	152.2	6.0	210 0	_11 0	184.0	6,0 6 0
IX/1027	122 0	_11 0	01 6	6.0	167.0	_11 0	13/ 3	6,0 6 0
X/1087	120,0	_11 0	07 /	6.0	158.0	_11 0	125.6	6,0 6 0
XI/1007	1170	-11,0	97, 4 QF 7	6,0	152.0	.11 0	120,0	0,0 6 0
XII/1907	106.0	-11,0		6,0	102.0	-11,0	120,7	0,0
VII/ 1901	100,0	-11,0	10,0	0,0	193,0	-11,0	0,801	0,0

Tab. 4.8 Súbor dát δ^{14} C, δ^{13} C a Δ^{14} C z meracích staníc Bratislava a Žlkovce.

Čas		Brat	tislava		Žlkovce			
	δ ¹⁴ C[‰]	δ ¹³ C[‰]	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]	δ ¹⁴ C[‰]	δ ¹³ C[‰]	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]
I/1988	131,0	-11,0	99,3	6,0	149,0	-11,0	116,8	6,0
II/1988	-144,0	-22,0	-149,1	6,0	87,0	-11,0	56,6	6,0
III/1988	33,0	-11,0	4,1	6,0	30,0	-11,0	1,2	6,0
IV/1988	62,0	-11,0	32,3	6,0	84,0	-11,0	53,6	6,0
V/1988	52,0	-11,0	22,5	6,0	99,0	-11,0	68,2	6,0
VI/1988	133,0	-11,0	101,3	6,0	144,0	-11,0	112,0	6,0
VII/1988	58,0	-11,0	28,4	6,0	106,0	-11,0	75,0	6,0
VIII/1988	133,0	-11,0	101,3	6,0	170,0	-11,0	137,2	6,0
IX/1988	154,0	-11,0	121,7	6,0	218,0	-11,0	183,9	6,0
X/1988	132,0	-11,0	100,3	6,0	36,0	-11,0	7,0	6,0
XI/1988	94,0	-11,0	63,4	6,0	129,0	-11,0	97,4	6,0
XII/1988	119,0	-11,0	87,7	6,0	148,0	-11,0	115,9	6,0
I/1989	-44,0	-22,0	-49,7	6,0	61,0	-11,0	31,3	6,0
II/1989	111	-11,0	79,9	6,0	119,0	-11,0	87,7	6,0
III/1989	369	-11,0	330,7	6,0	395,0	-11,0	355,9	6,0
IV/1989	169	-11,0	136,3	6,0	154,0	-11,0	121,7	6,0
V/1989	204	-11,0	170,3	6,0	157,0	-11,0	124,6	6,0
VI/1989	161	-11,0	128,5	6,0	163,0	-11,0	130,4	6,0
VII/1989	98	-11,0	67,3	6,0	122,0	-11,0	90,6	6,0
VIII/1989	165	-11,0	132,4	6,0	182,0	-11,0	148,9	6,0
IX/1989	209	-11,0	175,2	6,0	202,0	-11,0	168,3	6,0
X/1989	204	-11,0	170,3	6,0	185,0	-11,0	151,8	6,0
XI/1989	112	-11,0	80,9	6,0	154,0	-11,0	121,7	6,0
XII/1989	134	-11,0	102,2	6,0	144,0	-11,0	112,0	6,0
I/1990	121	-11,0	89,6	6,0	132,0	-11,0	100,3	6,0
II/1990	74,0	-11,0	43,9	6,0	118,0	-11,0	86,7	6,0
III/1990	95,0	-11,0	64,3	6,0	134,0	-11,0	102,3	6,0
IV/1990	147,0	-11,0	114,9	6,0	178,0	-11,0	145,0	6,0
V/1990	217,0	-11,0	182,9	6,0	285,0	-11,0	249,0	6,0
VI/1990	129,0	-11,0	97,4	6,0	172,0	-11,0	139,2	6,0
VII/1990	47,0	-11,0	17,7	6,0	169,0	-11,0	136,3	6,0
VIII/1990	143,0	-11,0	111,0	6,0	185,0	-11,0	151,8	6,0
IX/1990	116,0	-11,0	84,7	6,0	190,0	-11,0	156,7	6,0
X/1990	-48,0	-22,0	-52,7	6,0	224,0	-11,0	189,7	6,0
XI/1990	154,0	-11,0	121,7	6,0	206,0	-11,0	172,2	6,0
XII/1990	57,0	-11,0	27,4	6,0	67,0	-11,0	37,1	6,0
l/1991	76,0	-11,0	45,9	6,0	84,0	-11,0	53,6	6,0
II/1991	6,0	-11,0	-22,2	6,0	171,0	-11,0	138,2	6,0
III/1991	149,0	-11,0	116,8	6,0	190,0	-11,0	156,7	6,0
IV/1991	17,0	-11,0	-11,5	6,0	328,0	-11,0	290,8	6,0
V/1991	87,0	-11,0	56,6	6,0	374,0	-11,0	335,5	6,0
VI/1991	112,0	-11,0	80,9	6,0	106,0	-11,0	75,0	6,0
VII/1991	200,0	-11,0	166,4	6,0	342,0	-11,0	304,4	6,0
VIII/1991	159,0	-11,0	126,6	6,0	141,0	-11,0	109,0	6,0
IX/1991	51,0	-11,0	21,6	6,0	107,0	-11,0	76,0	6,0
X/1991	133,0	-11,0	101,3	6,0	122,0	-11,0	90,6	6,0
XI/1991	-41,0	-22,0	-46,8	6,0	106,0	-11,0	75,0	6,0
XII/1991	43,0	-11,0	13,8	6,0	157,0	-11,0	124,6	6,0

Čas		Brat	tislava		Žlkovce			
	δ ¹⁴ C[‰]	δ ¹³ C[‰]	$\Delta^{14}C[\%]$	σΔ ¹⁴ C[‰]	δ ¹⁴ C[‰]	δ ¹³ C[‰]	$\Delta^{14}C[\%]$	σΔ ¹⁴ C[‰]
I/1992	141.0	-11,0	109.0	6.0	146.0	-11.0	113,9	6.0
II/1992	109,0	-11,0	78,0	6,0	116,0	-11,0	84,7	6,0
III/1992	99,0	-11,0	68,2	6,0	118,0	-11,0	86,7	6,0
IV/1992	122.0	-11.0	90.6	6.0	146.0	-11.0	113.9	6.0
V/1992	46.0	-11.0	16.7	6.0	139.0	-11.0	107.1	6.0
VI/1992	145.0	-11.0	112.9	6.0	179.0	-11.0	146.0	6.0
VII/1992	122.0	-11.0	90.6	6.0	151.0	-11.0	118.8	6.0
VIII/1992	110.0	-11.0	78.9	6.0	168.0	-11.0	135.3	6.0
IX/1992	109.0	-11.0	78.0	6,0	69.0	-11.0	39.1	6,0
X/1992	141.0	-11.0	109.0	6.0	144.0	-11.0	112.0	6.0
XI/1992	136.0	-11.0	104.2	6.0	136.0	-11.0	104.2	6.0
XII/1992	152.0	-11.0	119.7	6,0	123.0	-11.0	91.6	6,0
1/1993	76.0	-11.0	45.9	6,0	122.0	-11.0	90.6	6,0
II/1993	-79.0	-22.0	-84.5	6,0	97.0	-11.0	66.3	6,0
III/1993	110.0	-11.0	78.9	6,0	100.0	-11.0	69.2	6,0
IV/1993	121.0	-11.0	89.6	6.0	155.0	-11.0	122 7	6.0
V/1993	161.0	-11.0	128.5	6.0	158.0	-11.0	125.6	6.0
VI/1993	80.0	-11.0	49.8	6.0	148.0	-11.0	115.9	6.0
VII/1993	-195.0	-22.0	-199.8	6.0	95.0	-11.0	64.3	6.0
VIII/1993	-80.0	-22.0	-84.5	6.0	181.0	-11.0	147.9	6.0
IX/1993	181.0	-11.0	147.9	6.0	258.0	-11.0	222.8	6.0
X/1993	101,0	-11.0	77.0	6.0	213.0	-11.0	179.0	6.0
XI/1993	153.0	-11.0	120.7	6.0	183.0	-11.0	149.9	6,0
XII/1993	93.0	-11.0	62.4	6.0	126.0	-11.0	94.5	6.0
1/1994	134.0	-11.0	102.2	6.0	137.0	-11.0	105.2	6,0
11/1994	125.0	-11.0	93.5	6.0	127.0	-11.0	95.4	6,0
11/1994	115.0	-11.0	83.8	6.0	164.0	-11.0	131.4	6.0
IV/1994	205.0	-11.0	171.3	6.0	146.0	-11.0	114.0	6.0
V/1994	184.0	-11.0	150.8	6.0	158.0	-11.0	125.6	6.0
VI/1994	175.0	-11.0	142 1	6.0	134.0	-11.0	102.2	6.0
VII/1994	134.0	-11.0	102.2	6.0	142.0	-11.0	110.0	6.0
VIII/1994	162.0	-11.0	129.5	6.0	168.0	-11.0	135.3	6.0
IX/1994	156.0	-11.0	123.6	6,0	142.0	-11.0	110.0	6,0
X/1994	86.0	-11.0	55.6	6,0	82.0	-11.0	51.7	6,0
XI/1994	117.0	-11.0	85.7	6.0	136.0	-11.0	104.2	6.0
XII/1994	137.0	-11.0	105.2	6,0	31.0	-11.0	2.1	6,0
1/1995	100.0	-11.0	69.2	6,0	114.0	-11.0	82.8	6,0
II/1995	126.0	-11.0	94.5	6,0	76.0	-11.0	45.9	6,0
III/1995	134.4	-11.0	102.6	6.0	154.0	-11.0	121 7	6.0
IV/1995	130.6	-11.0	98.9	6.0	141.0	-11.0	109.0	6.0
V/1995	130.0	-11.0	98.4	6.0	122.0	-11.0	90.6	6.0
VI/1995	168.9	-11.0	136.2	6.0	150.0	-11.0	117.8	6.0
VII/1995	160.0	-11.0	127.5	6.0	164.0	-11.0	131.4	6.0
VIII/1995	143.3	-11.0	111.3	6.0	145.0	-11.0	112.9	6.0
IX/1995	173.3	-11.0	140.4	6.0	176.0	-11 0	143.1	6.0
X/1995	147 8	_11.0	115.7	6,0 6 0	172 0	-11 0	139.2	6,0 6 0
XI/1005	140.6	-11.0	108.7	6.0	156.0	-11 0	123.6	6.0
XII/1005	115.0	_10.8	22 /	6,0	124.0	_11 0	02 5	6,0
VII/ 1990	110,0	-10,0	05,4	0,0	124,0	-11,0	JZ,U	0,0

Čas		Brat	tislava		Žlkovce			
	δ ¹⁴ C[‰]	δ ¹³ C[‰]	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]	δ ¹⁴ C[‰]	δ ¹³ C[‰]	$\Delta^{14}C[\%]$	σΔ ¹⁴ C[‰]
I/1996	91,4	-11,0	60,8	6,0	111,0	-11,0	79,9	6,0
II/1996	119,0	-15,3	97,2	6,0	122,0	-11,0	90,6	6,0
III/1996	118,0	-11,0	86,7	6,0	145,0	-11,0	112,9	6,0
IV/1996	126,0	-11,0	94,5	6,0	134,0	-11,0	102,2	6,0
V/1996	104,0	-11,0	73,1	6,0	137,0	-11,0	105,2	6,0
VI/1996	149,0	-9,6	113,7	6,0	147,0	-11,0	114,9	6,0
VII/1996	161,0	-11,0	128,5	6,0	157,0	-11,0	124,6	6,0
VIII/1996	145,0	-9,7	109,9	6,0	168,0	-11,0	135,3	6,0
IX/1996	146,0	-10,1	111,8	6,0	197,0	-11,0	163,5	6,0
X/1996	198,0	-11,4	165,5	6,0	172,0	-11,0	139,2	6,0
XI/1996	187,0	-11,0	153,8	6,0	142,0	-11,0	110,0	6,0
XII/1996	135,0	-11,2	103,6	6,0	133,0	-11,0	101,3	6,0
I/1997	112,0	-12,7	84,7	4,8	93,0	-11,0	62,4	6,0
II/1997	104,0	-12,5	76,5	10,3	137,0	-11,0	105,2	6,0
III/1997	91,0	-11,8	62,3	5,7	126,0	-11,0	94,5	6,0
IV/1997	132,0	-11,4	101,1	5,8	120,0	-11,0	88,6	6,0
V/1997	148,0	-11,5	116,9	5,3	94,0	-11,0	63,4	6,0
VI/1997	148,0	-11,5	116,9	4,9	112,0	-11,0	80,9	6,0
VII/1997	133,0	-13,8	107,7	5,3	126,0	-11,0	94,5	6,0
VIII/1997	156,0	-10,7	123,0	5,3	163,0	-11,0	130,4	6,0
IX/1997	171,0	-8,0	131,3	7,3	141,0	-11,0	109,0	6,0
X/1997	155,0	-11,8	124,6	5,7	127,0	-11,0	95,4	6,0
XI/1997	134,0	-10,0	100,0	5,8	119,0	-11,0	87,7	6,0
XII/1997	122,0	-10,8	90,2	5,7	140,0	-11,0	108,1	6,0
I/1998	147,0	-11,4	115,8	5,4	199,9	-11,0	166,3	6,0
II/1998	113,6	-14,0	89,1	5,9	119,2	-11,0	87,9	6,0
III/1998	177,1	-10,8	143,7	6,4	217,1	-11,0	183,0	6,0
IV/1998	134,7	-10,8	102,4	5,4	119,7	-11,0	88,4	6,0
V/1998	159,2	-11,0	126,7	6,4	143,6	-11,0	111,6	6,0
VI/1998	145,9	-9,2	109,7	5,4	163,7	-11,0	131,1	6,0
VII/1998	162,6	-8,5	124,2	7,4	158,1	-11,0	125,7	6,0
VIII/1998	151,4	-10,3	117,5	5,4	152,6	-11,0	120,3	6,0
IX/1998	133,1	-12,	103,6	6,4	144,8	-11,0	112,8	6,0
X/1998	155,9	-9,6	120,3	6,4	150,3	-11,0	118,1	6,0
XI/1998	165,4	-12,1	135,3	5,5	133,6	-11,0	101,9	6,0
XII/1998	104,1	-9,4	69,6	5,8	154,2	-11,0	121,9	6,0
I/1999	88,7	-9,5	54,9	6,3	114,2	-11,0	83,1	6,3
II/1999	122,5	-11,2	91,5	6,3	111,4	-11,0	80,4	6,3
III/1999	103,7	-10,7	72,1	6,3	108,6	-11,0	77,6	6,3
IV/1999	138.6	-10,6	105,9	6,3	144,7	-10,9	112,5	6,9
V/1999	134,7	-6,7	93,1	6,8	136,4	-11,0	104,8	6,9
VI/1999	156,9	-9,2	120,3	5,9	151,3	-11,0	119,2	6,9
VII/1999	151,3	-9,8	116,4	5,9	150,2	-11,0	118,1	5,5
VIII/1999	169,6	-9,6	133,6	6,4	159,1	-10,9	126,4	5,5
IX/1999	138,0	-11,9	108,1	5,9	145,8	-10,9	113,6	5,5
X/1999	135,3	-10,6	102,5	5,9	97,6	-11,1	67,1	5,4
XI/1999	117,0	-10,9	85,4	6,8	110,9	-7,4	71,8	5,9
XII/1999	119,2	-10,9	87,6	5,8	119,2	-10,9	87,6	5,9

Čas		Brat	tislava		Žlkovce				
	δ ¹⁴ C[‰]	δ ¹³ C[‰]	$\Delta^{14}C[\%]$	σΔ ¹⁴ C[‰]	δ ¹⁴ C[‰]	δ ¹³ C[‰]	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]	
I/2000	95,4	-13,5	70,2	4,9	105,9	-13,1	79,5	5,4	
II/2000	107,0	-11,3	76,6	5,3	113,1	-10,7	81,3	5,8	
III/2000	100,4	-12,5	72,2	5,3	124,8	-10,8	92,9	5,8	
IV/2000	114,8	-10,7	83,0	5,4	119,2	-10,9	87,6	4,9	
V/2000	132,5	-9,5	97,4	5,4	144,2	-10,8	111,7	5,4	
VI/2000	139,8	-8,5	102,1	5,9	132,0	-11,5	101,5	6,9	
VII/2000	129,2	-16,2	109,3	6,4	139,2	-11,9	109,3	6,9	
VIII/2000	123,7	-10,2	90,4	6,4	125,3	-12,2	96,5	6,9	
IX/2000	137,5	-9,2	101,5	6,4	144,8	-11,4	113,7	6,9	
X/2000	136,4	-9,6	101,5	6,4	134,8	-11,8	104,8	6,9	
XI/2000	120,4	-12,4	92,1	5,9	127,6	-12,2	98,7	6,4	
XII/2000	92.1	-11.0	61.6	5.8	115.4	-12.8	88.2	6.4	
I/2001	105.0	-12.9	78.3	6.3	118.3	-13.3	92.2	5.4	
II/2001	108.3	-16.0	88.3	5.8	132.8	-11.3	101.7	5.4	
III/2001	102,8	-11,6	73,3	4,9	117,8	-14,0	93,3	5,9	
IV/2001	109,4	-12,2	81,1	5,4	137,8	-12,3	108,9	5,4	
V/2001	130,6	-9,0	94,4	5,4	122,8	-12,6	95,0	5,4	
VI/2001	123.3	-10.7	91.1	5.8	145.6	-10.9	113.3	6.4	
VII/2001	117.8	-8.6	81.1	5.8	130.0	-16.6	111.1	5.4	
VIII/2001	111.1	-11.0	80.0	5.4	82.2	-11.6	53.3	5.3	
IX/2001	120.0	-10.1	86.7	5.8	102.8	-12.4	75.0	5.8	
X/2001	97.8	-10.6	66.1	6.3	98.9	-12.9	72.2	6.3	
XI/2001	86.1	-10.2	53.9	5.3	113.3	-13.5	87.8	6.3	
XII/2001	93.9	-11.0	63.3	5.3	110.0	-14.0	85.6	6.3	
1/2002	93,3	-13,7	68,6	5,3	96,1	-13,5	70,9	5,3	
II/2002	103,3	-13,1	77,0	5,4	118,9	-13,0	92,1	5,8	
III/2002	115,6	-10,9	84,1	4,9	108,9	-13,0	82,2	4,9	
IV/2002	115,6	-11,0	84,4	5,4	125,0	-12,0	95,8	5,4	
V/2002	121,7	-9,8	87,6	5,4	144,4	-12,1	114,9	5,9	
VI/2002	113,3	-9,4	78,6	5,4	130,6	-12,1	101,5	5,4	
VII2002	128,3	-8,5	91,0	5,4	128,9	-11,7	98,8	5,4	
VIII/2002	125,0	-10,0	91,3	5,0	128,9	-12,2	99,9	5,4	
IX/2002	126,7	-10,2	93,3	5,4	129,4	-12,1	100,1	5,4	
X/2002	118,9	-10,2	85,8	5,0	115,0	-12,5	87,2	5,4	
XI/2002	92,8	-9,2	58,2	5,3	121,7	-11,8	92,1	5,4	
XII/2002	75,6	-13,7	51,3	5,3	124,4	-12,9	97,2	4,9	
I/12003	91,1	-11,1	61,1	4,9	86,7	-13,1	60,6	4,9	
II/2003	76,7	-15,7	56,7	5,3	93,3	-13,2	67,2	4,9	
III/2003	89,4	-10,7	58,3	4,9	92,2	-13,1	66,1	4,9	
IV/2003	91,1	-11,2	61,1	4,9	101,7	-11,6	72,2	4,9	
V/2003	96,7	-9,4	62.2	4,9	106,7	-11,3	76,7	5,4	
VI/2003	121,7	-12,7	93,9	5,4	131,1	-11,8	101,1	5,4	
VII/2003	123,9	-9,8	89,4	5,4	128,9	-11,4	98,3	6,3	
VIII/2003	116,1	-9,7	82,2	5,4	123,3	-11,3	92,8	6,3	
IX/2003	111,7	-10,9	80,6	5,4	114,4	-12,3	86,1	6,3	
X/2003	105,0	-9,9	71,7	5,3	113,3	-11,7	83,9	4,9	
XI/2003	89,4	-15,8	69,4	4,9	101,1	-12,1	72,8	5,4	
XII/2003	101,7	-10,3	69,4	5,3	102,8	-12,8	75,6	5,4	

Čas		Brat	tislava		Žlkovce				
	δ ¹⁴ C[‰]	δ ¹³ C[‰]	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]	δ ¹⁴ C[‰]	δ ¹³ C[‰]	Δ ¹⁴ C[‰]	σΔ ¹⁴ C[‰]	
I/2004	71,7	-15,1	50,6	4,9	82,2	-12,6	55,6	4,9	
II/2004	96,1	-13,9	71,7	5,3	103,9	-12,5	76,1	5,4	
III/2004	118,3	-8,1	80,6	5,4	93,3	-13,0	67,2	4,9	
IV/2004	84,4	-9,8	51,1	5,3	78,3	-11,3	48,9	5,3	
V/2004	77,8	-11,4	48,3	4,9	121,7	-11,1	90,6	5,4	
VI/2004	101,7	-11,4	71,7	4,9	98,9	-11,7	70,0	4,9	
VII/2004	120,0	-9,7	85,6	5,4	195,0	-11,5	162,8	5,1	
VIII/2004	112,2	-12,1	83,3	4,9	128,3	-12,0	98,9	4,9	
IX/2004	105,0	-13,6	80,0	4,9	124,4	-12,4	96,1	4,9	
X/2004	93,3	-8,7	57,8	5,3	111,7	-14,2	87,8	4,9	
XI/2004	71,7	-12,0	43,9	4,4	92,2	-13,2	66,7	4,5	
XII/2004	7,94	-9,6	46,1	4,9	103,3	-13,7	78,3	4,5	

Na obr. 4.11 sú uvedené výsledky zobrazené graficky, pre Bratislavu v časovom intervale od 1984 do 2004 a pre Žlkovce v časovom období od 1987 do 2004. Pre porovnanie prerušovaná čiara na obr. 4.10 ukazuje dlhodobý trend ročných hodnôt Δ^{14} C v Európskom čistom vzduchu. Pre roky 1984-1992 bola trendová čiara vypočítaná podľa rovnice y=6.10¹¹x^{-4,8937}, kde y je ročná stredná hodnota Δ^{14} C v atmosferickom CO₂ a x je kalendárny rok. Trendová čiara bola extrapolovaná na roky 1993-2004 tým istým spôsobom. Priebeh Δ^{14} C hodnôt na obr. 4.11 môžeme rozdeliť na dve rôzne obdobia, obdobie pred rokom 1993 a obdobie po roku 1993.

Obr. 4.11 Mesačné hodnoty Δ^{14} C v atmosférickom CO₂ v Bratislave a v Žlkovciach. Prerušovaná čiara predstavuje dlhodobý trend ročných priemerov Δ^{14} C pre Európsky čistý vzduch.

To prvé je charakterizované výraznými minimami Δ^{14} C v zimných mesiacoch a relatívnymi maximami Δ^{14} C v skorých letných mesiacoch. Veľmi nízke a niekedy negatívne hodnoty Δ^{14} C boli namerané väčšinou v januári a vo februári ako dôsledok vysokého prísunu fosílneho CO₂ do atmosféry (Suessov efekt). Relatívne zvýšenia Δ^{14} C na jar a v skorých letných mesiacoch sú spôsobené zvýšeným prísunom stratosferického vzduchu do atmosféry.

Suessove minimá Δ^{14} C v Žlkovciach nie sú tak zreteľné ako sú v Bratislave, hoci boli tiež pozorované. Je to v dôsledku toho, že odberové miesto Žlkovce nie je situované priamo vo veľkomestkej oblasti. Znečistenie fosílnym CO₂ môže byť spôsobené blízkym mestom Trnava. Z údajov z Bratislavy a Žlkoviec môžeme vidieť tiež mesačné priemery Δ^{14} C hodnôt, ktoré sú vysoko nad pozaďovou čiarou. Tieto hodnoty poukazujú na dva píky, marec 1989 a máj 1990, kedy boli vysoké hodnoty Δ^{14} C namerané súčasne v Bratislave a Žlkovciach. V týchto mesiacoch prevládajúce severovýchodné vetry dosiahli hodnotu okolo 50 % a vplyv technogénneho ¹⁴C z Jaslovských Bohuníc bol pozorovaný aj v Bratislave. Zvýšené hodnoty Δ^{14} C nie vždy boli namerané na oboch staniciach. To je dokumentované napr. vysokými hodnotami Δ^{14} C nameranými v apríli, máji a júli 1991 len v Žlkovciach. V týchto mesiacoch prevládal v Bratislave severozápadný vietor a preto prenos znečistenia medzi oboma stanicami je malý.

V tom istom období niektoré Suessove minimá Δ^{14} C boli namerané v Bratislave aj v letných mesiacoch. Je to možné vidieť väčšinou v júli a v auguste 1993. Tento efekt môže byť pripísaný jednak lokálnemu zvýšeniu emisií fosílneho CO₂, ale aj prísunom fosílneho CO₂ zo vzdialenejšieho zdroja (napr. Viedeň). Vplyv druhého zdroja znečistenia je pravdepodobne tiež možný, pretože v týchto mesiacoch prevažuje severozápadný vietor (asi 70 %).

Správanie Δ^{14} C hodnôt obidvoch meracích staníc sa zmenilo po roku 1993. V tomto období sa neobjavujú výrazné maximá a minimá a hodnoty z obidvoch staníc majú podobný priebeh. Korelačná analýza Δ^{14} C údajov pre obidve odberové miesta merané v časovom období 1994-2004 ukazuje, že korelačný koeficient je približne 0,5. Rôzne správanie hodnôt Δ^{14} C pred rokom 1993 a po roku 1993 by mohlo byť spôsobené dvomi dôvodmi. Prvým dôvodom je, že koncentrácia fosilného CO₂ bola nižšia ako v predchádzajúcich rokoch. Toto by mohlo byť potvrdené tiež výpočtom emisií fosilného CO₂ na Slovensku pre roky 1990-1998 [93, 94]. Podľa tohto výpočtu celková emisia fosilného CO_2 poklesla asi o 28 % v rokoch 1990-1994 v porovnaní s rokom 1990, keď celková emisia CO_2 v dôsledku spaľovania fosilných palív bola 57 Tg/rok. Od roku 1994 táto emisia dosiahla konštantnú hodnotu, rovnú približne 41 Tg/rok. Tento pokles emisií fosilného CO_2 spôsobil nárast koncentrácie ¹⁴C v atmosferickom CO_2 .

Obr. 4.12 Ročné stredné hodnoty Δ^{14} C v atmosferickom CO₂ v Bratislave a v Žlkovciach pre roky 1984-1998.

Na obr. 4.12 sú zobrazené ročné stredné hodnoty Δ^{14} C v atmosferickom CO₂ v Bratislave a v Žlkovciach. Do výpočtu pre ročné stredné hodnoty neboli vzaté mesačné priemerné hodnoty Δ^{14} C, ktoré sa nachádzajú nad trendovou čiarou na obr. 4.11, v dôsledku eliminácie vplyvu technogénneho ¹⁴C na priebeh Δ^{14} C hodnôt. Prerušovaná čiara reprezentuje ročné priemerné hodnoty Δ^{14} C v Európskom čistom vzduchu, tak ako na obr. 4. 11. Tmavá krivka zobrazuje celkovú emisiu fosilného CO₂ na Slovensku určenú podľa IPCC metódy [93,94]. Priebehy ročných priemerov Δ^{14} C pre obidve stanice sú do roku 1993 výrazne nižšie ako v Európskom čistom vzduchu. Toto je dôsledok veľkého, premenlivého množstva emisií fosilného CO₂ do

atmosféry. V nasledujúcich rokoch merania Δ^{14} C pre obidve odberové miesta sa viac približujú Európskemu čistému vzduchu.

Pred rokom 1994 ročné hodnoty Δ^{14} C namerané v Bratislave boli v priemere o 50 % nižšie a v Žlkovciach asi o 20 % nižšie v porovnaní s Δ^{14} C hodnotami v Európskom čistom vzduchu. V tomto období hodnoty Δ^{14} C v Žlkovciach boli približne asi o 30 % vyššie ako v Bratislave. Z toho vidieť, že veľký zdroj emisií predstavuje vysoko priemyselná Bratislava a že miesta s rozdielnymi hladinami emisií fosilného CO₂ môžu veľmi ovplyvniť Δ^{14} C v atmosférickom CO₂.

Od roku 1994 neboli veľké rozdiely v ročných hodnotách Δ^{14} C medzi oboma stanicami. To je prevažne spôsobené zvýšením ročných hodnôt Δ^{14} C v Bratislave. To potvrdzuje pokles množstva emisií fosílneho CO₂ do atmosféry v Bratislave, a je to v zhode s vypočítaným trendom emisií fosílneho CO₂ na Slovensku [93,94].

Pre stabilné obdobie 1994-2004 je na obr. 4.13 zobrazený priebeh priemerných ročných hodnôt Δ^{14} C pre obidve odberové miesta. Hodnoty Δ^{14} C pre Bratislavu a Žlkovce majú veľmi podobný priebeh. Dosahujú maximum v letných mesiacoch (august) a minimum v zime (od decembra do februára), s sezónnou variáciou od 73 do 107 ‰ pre Bratislavu a od 85 do 117 ‰ pre Žlkovce. Vysoká hodnota (Δ^{14} C=102 ‰) v priemerných ročných Δ^{14} C priebehoch pre Žlkovce v marci je dôsledok vysokej mesačnej hodnoty Δ^{14} C nameranej na tejto stanici v marci 1998.

Obr. 4.13 Priemerné ročné hodnoty Δ^{14} C v atmosferickom CO₂ v Bratislave a v Žlkovciach. Obidva priebehy obsahujú hodnoty Δ^{14} C pre roky 1994-2004.

Od roku 1999 sme v odoberaných vzorkách CO₂ okrem obsahu ¹⁴C, začali určovať aj obsah ¹³C, definovaný hodnotou δ^{13} C. Na základe δ^{13} C sme robili korekciu vzoriek na izotopickú frakcionáciu, ale na základe δ^{13} C môžeme poukázať aj vplyv fosílneho CO₂ na Δ^{14} C. Na obr. 4.14 je zobrazený priebeh mesačných hodnôt Δ^{14} C v atmosfére Bratislavy a Žlkoviec pre roky 1999-2004.

Obr. 4.14 Priebeh mesačných hodnôt Δ^{14} C v atmosfére Bratislavy a Žlkoviec pre obdobie 1999-2004.

Dáta z oboch lokalít vykazujú postupný pokles strednej hodnoty Δ^{14} C, na ktorú je naložená tlmená variácia. V ďalšom ukážeme, že stredná hodnota klesá približne exponenciálne s časom. Postupný pokles koncentrácie rádiouhlíka v atmosfére je prejavom výmenných procesov medzi atmosférou a ostatnými zemskými rezervoármi. Namerané dáta nám zároveň poskytujú experimentálny dôkaz toho, že fosílne znečistenie atmosféry má vplyv na Δ^{14} C. V Bratislave, ktorá má zrejme atmosféru zaťaženú emisiami fosílneho CO₂ podstatne viac ako Žlkovce, je totiž stredná hodnota Δ^{14} C za obdobie 1999-2004 približne o10,5 ‰ nižšia.

Variácia, ktorá je superponovaná na strednú hodnotu, má periódu 1 rok. Jej amplitúda tak isto s časom približne exponenciálne klesá, pričom čas, za ktorý klesne na polovicu pôvodnej hodnoty, je rádovo na úrovni 7,8 roka v Bratislave a 10,2 roka v Žlkovciach. Minimá pozorujeme v zimných mesiacoch, maximá sú naopak charakteristické pre letné obdobie (viď obr. 4.13). Na vzniku variácie Δ^{14} C sa podieľa viacero efektov, z ktorých nasledujúce tri majú dominantný vplyv:

1. K prísunu ¹⁴C dochádza v skorých jarných mesiacoch, kedy je zvýšená pravdepodobnosť vpádov stratosferického vzduchu do troposféry. Následne pozorujeme nárast Δ^{14} C.

2. Za pokles v zimných mesiacoch je pravdepodobne zodpovedný zvýšený prísun fosílneho CO₂ do atmosféry (Suessov efekt).

3. Lokálne meteorologické podmienky vplývajú na turbulentné toky substancií v horizontálnom aj vertikálnom smere a tým nezanedbateľne ovplyvňujú koncentráciu Δ^{14} C.

Na obr. 4.15 je zobrazený časový chod δ^{13} C v atmosfére Bratislavy a Žlkoviec. Regresná analýza potvrdila, že v prípade δ^{13} C nepozorujeme pokles strednej hodnoty v čase. To je v súlade s očakávaniami, nakoľko atmosférický ¹³C rezervoár by sa mal nachádzať v rovnováhe s okolím. Ukazuje sa, že stredná hodnota δ^{13} C v Žlkovciach je cca o 1‰ nižšia ako v Bratislave. Vzhľadom na vyšší stupeň fosílneho znečistenia Bratislavy by však bol logický skôr opačný scenár. Pravdepodobne k tejto skutočnosti prispievajú efekty, ktoré sa v zastavanom mestskom prostredí nedokážu vyvinúť do takej miery ako na vidieku. Jedná sa zrejme hlavne o exhaláciu pôdneho CO₂, ktorý je chudobnejší na ¹³C.

Obr. 4.15 Priebeh δ^{13} C v atmosfére Bratislavy a Žlkoviec pre roky 1999-2004.

Keďže efekty periodickej povahy, ktoré vplývajú na koncentráciu ¹³C, sú principiálne rovnaké ako v prípade ¹⁴C (s výnimkou efektu 1.), prítomnosť variácií δ^{13} C by sa javila logickou. Tieto variácie sa aj experimentálne potvrdili a na obr. 4.15 je ich vidieť. Predpoklad, že ich vyvolávajú rovnaké podnety, sa javí opodstatneným

aj vďaka tomu, že korelujú s variáciami Δ^{14} C (obr. 4.17 a 4.18). Oscilácia Žlkoviec predbieha bratislavskú o 11 dní, maximum opäť pripadá približne na začiatok júla. Avšak na rozdiel od Δ^{14} C variácie δ^{13} C majú až 3,5 krát väčšiu amplitúdu v mestskej atmosfére, než je tomu vo vidieckej (viď obr. 4.16). Ak uvážime, že jedným z hlavných rozdielov medzi atmosférou veľkomesta a vidieka je miera znečistenia, potom tieto argumenty logicky vyúsťujú do hypotézy, že Suessov efekt je zrejme jednou z dominantných príčin vzniku variácií.

Obr. 4.16 Porovnanie priemernej ročnej variácie δ^{13} C v Bratislave a v Žlkovciach za obdobie 1999-2004.

Obr. 4.17 Porovnanie priemerných ročných variácií Δ^{14} C a δ^{13} C v atmosfére Bratislavy za obdobie 1999-2004.

Obr. 4.18 Porovnanie priemerných ročných variacií Δ^{14} C a δ^{13} C v atmosfére Žlkoviec za obdobie 1999-2004.

4.3.3 Harmonická analýza ¹⁴C variácií

V snahe zachytiť ročný chod Δ^{14} C vo forme určitej funkcie bolo nutné vylúčiť náhodné extrémne hodnoty, u ktorých je nepravdepodobné, že sú následkom bežných atmosférických, či exhalačných a rozptylových podmienok. Jedná sa o údaje namerané VIII/1987, IX/1988, III/1989, IX/1989, X/1989, V/1990, VII/1993,IX/1993, I/1998 a III/1998. Údaje pred rokom 1994 javia len slabé známky akejkoľvek pravidelnosti a preto fitovať ich nemá zmysel. Avšak dáta po roku 1994 už majú periodický charakter a pri detailnejšom pohľade pobadáme aj určitý útlm amplitúdy kmitov a pokles strednej hodnoty , na ktorú sú kmity superponované. Za účelom určenia najvhodnejšej funkcie, ktorá by realisticky opisovala namerané priebehy sme previedli harmonickú analýzu dát rok po roku [95]. Opravené dáta sme fitovali funkciou:

y = A + B $\cos(\omega t + C)$, kde jednotlivé symboly majú nasledovný význam: A – priemerná ročná hodnota $\Delta^{14}C$, B – absolútna hodnota variacií $\Delta^{14}C$, ω = 360°/T – uhlová rýchlosť, T = 12 (mesiac) – perióda, C – fázový posuv. Výsledky analýz sú zhrnuté v tab. 4.9 a 4.10 a graficky sú znázornené na obr. 4.19 až 4.24 na osi x uvedených obrázkov je nanesený čas, počítaný od roku 1900.

			Bratislava,	y=A+Bcos(ωt+C)		
rok	A	σ	В	σ	С	σ	R^2
94	112,12	7,58	30,01	10,72	0,56	0,06	0,465
95	107,23	3,84	23,06	5,43	0,37	0,04	0,667
96	108,26	6,82	29,07	9,64	0,22	0,05	0,503
97	102,93	3,23	25,22	4,57	0,33	0,03	0,772
98	107,18	6,04	15,81	8,94	0,37	0,08	0,31
99	97,62	3,57	25,06	5,05	0,39	0,03	0,732
100	88,21	2,45	17,7	3,46	0,39	0,03	0,744
101	78,13	2,57	12,21	3,63	0,56	0,05	0,557
102	79,27	2,88	13,49	4,07	0,46	0,05	0,55
103	71,33	2,06	14,54	2,91	0,35	0,03	0,735
104	63,72	4,51	12,69	6,38	0,44	0,08	0,305

Tab. 4.9 Výsledky harmonickej analýzy pre Bratislavu.

Tab. 4.10 Výsledky harmonickej analýzy pre Žlkovce.

			Zlkovce, y	/=A+Bcos(α	t+C)		
rok	А	σ	В	σ	С	σ	R^2
94	98,92	9,53	30,12	13,48	0,54	0,07	0,357
95	109,2	6,24	26,19	8,82	0,31	0,05	0,495
96	114,97	4,01	25,85	5,67	0,3	0,03	0,698
97	93,34	5,44	11,88	7,7	0,23	0,1	0,209
98	109,31	3,93	15,35	5,85	0,33	0,05	0,496
99	96,85	3,75	23,54	5,3	0,46	0,04	0,687
100	97,14	2,18	12,6	3,08	0,36	0,04	0,65
101	90,75	4,15	16,16	5,87	0,67	0,06	0,457
102	94,39	2,6	9,96	3,68	0,45	0,06	0,449
103	79,45	1,64	16,23	2,32	0,37	0,02	0,845
104	77,12	3,95	15,9	5,73	0,33	0,05	0,492

Pri pohľade na časový vývoj koeficientov A, resp. strednej ročnej hodnoty Δ^{14} C, a amplitúdy kmitov B vidno, že javia známky exponenciálneho poklesu. Plnou čiarou sú v grafoch A a B znázornené aproximácie priebehov exponenciálnou funkciou s pripojenou rovnicou aproximácie a korelačným koeficientom. Fázový posuv, resp. koeficient C, vykazuje variácie okolo určitej strednej hodnoty. Dali by sa zdôvodniť napríklad klimatickými a atmosferickými podmienkami v jednotlivých rokoch. Stredná ročná hodnota Δ^{14} C v atmosfére Bratislavy klesá rýchlejšie ako v Žlkovciach. Doba, za ktorú klesne na polovicu pôvodnej hodnoty je v súčasnosti pre Bratislavu 12,4 roka a pre Žlkovce 23,4 roka. Tento postupný pokles koncentrácie rádiouhlíka v atmosfére je prejavom výmenných procesov medzi atmosférou a ostatnými prírodnými rezervoármi. Pomalší pokles strednej hodnoty

 Δ^{14} C v atmosfére Žlkoviec poukazuje jednak na vplyv technogénneho ¹⁴C v tejto lokalite a ďalej na väčší vplyv fosílneho CO₂ v atmosfére Bratislavy.

Obr. 4.19 Dlhodobý trend parametra A pre atmosféru Bratislavy.

Obr. 4.20 Dlhodobý trend parametra A pre atmosféru Žlkoviec.

Obr. 4.21 Dlhodobý trend parametra B pre atmosféru Bratislavy.

Obr. 4.22 Dlhodobý trend parmetra B pre atmosféru Žlkoviec.

Obr. 4.23 Dlhodobý trend parametra C pre atmosféru Bratislavy.

Obr. 4.24 Dlhodobý trend parametra C pre atmosféru Žlkoviec.

4.4 Monitorovanie ¹⁴C v pôdnom vzduchu

Všetky odbery pôdneho CO₂ a merania exhalovaného CO₂ z pôdy boli uskutočnené na trávnatej ploche pred budovou fakulty. Pôda sa vyznačuje strednou priepustnosťou, emanačný koeficient na ²²²Rn má tu hodnotu približne 14,5%. Priemerná aktivita ²²⁶Ra v tejto pôde je 37,5 Bq·kg⁻¹ do hĺbky 1,5 m. Obsah vlhkosti sa pohybuje v intervale 5 až 20%. Pôda síce nebola najvhodnejšia z hľadiska homogenity a metabolizmu, veľkou výhodou však bola blízkosť laboratória.

Odbery vzoriek z atmosféry na ¹⁴C analýzu boli uskutočnené na druhej strane budovy v priamočiarej vzdialenosti asi 40 m od predchádzajúceho miesta. Keďže z budovy nie sú žiadne významné exhalácie CO₂, rozdiel v polohách obidvoch odberových miest je bezvýznamný.

Odber pôdneho CO₂ robíme z hĺbky 80 cm na takom istom zariadení ako odber CO₂ z atmosféry (kap. 4.3). Odberová tyč je prepojená polyetylénovou hadičkou s odberovým zariadením, ktoré je umiestnené v laboratóriu katedry na druhom poschodí. Vzhľadom na vyšší obsah CO₂ v pôdnom vzduchu používame koncentrovanejší roztok NaOH (1 mol/l).

Odber exhalovaného CO₂ z pôdy je založený na podobnom princípe ako odber z atmosféry. Ide o viazanie CO₂ do roztoku NaOH. Na rozdiel od odberu z atmosféry sa však nevyužíva aktívne čerpanie vzduchu cez prebublávaciu nádobu ale transport pomocou pasívnej difúzie. Na odber exhalovaného CO₂ stačia iba nasledujúce veľmi jednoduché pomôcky: stojan s taniermi naplnenými vodným roztokom NaOH (2 I, 240 g NaOH) a plastová nádoba (sud).

Nádoba je otočená otvorom v smere k zemi a pod ňou je uložený stojan s taniermi. Okraj nádoby je zatlačený do zeme do hĺbky približne 5 cm, aby jej vnútorná časť bola spoľahlivo oddelená od atmosféry. Nepotrebujeme merať prietok vzduchu, a nemusíme poznať ani objem nádoby. Stačí poznať veľkosť plochy zemského povrchu pod nádobou. Prakticky kvantitatívny priebeh reakcie NaOH + CO₂ nám zaručuje transport a zachytenie takmer všetkého CO₂ do odberového roztoku. Musí však byť splnená podmienka, že odberový roztok sa nesmie dostať do stavu blízkeho nasýtenia. To zabezpečíme pomocou dostatočného množstva roztoku na daný čas merania.

Ďalšia výhoda tejto metódy je skutočnosť, že nedochádza k nahromadeniu CO₂ pod odberovou nádobou a tým k obmedzeniu exhalácie. Preto množstvo odberaného

CO₂ je lineárnou funkciou času, nie exponenciálnou ako je to pri akumulačnej metóde. Exponovaný roztok NaOH spracujeme podobným spôsobom ako pri meraní atmosférického ¹⁴C.

 CO_2 sa do pôdneho vzduchu dostáva jednak koreňovou respiráciou rastlín a jednak dekompozíciou organického materiálu. Spomínaný rozklad organickej hmoty prebieha paralelne cestou rýchlej a pomalej dekompozície. Vzhľadom k tomu, že rastliny pri fotosyntéze diskriminujú CO_2 so zabudovanými ťažšími izotopmi uhlíka, $\delta^{13}C$ a $\Delta^{14}C$ v pôdnom vzduchu býva rádovo o niekoľko jednotiek promile nižšie ako v atmosfére [43]. Vzhľadom k periodickému charakteru fotosyntetických dejov v telách rastlín ako aj k teplotnej závislosti rýchlosti bakteriálneho rozkladu organických látok, možno v pôdnom vzduchu taktiež očakávať variácie $\delta^{13}C$ a $\Delta^{14}C$.

4.4.1 Výsledky merania ¹⁴C v pôdnom vzduchu

Výsledky merania ¹⁴C v pôdnom CO₂ z hĺbky 80 cm sú uvedené v tab. 4.11 a v exhalovanom CO₂ v tab. 4.12.Tieto dáta sú ďalej zobrazené graficky na obr. 4.25.

Obr. 4.25 Priebeh Δ^{14} C v pôdnom vzduchu (hĺbka 80 cm) a vo vzduchu exhalovanom z pôdy.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Čas	δ ¹³ C [‰]	Δ ¹⁴ C [‰]	σΔ ¹⁴ C[‰]	Čas	δ ¹³ C [‰]	Δ ¹⁴ C [‰]	σΔ ¹⁴ C[‰]
III/1997 -21.51 109.3 4.9 III/1998 -20.48 111.9 5.4 III/1997 -22.53 77.6 5.3 III/1998 - - V/1997 -20.97 112.8 5.9 V/1998 -19.93 140.7 5.4 VI/1997 -21.67 105.1 5.9 V/1998 -19.38 145.2 7.4 IX/1997 -21.78 101.8 5.4 V/1998 -20.44 91.9 6.8 XI/1997 -21.31 120.7 5.4 XI/1998 -22.72 79.3 6.3 II/1999 -21.79 115.5 6.4 XI/1998 -22.72 79.3 6.3 II/1999 -21.79 116.1 5.9 XI/1998 -20.224 82.6 5.4 V/1999 -20.86 94.5 6.8 II/2000 -20.224 82.6 6.3 II/1999 -21.90 116.1 5.9 VI/2000 -20.224 82.6 6.3 II/1999 </td <td>I/1997</td> <td></td> <td></td> <td></td> <td>I/1998</td> <td>-22,49</td> <td>122,4</td> <td>5,4</td>	I/1997				I/1998	-22,49	122,4	5,4
$\begin{array}{ $	II/1997	-21,51	109,3	4,9	II/1998	-20,48	111,9	5,4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	III/1997	-22,53	77,6	5,3	III/1998			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IV/1997	-24,15	92,9	5,8	IV/1998			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V/1997	-20,97	112,8	5,9	V/1998	-19,93	140,7	5,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VI/1997	-21,84	114,5	5,4	VI/1998	-19,93	140,7	5,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	VII/1997	-21,67	105,1	5,9	VII/1998	-19,88	145,2	7,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IX/1997	-19,78	101,8	5,4	IX/1998			
XII/1997 -21,31 120,7 5,4 XII/1998 -22,26 86,0 6,3 XIII/1997 -21,79 115,5 6,4 XII/1998 -22,72 79,3 6,3 II/1999	X/1997	-20,81	94,5	5,9	X/1998	-20,44	91,9	6,8
XII/1997 -21,79 115,5 6,4 XII/1998 -22,72 79,3 6,3 I/1999 II/2000 -19,962 73,2 5,3 II/1999 II/2000 -20,596 92,6 6,3 IV/1999 -20,86 94,5 6,8 IV/2000 -20,224 82,6 5,4 V/1999 -21,30 116,1 5,9 V/2000 -20,221 103,9 6,3 VII/1999 -21,37 99,5 5,9 V/1/2000 -20,088 75,4 6,3 VII/1999 -21,37 99,5 5,9 V/1/2000 -20,088 75,4 6,3 X/11999 -20,11 45,1 4,9 X/2000 -18,84 84,3 5,4 X/11999 -20,11 45,1 4,9 X/2000 -20,686 109,3 6,3 I//2001 -21,21 99,4 5,4 X/1/2000 -20,586 97,6 6,3 V/1/2001 -20,29 82,8 6,3 X/1/2002	XI/1997	-21,31	120,7	5,4	XI/1998	-22,26	86,0	6,3
I/1999 I/2000 -19.962 73.2 5.3 III/1999 III/2000 -20.536 92.6 6.3 III/1999 III/2000 -20.536 92.6 6.3 IV/1999 -21.90 116.1 5.9 V/2000 -20.224 82.6 5.4 V/1999 -21.37 99.5 5.9 VI/2000 -20.251 103.9 6.3 VII/1999 -21.37 99.5 5.9 VII/2000 -20.288 75.4 6.3 VII/1999 -20.11 45.1 4.9 X/2000 -18.984 84.3 5.4 X/1999 -20.11 45.1 4.9 X/2000 -20.696 109.3 6.3 XII/1999 -20.11 45.1 4.9 X/2000 -20.696 109.3 6.3 XII/1999 -20.11 45.1 4.9 X/2000 -21.64 101.1 4.9 II/2001 -21.50 100.6 5.4 X/12002 -21.83 90.6 4.9 <td>XII/1997</td> <td>-21,79</td> <td>115,5</td> <td>6,4</td> <td>XII/1998</td> <td>-22,72</td> <td>79,3</td> <td>6,3</td>	XII/1997	-21,79	115,5	6,4	XII/1998	-22,72	79,3	6,3
IV1999 IV12000 -19,962 73,2 5,3 IV1999 IV12000 -20,596 92,6 6,3 IV11999 -20,86 94,5 6,8 IV/2000 -20,251 103,9 6,3 VI/1999 -21,37 99,5 5,9 VI/2000 -20,251 103,9 6,3 VII/1999 -21,37 99,5 5,9 VII/2000 -20,284 84,5 6,3 VII/1999 -20,11 45,1 4,9 VI/2000 -86,13 97,1 5,4 X/1999 -20,11 45,1 4,9 X/2000 -18,613 97,1 5,4 X/1999 -19,47 137,5 5,9 XII/2000 -20,586 97,6 6,3 XI/1999 -19,47 137,5 5,9 XII/2000 -20,696 109,3 6,3 V/2001 -21,21 99,4 4,9 II/2002 -21,61 101,1 4,9 VI/2001 -20,29 82,8 6,3 VI/2002 -21,64 100,6 5,4 VI/2001 -20,29 82,8 6								
$\begin{array}{ $	I/1999				I/2000	-19,962	73,2	5,3
$\begin{array}{ $	II/1999				II/2000	-20,596	92,6	6,3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	III/1999				III/2000	-21,509	64,9	5,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IV/1999	-20,86	94,5	6,8	IV/2000	-20,224	82,6	5,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V/1999	-21,90	116,1	5,9	V/2000	-20,251	103,9	6,3
VIII/1999 -21,37 99,5 5,9 VIII/2000 -20,088 75,4 6,3 VIII/1999 IVII/2000 -18,613 97,1 5,4 X/1999 -18,89 96,2 5,4 X/2000 -18,613 97,1 5,4 XII/1999 -20,11 45,1 4,9 XII/2000 -20,686 97,6 6,3 XII/1999 -19,47 137,5 5,9 XII/2000 -20,696 109,3 6,3 V/2001 -21,50 100,6 5,4 I/2002 -22,24 97,8 4,9 II/2001 -21,21 99,4 5,4 III/2002 -21,61 101,1 4,9 V/2001 -20,29 82,8 6,3 V/2002 -21,43 90,6 4,9 VII/2001 -20,29 82,8 6,3 VI/2002 -21,14 82,8 5,4 VII/2001 -20,20 87,2 6,3 X/2002 -20,96 91,1 5,4 XI/2001 -21,33	VI/1999	-19,90	95,1	5,4	VI/2000	-19,459	45,5	6,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	VII/1999	-21,37	99,5	5,9	VII/2000	-20,088	75,4	6,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	VIII/1999				VIII/2000			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IX/1999				IX/2000	-18,613	97,1	5,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X/1999	-18,89	96,2	5,4	X/2000	-18,984	84,3	5,4
XII/1999 -19,47 137,5 5,9 XII/2000 -20,696 109,3 6,3 I/2001 -21,50 100,6 5,4 I/2002 -22,24 97,8 4,9 II/2001 -22,34 69,4 4,9 II/2002 -21,61 101,1 4,9 II/2001 -21,21 99,4 5,4 II/2002 -23,05 92,2 4,9 IV/2001 -21,44 106,7 5,4 IV/2002 -21,183 90,6 4,9 V/2001 -20,29 82,8 6,3 V//2002 -21,183 90,6 5,4 VII/2001 -20,40 100,0 4,9 VII/2002 -21,14 82,8 5,4 VII/2001 -20,25 87,2 6,3 X/2002 -20,60 106,7 4,0 X/2001 -21,33 92,2 6,3 X/2002 -20,60 106,7 4,0 X//2001 -21,44 92,2 6,3 XI/2002 -20,60 106,7 4,0	XI/1999	-20,11	45,1	4,9	XI/2000	-20,586	97,6	6,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	XII/1999	-19,47	137,5	5,9	XII/2000	-20,696	109,3	6,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I/2001	-21,50	100,6	5,4	1/2002	-22,24	97,8	4,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	II/2001	-22,34	69,4	4,9	11/2002	-21,61	101,1	4,9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	III/2001	-21,21	99,4	5,4	111/2002	-23,05	92,2	4,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IV/2001	-21,44	106,7	5,4	IV/2002	-21,83	90,6	4,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V/2001	-20,99	96,1	5,9	V/2002	-22,14	75,6	5,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VI/2001	-20,29	82,8	6,3	VI/2002	-20,96	100,6	5,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VII/2001	-20,40	100,0	4,9	VII/2002	-21,14	82,8	5,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	VIII/2001	-17,34	56,7	5,3	VIII/2002	-21,15	87,8	5,4
X/2001 -21,33 92,2 6,3 X/2002 -20,60 106,7 4,0 XI/2001 -21,44 92,2 6,3 XI/2002 -20,59 80,6 5,4 XII/2001 -20,93 101,1 6,3 XII/2002 -23,66 101,7 5,4 I//2003 -23,43 80,0 5,8 II/2004 -21,6 81,7 4,9 II/2003 -23,18 83,9 4,9 II/2004 -21,6 81,7 4,9 II/2003 -23,18 83,9 4,9 III/2004 -21,6 81,7 4,9 IV/2003 -19,78 86,7 5,4 V/2004 -22,6 68,3 4,9 V/2003 -19,78 86,7 5,4 V/2004 -21,2 53,9 4,4 VI/2003 -18,25 62,2 5,3 VII/2004 -18,5 70,0 5,4 VII/2003 -17,76 100,0 6,3 IX/2004 -19,4 86,1 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,	IX/2001	-20,25	87,2	6,3	1X/2002	-20,96	91,1	5,4
XI/2001 -21,44 92,2 6,3 XI/2002 -20,59 80,6 5,4 XII/2001 -20,93 101,1 6,3 XII/2002 -23,66 101,7 5,4 I/2003 -23,67 82,8 4,9 I/2004 -21,8 97,2 5,4 II/2003 -23,43 80,0 5,8 II/2004 -21,6 81,7 4,9 III/2003 -23,18 83,9 4,9 III/2004 -22,6 84,4 5,8 IV/2003 -21,79 58,3 5,3 IV/2004 -22,6 68,3 4,9 V/2003 -19,78 86,7 5,4 V/2004 -21,2 53,9 4,4 VI/2003 -18,25 62,2 5,3 VI/2004 -18,5 70,0 5,4 VII/2003 -17,76 100,0 6,3 VII/2004 -19,4 86,1 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 <t< td=""><td>X/2001</td><td>-21,33</td><td>92,2</td><td>6,3</td><td>X/2002</td><td>-20,60</td><td>106,7</td><td>4,0</td></t<>	X/2001	-21,33	92,2	6,3	X/2002	-20,60	106,7	4,0
XII/2001 -20,93 I01,1 6,3 XII/2002 -23,66 I01,7 5,4 I/2003 -23,67 82,8 4,9 I/2004 -21,8 97,2 5,4 II/2003 -23,18 80,0 5,8 II/2004 -21,6 81,7 4,9 III/2003 -23,18 83,9 4,9 III/2004 -22,6 84,4 5,8 IV/2003 -21,79 58,3 5,3 IV/2004 -22,6 68,3 4,9 V/2003 -19,78 86,7 5,4 V/2004 -21,2 53,9 4,4 VI/2003 -18,25 62,2 5,3 VII/2004 -18,5 70,0 5,4 VII/2003 -17,76 100,0 6,3 VII/2004 -19,4 86,1 5,4 X/2003 -19,65 115,0 6,4 IX/2004 -18,9 92,8 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 <t< td=""><td>XI/2001</td><td>-21,44</td><td>92,2</td><td>6,3</td><td>XI/2002</td><td>-20,59</td><td>80,6</td><td>5,4</td></t<>	XI/2001	-21,44	92,2	6,3	XI/2002	-20,59	80,6	5,4
I/2003 -23,67 82,8 4,9 I/2004 -21,8 97,2 5,4 II/2003 -23,43 80,0 5,8 II/2004 -21,6 81,7 4,9 III/2003 -23,18 83,9 4,9 III/2004 -22,6 84,4 5,8 IV/2003 -21,79 58,3 5,3 IV/2004 -22,6 68,3 4,9 V/2003 -19,78 86,7 5,4 V/2004 -21,2 53,9 4,4 VI/2003 -18,12 107,8 6,4 VI/2004 -18,5 70,0 5,4 VII/2003 -18,25 62,2 5,3 VII/2004 -19,4 86,1 5,4 VII/2003 -17,76 100,0 6,3 VII/2004 -19,4 86,1 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -21,05 83,3 4,9 XI/2004 -18,9 92,8 5,4 XI/2003 -20,98 87,2 5,4 XII/2004 -21,0 95,6 4,5<	XII/2001	-20,93	101,1	6,3	XII/2002	-23,00	101,7	5,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/2003	-23.67	82.8	10	1/2004	-21.8	07.2	51
III/2003 -23,18 83,9 4,9 III/2003 -21,79 58,3 5,3 IV/2003 -21,79 58,3 5,3 V/2003 -19,78 86,7 5,4 VI/2003 -18,12 107,8 6,4 VI/2003 -18,25 62,2 5,3 VII/2003 -17,76 100,0 6,3 VII/2003 -19,65 115,0 6,4 VII/2004 -19,4 86,1 5,4 VII/2003 -19,65 115,0 6,4 X/2003 -20,66 91,1 5,4 XI/2003 -21,05 83,3 4,9 XI/2003 -20,98 87,2 5,4 XII/2004 -21,0 95,6 4,5 XI/2004 -21,0 95,6 4,5 XI/2004 -21,0 95,6 4,5 XI/2004 -21,0 95,6 4,5 XI/2004 -20,1 89,4 4,5	1/2003	-23,07	80.0	4,9	1/2004	-21,0	97,2 81.7	J,4 1 Q
III/2003 -23,10 03,3 4,3 III/2004 -22,0 04,4 3,0 IV/2003 -21,79 58,3 5,3 IV/2004 -22,6 68,3 4,9 V/2003 -19,78 86,7 5,4 V/2004 -21,2 53,9 4,4 VI/2003 -18,12 107,8 6,4 VI/2004 -18,5 70,0 5,4 VII/2003 -18,25 62,2 5,3 VII/2004 -17,0 96,7 5,0 VIII/2003 -17,76 100,0 6,3 VII/2004 -19,4 86,1 5,4 IX/2003 -19,65 115,0 6,4 IX/2004 -18,9 92,8 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -21,05 83,3 4,9 XI/2004 -21,0 95,6 4,5 XII/2003 -20,98 87,2 5,4 XII/2004 -22,3 85,0 4.9	11/2003	-23,43	83.0	3,0 1 Q	11/2004	-21,0	84.4	
IV/2003 -21,79 36,3 3,3 3,3 1V/2004 -22,0 06,3 4,9 V/2003 -19,78 86,7 5,4 V/2004 -21,2 53,9 4,4 VI/2003 -18,12 107,8 6,4 VI/2004 -18,5 70,0 5,4 VII/2003 -18,25 62,2 5,3 VII/2004 -17,0 96,7 5,0 VIII/2003 -17,76 100,0 6,3 VIII/2004 -19,4 86,1 5,4 IX/2003 -19,65 115,0 6,4 IX/2004 -18,9 92,8 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -21,05 83,3 4,9 XI/2004 -20,1 89,4 4,5 XII/2003 -20,98 87,2 5,4 XII/2004 -22,3 85,0 4.9	11/2003	21 70	58 3	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/2004	-22,0	68.3	3,0
V/2003 -19,76 30,7 5,4 V/2004 -21,2 33,9 4,4 VI/2003 -18,12 107,8 6,4 VI/2004 -18,5 70,0 5,4 VII/2003 -18,25 62,2 5,3 VII/2004 -17,0 96,7 5,0 VIII/2003 -17,76 100,0 6,3 VII/2004 -19,4 86,1 5,4 IX/2003 -19,65 115,0 6,4 IX/2004 -18,9 92,8 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -21,05 83,3 4,9 XI/2004 -20,1 89,4 4,5 XII/2003 -20,98 87,2 5,4 XII/2004 -22,3 85.0 4.9	10/2003	-21,79	<u> </u>	5,5	10/2004	-22,0	53.0	4,5
VII/2003 -18,25 62,2 5,3 VII/2004 -10,3 70,0 3,4 VII/2003 -18,25 62,2 5,3 VII/2004 -17,0 96,7 5,0 VII/2003 -17,76 100,0 6,3 VII/2004 -19,4 86,1 5,4 IX/2003 -19,65 115,0 6,4 IX/2004 -18,9 92,8 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -20,98 87,2 5,4 XII/2004 -22,3 85,0 4.9	VI/2003	_18.12	107 g	5, 4 6.4	VI/2004	_18.5	70.0	<u>+,+</u> 5 /
VIII/2003 -17,76 100,0 6,3 VIII/2004 -19,4 86,1 5,4 IX/2003 -19,65 115,0 6,4 IX/2004 -19,4 86,1 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -20,98 87,2 5,4 XI/2004 -20,1 89,4 4,5 XII/2003 -20,98 87,2 5,4 XII/2004 -22,3 85,0 4,9	VII/2003	-18.25	62.2	5 3	VII/2004	_17 0	96.7	5.0
IX/2003 -19,65 115,0 6,4 IX/2004 -18,9 92,8 5,4 X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -21,05 83,3 4,9 XI/2004 -20,1 89,4 4,5 XII/2003 -20,98 87,2 5,4 XII/2004 -22,3 85.0 4.9	VIII/2003	_17 76	100.0	63	VIII/2004	_10 <i>L</i>	86.1	5,0 5 <u>4</u>
X/2003 -20,66 91,1 5,4 X/2004 -21,0 95,6 4,5 XI/2003 -21,05 83,3 4,9 XI/2004 -20,1 89,4 4,5 XII/2003 -20,98 87,2 5,4 XII/2004 -22,3 85.0 4.9	IX/2003	-19.65	115.0	6.4	IX/2004	_18 Q	Q2 8	5, 4
XI/2003 -21,05 83,3 4,9 XI/2004 -20,1 89,4 4,5 XII/2003 -20,98 87,2 5.4 XII/2004 -22,3 85.0 4.9	X/2003	-20.66	91.1	54	X/2004	_21.0	95.6	<u> </u>
XII/2003 -20,98 87.2 5.4 XII/2004 -22.3 85.0 4.9	XI/2003	-21.05	83.3	<u> </u>	XI/2004	_20.1	89.4	4.5
	XII/2003	-20.98	87.2	5.4	XII/2004	-22.3	85.0	4.9

Tab. 4.11 Súbor dát δ^{13} C a Δ^{14} C v pôdnom CO₂ – hĺbka 80cm.

Čas	δ ¹³ C [‰]	$\Delta^{14}C$ [‰]	σΔ ¹⁴ C[‰]	Čas	δ ¹³ C [‰]	Δ ¹⁴ C [‰]	σΔ ¹⁴ C[‰]
I/2000				I/2001	-16,47	93,3	5,9
II/2000				II/2001	-17,04	74,4	6,3
III/2000				III/2001	-16,82	70,0	5,3
IV/2000				IV/2001	-16,95	92,8	5,4
V/2000				V/2001	-21,16	94,4	5,4
VI/2000	-23,27	70,4	6,3	VI/2001	-19,38	90,6	5,8
VII/2000	-22,36	76,5	5,8	VII/2001	-20,41	67,2	6,3
VIII/2000	-21,83	79,9	6,3	VIII/2001	-19,90	76,1	6,3
IX/2000	-20,98	71,0	7,0	IX/2001	-19,50	83,9	6,3
X/2000	-21,77	78,8	5,8	X/2001	-23,79	84,4	6,3
XI/2000	-17,62	93,7	5,4	XI/2001	-17,17	74,4	6,3
XII/2000	-16,74	69,3	6,3	XII/2001	-20,84	87,8	6,3
							•
I/2002	-19,10	63,9	5,3	I/2003	-19,10	66,7	4,9
II/2002	-19,10	122,2	5,0	II/2003	-19,10	78,9	4,9
III/2002	-19,10	89,4	5,3	III/2003	-19,10	76,1	4,9
IV/2002	-19,10	83,3	5,4	IV/2003	-19,10	56,7	5,3
V/2002	-19,10	66,1	5,8	V/2003	-19,10	61,7	5,3
VI/2002	-19,10	101,7	5,4	VI/2003	-19,10	85,6	6,3
VII/2002	-19,10	101,1	5,4	VII/2003	-19,10	68,3	6,3
VIII/2002	-19,10	88,9	5,0	VIII/2003	-19,10	88,3	6,3
IX/2002	-19,10	95,4	5,4	IX/2003	-19,10	107,8	6,4
X/2002	-19,10	95,0	5,4	X/2003	-19,10	82,2	4,9
XI/2002	-19,10	67,8	5,3	XI/2003	-19,10	65,6	5,3
XII/2002	-19,10	70,6	4,9	XII/2003	-19,10	67,2	4,9
	1				1		
I/2004	-16,58	83,9	5,4				
II/2004	-16,10	67,8	5,4				
III/2004	-16,06	68,9	4,9				
IV/2004	-16,11	46,7	4,9				
V/2004	-16,99	65,6	5,3				
VI/2004	-18,50	57,8	4,9				
VII/2004	-18,52	82,2	4,9				
VIII/2004	-18,52	78,3	5,4				
IX/2004	-18,89	86,7	5,4				
X/2004	-18,79	68,9	4,9				
XI/2004	-17,51	110,6	4,5				
XII/2004	-15,99	70,0	5,4				

Tab. 4.12 Súbor dát δ^{13} C a Δ^{14} C v exhalovanom CO₂ z pôdy.

Z obr. 4.25 vidieť, že hodnoty Δ^{14} C v pôdnom vzduchu klesajú približne exponenciálne s časom, podobne ako hodnoty Δ^{14} C v atmosfére, ale klesajú pomalšie ako hodnoty Δ^{14} C v atmosfére. Doba, za ktorú poklesne stredná hodnota Δ^{14} C v pôdnom vzduchu na polovicu pôvodnej hodnoty je v súčasnosti 330 rokov. Ďalej hodnoty Δ^{14} C nevykazujú tak výrazné pravidelné ročné variacie ako v atmosfére a sú rozptýlené približne o ±20 ‰ okolo strednej hodnoty pre pôdne aj exhalované CO₂. Priemerné hodnoty Δ^{14} C v pôdnom vzduchu (hĺbka 80 cm) sú asi o 9,3 promile vyššie ako hodnoty Δ^{14} C vo vzduchu exhalovanom z pôdy a približne o 20 promile vyššie ako priemerné hodnoty Δ^{14} C v atmosfére za sledované obdobie. Toto zvýšenie môže byť spôsobené pomalou dekompozíciou staršej organickej hmoty s vyšším obsahom ¹⁴C. Pre zhodnotenie charakteru ročných variácií Δ^{14} C v pôdnom vzduchu sú na obr. 4.26 porovnané priemerné ročné variácie Δ^{14} C v pôdnom vzduchu (hĺbka 80 cm), vo vzduchu exhalovanom z pôdy a v atmosfére Bratislavy pre roky 2000-2004. Na obr. 4.27 sú podobne porovnané priemerné ročné variácie δ^{13} C. Z uvedených obrázkov vidieť, že v prípade Δ^{14} C sú rozdiely medzi pôdnym vzduchom a atmosférou menej výrazné ako u δ^{13} C. V zimných mesiacoch sú hodnoty Δ^{14} C v pôdnom vzduchu vyššie ako v atmosfére, pretože v zime je hladina atmosférického rádiouhlíka znížená vplyvom spaľovania fosílnych palív, čo môže čiastočne znížiť aj obsah ¹⁴C v pôdnom CO₂, hlavne v exhalovanej zložke. V jarných a v letných mesiacoch dosahuje Δ^{14} C v pôde hodnoty bežné pre

Obr. 4.26 Porovnanie priemerných ročných variácií Δ^{14} C v pôdnom vzduchu (hĺbka 80 cm), vo vzduchu exhalovanom z pôdy a v atmosfére Bratislavy pre roky 2000-2004.

Obr. 4.27 Porovnanie priemerných ročných variácií δ ¹³C v pôdnom vzduchu (hĺbka 80 cm), vo vzduchu exhalovanom z pôdy a v atmosfére Bratislavy za obdobie rokov 2000-2004.

atmosféru. Práca [43] to pripisuje zvýšenej respiračnej rýchlosti rastlín v tomto období, ktorá má za následok zvýšenie Δ^{14} C v exhalovanom pôdnom CO₂ a čiastočné zníženie Δ^{14} C v hĺbkovom pôdnom CO₂. Zvýšená respiračná rýchlosť rastlín v jarných a letných mesiacoch má ďalej za následok zníženie δ^{13} C vo vzduchu exhalovanom z pôdy. Uvedené teoretické tvrdenia sú v dobrom súlade s našimi experimentálnymi výsledkami. Z obrázku 4.27 je ďalej zrejmý vplyv hĺbky na tlmenie faktorov vynucujúcich oscilácie. Kým v exhalovanom CO₂ pozorujeme variáciu δ^{13} C okolo strednej hodnoty -18,6 ‰ s amplitúdou 2,5 ‰ a s minimom v letných mesiacoch, v hĺbke 80 cm si δ^{13} C udržiava približne konštantnú hodnotu -20,7 ‰. Jeden z argumentov, ktorý podporuje potlačenie variácie v hĺbkach, sa opiera o Fourierove zákony, podľa ktorých amplitúda výkyvov teplôt má s narastajúcou hĺbkou klesajúcu tendenciu. Tým pádom činnosť baktérií vo väčších hĺbkach má stabilnejší charakter, než je tomu pri zemskom povrchu a oscilácie v produkcii CO₂ sú menej výrazné. Rovnako tak korene rastlinných porastov, ktoré siahajú len do menších hĺbok, nemajú možnosť vplývať svojou premenlivou respiráciou na nižšie vrstvy pôdneho vzduchu.

Napriek tomu, že koncentrácia CO₂ v prízemnej vrstve atmosféry je vo výraznej miere ovplyvňovaná exhaláciou pôdneho CO₂, ako vidíme z našich meraní

hodnota Δ^{14} C je iba v malej miere ovplyvňovaná hodnotou Δ^{14} C v pôde. Tieto výsledky dobre korešpondujú s výsledkami práce [43].

4.4.2 Meranie hĺbkového profilu CO₂, ¹⁴C a ²²²Rn v pôde

Ako je uvedené v kap. 1.3, pri určovaní exhalácie pôdneho CO₂ do atmosféry je dôležité odhadnúť vplyv rastlinnej pokrývky na celkový tok CO₂ do vonkajšej atmosféry. Jedna z metód ako spoľahlivo určiť exhalácie pôdneho CO₂, je súčasné meranie hĺbkových profilov CO₂, ²²²Rn v pôdnom vzduchu a exhalačnej rýchlosti ²²²Rn z pôdy. Ukazuje sa, že takéto meranie dáva vierohodnejšie výsledky o exhalácii CO₂ z pôdy ako priame meranie exhalácie CO₂. Preto sme vypracovali metodiku na meranie pôdnych profilov CO₂, ¹⁴C a ²²²Rn v pôdnom vzduchu.

Z pôdy odoberáme pôdny vzduch pomocou odberových trubíc a CO₂ fixujeme už uvedeným spôsobom do roztoku NaOH. Odberové zariadenie je však zložitejšie, na vlastnostiach jeho jednotlivých prvkov podstatne viac záleží.

Samotný odber sa uskutočňuje pomocou železných pozinkovaných rúrok (vnútorný priemer 1,1 cm). Je potrebné použiť viac odberových rúrok vzhľadom na odoberané množstvo pôdneho vzduchu. Vysávaný objem v pôde má približne guľový tvar. V prípade, že prietok vysávania bude príliš veľký, odoberaná vzorka nebude dostatočne reprezentovať danú hĺbku. Pri menších hĺbkach sa nám dokonca môže stať, že v dôsledku toho časť vzduchu odoberieme z atmosféry. Preto rýchlosť čerpania bola na jednu trubicu obmedzená približne na 0,8 l/h.

Jednotlivé odberové trubky boli vzdialené od seba 1 m a ich celkový počet bol desať. Celkové množstvo vzduchu v rámci odberu z jednej hĺbky bolo 1 až 2 m³. To predstavuje pri 50%-nej pórovitosti pôdy vysaté guľové objemy s priemerom 0,73 až 0,91 m. Predpokladáme, že rýchlosť obnovenia rovnovážnej koncentrácie v pôde je dostatočná na to aby jednotlivé odbery dostatočne reprezentovali dané hĺbky.

Odber z jednej hĺbky trval 4 až 7 dní. Pri menších hĺbkach sa konali odbery dlhšiu dobu, pri väčších stačili kratšie doby odberu na získavanie potrebného množstva zrazeniny BaCO₃ (80 g). Odbery boli uskutočnené z hĺbok 20, 40, 60, 80 a 100 cm. Odber celkového hĺbkového profilu trval jeden mesiac.

Popis odberového zariadenia na CO₂, ¹⁴C a ²²²Rn profil v pôde

Na obr. 4.28 vidieť schému odberového zariadenia. Keďže išlo o testovanie novej metódy, funkciu jednotlivých prvkov bude vhodné opísať podrobnejšie kvôli neskoršej reprodukovateľnosti merania.

Odberové trubice musia mať dĺžku aspoň takú alebo o niečo väčšiu ako najväčšia hĺbka v ktorej chceme merať. Dôležité, aby trubice boli aj dostatočne pevné. Umiestnenie rúrok sa deje nasledujúcim spôsobom:

Obr. 4.28 Schéma odberového zariadenia na ¹⁴C a ²²²Rn profil.

1-pôda, 2-vyrovnávacie ventily, 3-rozdeľovací článok, 4-spojovacia hadica, 5silikagelové kolóny, 6-plynomer, 7-prietokomer, 8-ventily na prídavné odbery, 9pomocné škrtenie, 10-čerpadlo vzduchu, 11-ventil na nastavenie prietoku, 12scintilačná komora, 13-fotonásobič, 14-čítač impulzov, 15-tlačiareň, 16-nádoby s roztokom NaOH. Do otvorov rúrok vložíme železný kužeľ, na druhý koniec ochrannú pomôcku zo železa (proti rozklepaniu koncov rúr) a pomocou kladiva narážame rúry do potrebnej hĺbky. Po uskutočnení odberu postupujeme do väčších hĺbok podobným spôsobom. Nakoniec rúry jednoducho vytiahneme a hroty ostanú v zemi. Odtiaľ dostal tento postup názov "metóda stratených hrotov". Po narazení rúrok do potrebnej hĺbky ich trochu vytiahneme (1 až 2 cm). Tým poklesne ich sací (prietokový) odpor až o dva rády. Pri hĺbkach 20 až 40 cm je potrebné dávať pozor na to, aby vzduch nenatekal vedľa trubíc.

Odpor vysávania je určený v podstate vlastnosťami pôdy, ktorá je v tesnej blízkosti sacích otvorov trubíc. Je ovplyvnený miestnymi nehomogenitami, vlhkosťou pôdy, presnosťou povytiahnutia trubice a nie je možné stabilne nastaviť u všetkých rúrok ani približne rovnaké vysávacie odpory. Preto na koniec rúrok sú nasadené vyrovnávacie škrtiace ventily. Ich prietokové odpory sú rovnaké a sú aspoň o dva rády (v našom prípade) väčšie ako vysávacie odpory trubíc. Boli realizované triviálnym spôsobom ako obyčajné injekčné ihly napichnuté do laboratórnych gumových zátok. Ihly treba používať rovnakého typu (farby) a z rovnakej výrobnej série, pretože výrobca zaručuje iba ich vonkajší priemer.

Všetky spojovacie rúry sú plastové (z PVC) s vnútorným priemerom okolo 0,5 cm. Ich prietokové odpory sú zanedbateľné vzhľadom na ostatné prvky (aj pri dĺžke 25m). Vzduch postupoval od rozdeľovacieho článku v teréne cez spojovaciu hadicu s dĺžkou okolo 25 m do laboratória. Vzduch mal čas nahriať sa na laboratórnu teplotu, takže pretečený objem bol meraný pri teplote 22 ± 3 °C.

Objem odberových a spojovacích trubíc pri danej rýchlosti čerpania dostatočne predĺžil čas transportu vzduchu do scintilačnej komory vzhľadom na vymieranie torónu (²²⁰Rn, T_{1/2} = 55,60 s), čo bolo výhodné. V dlhej spojovacej hadici dochádza k disperzii koncentračných gradientov (predpokladáme laminárne prúdenie). Tento jav tlmí časové variácie s časovou konštantou približne rovnakou ako doba prechodu vzoriek cez trubicu. V našom prípade to bolo zanedbateľným javom ale v iných konfiguráciách merania to nemusí vždy platiť.

Zo vzduchu bola najprv odstraňovaná vodná para pomocou silikagélových kolón, potom vzduch postupoval do plynomera. Silikagel bol granulovaný, zo zrnitosťou 3 mm s farebným indikátorom vyčerpania, jeho spotreba bola približne 1 dl/deň. Ďalej vzduch postupoval cez rúrkový prietokomer s meracím rozsahom 10 l/h,

potom cez ventily pre prídavné odbery do membránového čerpadla poháňaného komutátorovým motorčekom.

Pred čerpadlom sa nachádzalo ďalšie škrtenie (tiež ihla), ktoré malo viacero funkcií: pomáhalo filtrovať spolu s objemom trubíc tlakové kmity od čerpadla, ktoré narušili činnosť prietokomera, zmenšovalo vplyv prípadných zmien prietokového odporu zariadenia a zlepšovalo činnosť ventilov čerpadla. Keďže čerpadlo pracovalo s charakteristikou konštantného zdroja prietoku, prietok bol regulovaný paralelne zapojeným ventilom.

Vzduch ďalej postupoval do prietokovej scintilačnej komôrky, s objemom 125 cm³, na sledovanie radónovej aktivity. Vodná para bola odstraňovaná z presávaného vzduchu preto aby nezničila vrstvu ZnS(Ag) v scintilačnej komôrke. Veľkosť prietoku má vplyv na početnosť od dcérskych produktov, preto bola udržiavaná na konštantnej úrovni počas celého merania.

Konečným stupňom zariadenia bola dvojica odberových nádob naplnená roztokom NaOH (2x2,5 I). Priemer bubliniek bola približne 8 mm, tie prechádzali cez spomalovacie špirále približne za 3 sekundy. Účinnosť absorpcie aj napriek krátkej dobe zotrvania vzduchu v nádobách bola okolo 90% na nádobu. Vzduch potom voľne vytekal do laboratória. Získané roztoky Na₂CO₃ + NaOH + H₂O sa ďalej štandardne spracovávali na ¹⁴C analýzu. Zo získanej hmotnosti BaCO₃ pri súčasnom poznaní pretečeného objemu vzduchu môžeme vypočítať koncentrácie CO₂ v pôdnom vzduchu z rôznych hĺbok s relatívnou štandardnou neistotou ~ 5 %.

4.4.3 Výsledky merania hlbkového profilu ¹⁴C, CO₂ a ²²²Rn v pôde

V roku 2001 sme urobili seriu meraní hĺbkového profilu ¹⁴C v pôde podla vyššie uvedenej metodiky. Odber vzoriek sa uskutočnil v mesiacoch jún, október a november. Hĺbku pôdneho profilu sme menili po 20 cm, v rozsahu 20 až 100 cm. Zároveň s meraním Δ^{14} C sme sledovali ako sa mení s hĺbkou obsah CO₂ v pôdnom vzduchu. Pre kontrolu tesnosti odberových rúrok sme merali aj aktivitu ²²²Rn na jednotlivých úrovniach pôdnej hĺbky. Výsledky meraní sú uvedené v tab. 4.13 a graficky znázornené na obr. 4.29 a 4.30.

Na obr. 4.29 sú zobrazené hĺbkové profily Δ^{14} C a objemové koncentrácie CO₂ v pôdnom vzduchu namerané v mesiacoch jún, október a november v roku 2001.

CO₂ v pôdnom vzduchu je produkované koreňovou respiráciou a mikrobiologickou dekompozíciou organickej hmoty.

	•							
	Hĺbka	δ ¹³ C	$\Delta^{14}C$	$\sigma \Delta^{14} C$	C _{m,CO2}	C _{V,CO2}	A _{Rn}	σA_{Rn}
Mesiac	[cm]	[‰]	[‰]	[‰]	[g/m ³]	[%]	Bq/m ³	Bq/m ³
jún	20	-20,134	70	6,3	6,85	0,372	2438	262
	40	-21,882	106,1	6,3	11,33	0,616	5785	621
	60	-22,183	90	5,4	28,61	1,556	13571	1457
	80	-21,78	81,7	6,3	35,06	1,907	25916	2781
	100	-21,472	78,3	5,8	39,96	2,173	26772	2873
október	20	-21,112	86,7	6,3	20,23	1,100	10095	1083
	40	-22,506	83,3	5,8	15,39	0,837	4546	488
	60	-23,478	85,6	5,8	22,48	1,222	10008	1074
	80	-22,918	90	6,3	40,31	2,190	21810	2341
	100	-20,81	91,7	5,8	42,37	2,304	22645	2430
november	20	-21,709	73,9	6,3	9,24	0,502	5928	636
	40	-21,525	82,2	5,8	8,85	0,481	6687	718

6,3

6,3

6,3

16,91

29,08

30,61

60

80

100

-22,999

-22,999

-22,119

102,8

89,4

90

Tab. 4.13 Výsledky merania hĺbkového profilu δ^{13} C, Δ^{14} C, CO₂ a ²²²Rn merané v roku 2001 v pôdnom vzduchu.

Obr. 4.29 Porovnanie hĺbkových profilov Δ^{14} C a CO₂ v pôdnom vzduchu (jún, október, november 2001).

12414

20140

26535

1332

2162

2848

0,919

1,581

1,665

Obr. 4.30 Porovnanie hĺbkových profilov CO₂ a ²²²Rn v pôdnom vzduchu (jún, október, november 2001).

Nárast koncentrácie CO_2 s hĺbkou je určený hĺbkovou distribúciou organickej hmoty. Postupný nárast objemovej koncentrácie CO_2 s hĺbkou vidíme aj na obr. 4.29 a v mesiaci jún dosiahla pri hĺbke 100 cm hodnotu 2,17 % (vzrástla oproti hĺbke 20 cm 5,8 krát). V mesiaci november bol nárast objemovej koncentrácie CO_2 v pôdnom vzduchu menší a pri hĺbke 100 cm sme namerali hodnotu 1,66 %. Tento menší nárast objemovej koncentrácie môže byť spôsobený znížením koreňovej respirácie rastlín v čase vegetačného pokoja. Pri hĺbke 80-100 cm je nárast objemovej koncentrácie CO_2 pomalší a dochádza k určitému nasýteniu. Na rozdiel od CO_2 sa hodnota $\Delta^{14}C$ v pôdnom vzduchu s hĺbkou nemení (mesiac jún) alebo javí mierny nárast (mesiac október, november). Tieto merania dobre korešpondujú s meraniami mesačných hodnôt $\Delta^{14}C$ vo vzduchu exhalovanom z pôdy a v pôdnom vzduchu z hĺbky 80 cm (obr. 4.26), kde vidíme, že v letných mesiacoch $\Delta^{14}C$ vo vzduchu exhalovanom z pôdy dosahuje hodnoty rovnaké ako v hĺbke 80 cm. V jarných a zimných mesiacoch $\Delta^{14}C$ v exhalovanom pôdnom vzduchu má nižšie hodnoty ako $\Delta^{14}C$ v pôdnom vzduchu v hĺbke 80 cm. Na obr. 4.30 sú zobrazené hodnoty objemových koncentrácií CO₂ a objemových koncentrácií ²²²Rn v závislosti od hĺbky. Obidve hodnoty vykazujú so zmenou hĺbky podobný priebeh a zmena objemovej koncentrácie CO₂ veľmi dobre sleduje zmenu objemovej koncentrácie ²²²Rn. V októbri pri hĺbke 20 cm je pozorovateľný výrazný nárast množstva CO₂ aj ²²²Rn, čo môže byť zapríčinené väčšou vlhkosťou pôdy v období merania v tejto hĺbke. Namerané hĺbkové profily CO₂ a ²²²Rn bude možné v ďalšom využiť na určovanie exhalačnej rýchlosti CO₂ z pôdy pri modelovaní výmenných procesov medzi uhlíkovými rezervoármi.

5. Rádiouhlíkové datovanie a rôzne aplikácie ¹⁴C

Fyzikálna metóda rádiouhlíkového datovania umožňuje určovať absolútny vek vzoriek organického a anorganického pôvodu stanovením aktivity ¹⁴C. Táto metóda dnes patrí medzi najpoužívanejšie metódy radiačnej chronológie. Navrhol a rozpracoval ju americky profesor W. F. Libby [46], ktorý dostal v roku 1960 Nobelovu cenu za chémiu.

Rádioaktívny izotop uhlíka vzniká v atmosfére interakciou neutrónov kozmického žiarenia s atómami vzdušného obalu Zeme a vo forme ¹⁴CO₂ sa výmennými procesmi dostáva do hydrosféry, biosféry a litosféry. V prírode sa preto vytvorila rovnováha medzi počtom vznikajúcich a rozpadajúcich sa atómov ¹⁴C, t. j. vznikla stála koncentrácia ¹⁴C v prírodných rezervoároch obsahujúcich uhlík. Ak dôjde k prerušeniu výmenných procesov medzi objektom a jeho okolím, napr. odumretím organizmu, počet atómov v objekte začne klesať podľa rozpadového zákona. Zmeraním aktivity ¹⁴C možno určiť čas t, kedy došlo k tomuto prerušeniu:

$$t = \frac{T_{1/2}}{\ln 2} \cdot \ln \frac{A_0}{A}$$
(5.1)

kde: A - aktivita vzorky,

A₀ - 95 % aktivity rádiouhlíkového štandardu NBS,

 $T_{1/2}$ - polčas premeny ¹⁴C.

Štandardná neistota veku:

$$\sigma t = \frac{1}{\ln 2} \cdot \sqrt{\left(\sigma t \cdot \ln \frac{A_0}{A}\right)^2 + T^2 \cdot \sigma}, \qquad (5.2)$$
$$\sigma = \left(\frac{\sigma A_0}{A_0}\right)^2 + \left(\frac{\sigma A}{A}\right)^2,$$

kde σT, σA₀, σA sú štandardné neistoty polčasu premeny ¹⁴C, štandardu NBS a vzorky. Aké presné budú výsledky rádiouhlíkového datovania, závisí od presnosti merania aktivity N a od presnosti, s akou poznáme polčas premeny. Súčasný stav metód merania nízkych aktivít ¹⁴C dovoľuje sledovať aj niektoré špecifické otázky vzniku a prechodu atómov ¹⁴C z atmosféry do ostatných rezervoárov, čím sa presnosť metódy rádiouhlíkového datovania podstatne zlepšila [96,97]. Maximálne merateľný vek našim detekčným systémom je 42 000 rokov pri relatívnej štandardnej neistote 10 %.

Zaužívalo sa udávať výsledky datovania pomocou ¹⁴C v takzvaných konvenčných rádiouhlíkových rokoch, pričom vek vzoriek sa počíta s použitím Libbyho polčasu premeny 5568 rokov. Pre zistenie správneho veku je treba výsledky násobiť konštantou, vyplývajúcou z najpresnejšie určeného polčasu premeny ¹⁴C v danej dobe. Dnes sa za tento polčas považuje 5730 ± 40 rokov [98].

V prírodnom uhlíku je koncentrácia atómov ¹⁴C veľmi nízka, ¹⁴C má pomerne dlhý polčas rozpadu(5730 rokov) a emitované žiarenie beta má nízku energiu. Tieto skutočnosti neumožňujú merať extrémne nízke aktivity ¹⁴C tradičnými metódami. Požiadavky vysokej detekčnej účinnosti, minimálneho pozadia a zanedbateľných absorpčných strát žiarenia spĺňajú len detektory s vnútornou náplňou, v ktorej je skúmaný rádionuklid chemicky viazaný. V našom laboratóriu používame na meranie nízkych aktivít ¹⁴C veľkoobjemový proporcionálny počítač s náplňou metánu, ktorý je ziskaný konverziou oxidu uhličitého pripraveného spálením skúmanej vzorky.

5.1 Rádiouhlíkové datovanie organických vzoriek

Jedným zo základných predpokladov pre rádiouhlíkové datovanie vzoriek je získanie dostatočného množstvo uhlíka reprezentatívneho pôvodu bez kontaminácie uhlíkom alochtónneho pôvodu. Pri odbere vzoriek pre rádiouhlíkové datovanie je potrebné riadiť sa týmito zásadami:

- 1. vzorky má byť dostatočné množstvo
- 2. vzorka nemá byť kontaminovaná
- vzorka má byť reprezentatívna pre skúmanú udalosť v geologickej minulosti alebo pre skúmaný prírodný jav.

Potrebné množstvo vzorky je dané objemom nášho počítača. Pre naplnenie nášho počítača na tlak 0,1 MPa je potrebné asi 5 litrov metánu, čo odpovedá asi 2,5 g uhlíka. Je potrebné počítať so stratami pri spracovaní vzorky (spaľovanie, čistenie plynu, plnenie počítača), preto sa snažíme odobrať také množstvo vzorky, aby obsahovalo aspoň 5 g uhlíka. Pretože relatívne množstvo uhlíka vo vzorkách býva niekedy veľmi nízke a tiež v dôsledku znečistenia mechanickými a chemickými látkami, je potrebná hmotnosť odoberaných vzoriek pomerne vysoká.

Pre približnú orientáciu je potrebné množstvo rôznych látok podľa obsahu uhlíka uvedené v tab. 5.1.

Druh vzorky	Obsah uhlíka	Doporučené množstvo
	(%)	vzorky (g)
Drevené uhlie	50 - 90	6 – 10
Drevo suché	50	10
Rašelina	2 - 5	100 – 250
Vápenec, ulity	10	50
Kosti, zuby	1 - 5	100 - 500

Tab. 5.1 Potrebné množstvo látok pre rádiouhlíkové datovanie ekvivalentné 5 g uhlíka.

Pretože merná hmotnosť minerálnych prímesí je v porovnaní s odoberanými látkami vysoká a pri chemickej úprave vzorky môže byť úbytok vzorky až 50 %, je nutné podľa toho odobrať väčšie množstvo vzorky ako je uvedené v tab. 5.1. Celkove bolo urobených vyše 50 rádiouhlíkových analýz organických vzoriek (archeologické a geologické vzorky).

5.2 Rádiouhlíkové datovanie podzemných vôd

Rádiouhlíkové datovanie je možné úspešne využiť nielen na určovanie veku vzoriek organického pôvodu, ale aj na určovanie veku takých anorganických prostredí, ktoré obsahujú CO₂ z atmosféry. Musí však byť splnená podmienka, že u týchto objektov došlo v určitom čase k prerušeniu prísunu atmosferického CO₂. Medzi taketo prostredia patria aj mnohé podzemné vody [99].

Rádiouhlíkovou metódou možno určiť čas, ktorý uplynul odvtedy, odkedy vo vode prestalo doplňovanie ¹⁴C z atmosféry a pôdneho vzduchu, t.j. od okamihu, keď voda vsiakla pod zemský povrch. Taktiež možno rádiouhlíkovú metódu aplikovať pri štúdiu dynamických procesov-určenie smeru a rýchlosti prúdenia, prípadne aj filtračných vlasností prostredia. Dôležité je, že sa tieto údaje získavajú zo vzoriek odobratých v teréne bez podstatného narušenia prírodného prúdenia podzemnej vody a že pri skúmaní vhodne rozmiestnenej sieti odberových bodov možno získať informácie o prúdení vody v ragionálnom rozsahu, alebo o infiltrácii a prúdení podzemnej vody v závislosti od geologických a morfologickývh pomerov.

Parciálny tlak atmosférického CO₂ je relatívne nízky. V pôdnom vzduchu koreňovej oblasti však dosahuje v dôsledku látkovej výmeny rastlín a tlenia organických zvyškov hodnoty o niekoľko rádov vyššie ako v atmosfére. Z tohto dôvodu sa rozhodujúci podiel rozpusteného CO₂ dostáva do podzemných vôd až počas infiltrácie. Pôdny CO₂ má prakticky zhodný obsah ¹⁴C ako atmosférický CO₂. Líši sa však od neho svojim obsahom stabilného izotopu ¹³C.

Podzemná voda a v nej rozpustený CO₂ sa dostávajú do styku s neaktívnymi uhličitanmi geologických formácií, najmä s uhličitanom vápenatým a rozpúšťa ho podľa rovnice:

$$x CaCO_3 + x H_2O + (x+y) CO_2 \rightarrow x Ca^{2+} + 2x HCO_3^- + y CO_2$$
 (5.3)
Takýmto spôsobom sa do podzemných vôd dostáva uhlík, ktorý neobsahuje ¹⁴C a
preto výsledná rádiouhlíková aktivita hydrouhličitanov v recentnej podzemnej vode je
nižšia ako v súčasnej štandardnej vzorke.

Na základe mernej aktivity vzorky a štandardu nie je možné určiť vek vody bezprostredne použitím rovnice (5.1). Dôvodom je fakt, že izotopové zloženie uhlíka v hydrologických vzorkách sa môže výrazne líšiť od rovnovážnej hodnoty, preto sa vek vody určuje podľa vzťahu:

$$t = \frac{T_{1/2}}{\ln 2} \cdot \ln \frac{k \cdot A_0}{A} \tag{5.4}$$

kde k je pomer obsahu uhlíka použitého na datovanie (a) k celkovému obsahu uhlíka v datovanej vode (b). Hodnotu koeficientu k je možno určiť z rovnice:

$$k = \frac{a}{b} = \frac{x + y}{2x + y},$$
 (5.5)

kde hodnory x a y sa stanovujú ako polovičná molárna koncentrácia kyslých uhličitanov (x) resp. molárna koncentrácia voľného CO₂ (y) v datovanej vode. V prípade hlbinných vôd s vysokým obsahom CO₂ pomocou hĺbkového odberu, nakoľko pri odbere s povrchu sa nameria menšia koncentrácia CO₂, v dôsledku uvoľňovania CO₂ do atmosféry. Koeficient k vypočítaný z molárnej koncentrácie hydrouhličitanov a voľného CO₂ býva vo väčšine prípadov 0,5-0,6. Táto hodnota je považovaná za príliš nízku a vypočítaný vek vody pomocou tejti hodnoty je tiež príliš nízky.

K. O. Münich [100] zistil meraním vzoriek vody, že obsah rádiouhlíka v recentnej podzemnej vode je väčšinou medzi 70-90 % súčasnej štandardnej vzorky

(k=0,7-0,9). M. A. Geyh [101] uvádza hodnoty počiatočnej koncentrácie ¹⁴C v podzemných vodách a to pre klasické horniny 85 %, pre krasové územie 65 % a pre kryštalické horniny 100 % súčasnej štandardnej vzorky (pmc).

Určenie koeficienta k, resp. počiatočnej koncentrácie ¹⁴C (hodnoty A₀) v podzemnej vode v čase jej prieniku do hydrogeologickej štruktúry je pomerne zložité a doteraz nebol vypracovaný postup, ktorý by mal univerzálnu platnosť pre všetky prípady. V konkrétnych prípadoch môže dôjsť ku kombinácii rôznych faktorov, ktoré ovplyvňujú konečný obsah ¹⁴C. Na určenie hodnoty A₀ vypracovali rôzni autori viacero metód.

Jednou z prvých je Vogelova metóda [102]. Vogel na základe asi 100 meraní aktivity vo vode rozpustných foriem oxidu uhličitého odporučil pre A₀ používať hodnotu 85 % súčasného štandardu (pmc). Hodnota môže byť reprezentatívna pre A₀ pôdnej vody a plytkých vôd v miernom podnebí, ale neberie do úvahy reakcie nuklidovej výmeny, ku ktorej dochádza v nasýtenej zóne, pod hladinou podzemnej vody.

Tamers [103], neskôr Tamers a Scharpensel [104] počítajú s aktivitou pôdneho vzduchu všeobecne s hodnotou od 100 pmc, ale aktivita rozpúšťajúcich sa pevných uhličitanov sa podľa nich rovná nule. Tento postup predpokladá dokonalú stechiometriu pre rôzne chemické reakcie, v ktorých sa zúčastňuje uhlík, ale neberie do úvahy nuklidovú výmenu, teda možnú migráciu ¹⁴C.

Ingerson a Pearson [105] počítajú začiatočnú aktivitu celkového rozpusteného uhlíka pomocou modelu, ktorý zohľadňuje aj miešanie nuklidov. Tento postup vychádza z obsahu ¹³C v každej zložke, zúčastňujúcej sa na miešaní:

$$A_0 = \frac{\delta_T - \delta_C}{\delta_g - \delta_C} \cdot \left(A_g - A_C\right) + A_C$$
(5.6)

kde $\delta_{T,} \delta_{g}, \delta_{C}$ je zloženie stabilných nuklidov celkove rozpusteného C, pôdneho CO₂, pevných uhličitanov,

 A_g , A_C je aktivita ¹⁴C pôdneho CO_2 a pevných uhličitanov. Hodnota $\delta^{13}C$ pevných uhličitanov z pôdy a zvodneného prostredia je všeobecne blízka nule pri porovnaní so štandardom PDB. V prípade sladkovodných vápencov je obsah ¹³C všeobecne menší ako PDB štandard a hodnoty δ sú negatívne. Hodnota δ_C sa môže merať priamo, pretože vzorky vápencov zvodneného prostredia sú prakticky vždy dostupné. Merný obsah ¹³C v plynnom pôdnom CO_2 závisí od vegetačného krytu v infiltračnej oblasti v čase infiltrácie vody. V miernych oblastiach sa však priemerná hodnota pohybuje okolo 25 %. V tropických oblastiach je hodnota blízka 12 %. Problémom v tomto prípade je charakterizovanie podnebia, a tým aj vegetačného krytu v čase infiltrácie skúmanej vody. Za dlhé obdobie, ktoré niekedy uplynie medzi obdobím infiltrácie a odberu vzoriek podzemnej vody, mohlo dôjsť k zmenám voči súčasnému stavu.

Pri praktických aplikáciách Pearsonovho modelu sa používa zjednodušený postup, ktorý berie do úvahy jednotlivé veličiny s nasledujúcimi hodnotami: δ_g = 25‰, δ_C =0 ‰, A_C = 0 ‰. Potom sa rovnica (5.6) redukuje na výraz:

$$A_0 = \left(\frac{\delta_T}{-25}\right) .100 \text{ (pmc)}$$
(5.7)

Mook [106] predpokladá, že všetky uhlíkonosné zložky (plyny a vo vode rozpustný CO₂, kyselina uhličitá, hydrogén uhličitany, uhličitany a pevné uhličitany), ktoré sa zúčastňujú na rôznych dejoch, spejú do nuklidovej, ako aj chemickej rovnováhy. Potom z chemickej a nuklidovej bilancie navrhuje nasledovnú rovnicu:

$$A_0 = A_{\Sigma} = \frac{a}{\Sigma} A_{a0} + 0.5 \left(1 - \frac{a}{\Sigma} \right) \left(A_{a0} + A_{e0} \right) + \left[A_{g0} \left(1 - 2.10^{-3} \in_g \right) - 0.5 \left(A_{a0} + A_{e0} \right) \right]$$

$$\cdot \frac{\delta_{x} - (a/\Sigma)\delta_{a0} - 0.5[1 - (a/\Sigma)](\delta_{a0} + \delta_{e0})}{\delta_{g0} - \epsilon_{g} (1 + 10^{-3}\delta_{g0}) - 0.5(\delta_{g0} - \delta_{e0})}$$
(5.8)

kde Σ je molálna koncentrácia celkového rozpusteného uhlíka,

- a molálna koncentrácia CO₂ zvody,
- A aktivita ¹⁴C, pmc,
- δ ¹³C koncentrácia, ‰ PDB,
- ∈_g faktor nuklidového obohatenia medzi plynným CO₂ a hydrogénuhličitanmi, ‰ (∈ < 0),
- $a \quad CO_2 z \ vody,$
- e vápence,
- g plynný CO₂,
- Σ celkový rozpustný uhlík (ako index),
- 0 začiatočný obsah.
Garnierov-Fontesov postup [107] je založený na chemickom prístupe k určeniu množstva neaktívneho uhlíka a na nuklidovej reakcii, ktorá určuje výmenu vo zvodnenom prostredí. Autori ďalej vychádzajú z predpokladu, že obsah aktívneho uhlíka sa najlepšie určí z pozadia anorganického a rozpusteného uhlíka.

Anorganický uhlík sa dostáva do roztoku pri rozpúšťaný uhličitanov alkalických zemín. Jeho koncentrácia sa potom rovná molarite Ca²⁺, Mg²⁺. Obsah neaktívneho uhlíka sa najpresnejšie určí z alkality meranej v teréne:

$$mC_{M} = \frac{2mCO_{3}^{2-} + mHCO_{3}^{-}}{2}$$
(5.9)

kde m je molálna koncentrácia,

mC_M - molálna koncentrácia anorganického pôvodu.
 Na výpočet začiatočnej aktivity A₀ uvádzajú vzťah:

$$A_{0} = \left(1 - \frac{C_{M}}{C_{T}}\right) A_{g} + \frac{C_{M}}{C_{T}} A_{M} + \left(A_{g} - 0.2_{e} - A_{M}\right) \frac{\delta_{T} - \left(C_{M} / C_{T}\right) \delta_{M} - \left[1 - \left(C_{M} / C_{T}\right)\right] \delta_{g}}{\delta_{g} - \varepsilon - \delta_{M}}$$
(5.10)

- kde C_T je molálna koncentrácia celkového rozpusteného anorganického uhlíka. Je sumou rozpustných uhličitanov, hydrogénuhličitanov a CO₂ (H₂CO₃), pričom CO₂ sa počíta za predpokladu chemickej rovnováhy v podmienkach pH zistených meraním v teréne,
 - C_M molálna koncentrácia rozpusteného uhlíka, ktorý pochádza z pevných uhličitanov. Počíta sa najlepšie z uhličitanovej alkality meranej v teréne.
 - δ_T obsah ¹³C celkového rozpusteného uhlíka, ktorý sa meria
 - δ_M obsah ¹³C v pevných uhličitanoch. Môže sa merať, alebo sa považuje za nulový v prípade morských uhličitanov
 - δ_g obsah ¹³C plynného uhlíka, môže sa merať v infračervenej oblasti.
 Infiltrácia však musí byť rýchla, aby nedošlo k nijakým zmenám v aktivite vody medzi infiltráciou a vzorkovaním
 - A_g rádioaktivita ¹⁴C plynného CO₂. Považuje sa za 100 % súčasného štandardu ak voda neobsahuje trícium. Ak voda obsahuje trícium, môže obsahovať "bombový" ¹⁴C
 - A_M aktivita rádiouhlíka z pevných uhličitanov. Obvykle sapovažuje za 0 % súčasného štandardu
 - e faktor nuklidového obohatenia. Počíta sa pri teplote zvodneného

prostredia z hodnôt, ktoré sú udávané Deinesom.

Zo skúmaných modelov vyplýva, že celá problematika rádiouhlíkového datovania v hydrológii je zložitá, vyžaduje značnú chemickú a geochemickú erudíciu pracovného kolektívu. Veľmi vhodná je spolupráca geochemika, najmä pri stanovovaní vstupných hodnôt pre konečný výpočet. Reálna interpretácia výsledkov, čo sa týka absolútnych vekov, je vždy veľmi zložitá. Vo väčšine prípadov hodnotenie relatívnych vzťahov má oveľa väčší význam ako hodnotenie absolútneho veku. Možno z neho získať poznatky o charaktere pohybu vody, približnom smere prúdenia a pod. Pri rádiouhlíkovom datovaní je nutné venovať veľkú pozornosť aj hydrochémii podzemnej vody, ktorá môže poukázať na výmenu nuklidov medzi horninovým prostredím a vodou. Vhodné je tiež súčasne zisťovať tríciovú aktivitu, ktorá často umožní základnú orientáciu v určovaní veku podzemnej vody, najmä ak určí jej súčasný vek.

Odber vzoriek pre rádiouhlíkové datovanie vody

Pri rádiouhlíkovom datovaní vody sa potrebné množstvo uhlíka získa z hydrouhličitanov, rozpustených vo vode. Uvedené množstvo uhlíka (5 g) odpovedá obsahu 25,4 g hydrouhličitanov vo vode. Datovanie podzemnej vody je teda podmienené určitou uhličitanovou tvrdosťou. V bežných podzemných vodách kalcium-magnesium-hydrogénkarbonátového typu možno počítať s obsahom 100-500 mg/l HCO₃⁻. Za predpokladu kvantitatívneho separovania všetkého uhlíka by bolo potrebné pri uvedených koncentráciách HCO₃⁻ spracovať 50 až 250 l vody. S rezervou je teda potrebné počítať so spracovaním niekoľko desiatok až niekoľko stoviek litrov vody. Potrebné množstvo vody zisťujeme z obsahu hydrouhličitanov vo vode, ktorý sa stanovuje na mieste odberu titráciou.

Na separáciu uhlíka z vody používame metódu chemického vyzrážania hydrouhličitanov, ktorá bola popísaná hydrologickým pracoviskom Medzinárodnej agentúry pre atomovú energiu vo Viedni (Sampling of water for ¹⁴C analysis). K zrážaniu používame nádobu o objeme 100 l z umelej hmoty, ktorá má dole kónický nástavec. Nádoba sa na mieste odberu naplní vodou zo skúmaného zdroja. . Do nádoby s vodou sa postupne pridá síran železnatý v množstve asi 0.05 g na 1 liter vody a mieša sa do úplného rozpustenia. Potom sa pridá nasýtený roztok chloridu bárnatého v množstve asi 8 ml na 1 liter vody. Po premiešaní celého objemu vody sa

pridá 50 ml 1 % vodného roztoku Lovosy (koagulačné činidlo) a vzorka sa znovu dôkladne premieša. Nakoniec sa do nádoby pridáva nasýtený roztok NaOH, pokiaľ sa nedosiahne pH >10. Koagulačné činidlo strháva ku dnu jemne suspendovaný uhličitan bárnatý, ktorý sa usadí v kónickej časti nádoby. Vytvorená zrazenina sa nechá usadzovať 30-60 minút. Po dokonalom usadení sa vrchná vrstva vody odčerpá a získaná zrazenina sa preleje do transportnej fľaše a ďalej sa spracuje v laboratóriu. Pokiaľ pri nízkej mineralizácii vody množstvo uhličitanu bárnatého nestačí, musí sa zrážanie opakovať.

Výhodou tejto metódy je pomerná jednoduchosť, nevýhodou je riziko kontaminácie vzorky vzdušným oxidom uhličitým a rádioaktívným spadom. Preto je potrebné nádobu s vodou počas usadzovania uzatvoriť. Ďalšou nevýhodou sú značné rozmery odberového zariadenia a tým pádom obtiažnosť jeho transportu.

5.3 Výsledky rádiouhlíkového datovania

Naše rádiouhlíkové laboratórium je jediné v Slovenskej republike, ktoré výužíva detekčný systém na meranie ¹⁴C aj na rádiouhlíkové datovanie. Umožňuje nám to vysoká citlivosť nášho detekčného systému (detekčný limit ~ 1 mBq/g C) a vypracované metodiky na spracovanie vzoriek organického aj anorganického pôvodu do formy vhodnej na meranie ¹⁴C. Spolupracovali sme s rôznymi pracoviskami na Slovensku, ale aj v zahraničí. Uvediem aspoň niektoré: Archeologický ústav SAV Nitra, Geologický ústav D. Štúra Bratislava, Výskumný ústav jadrových elektrární Trnava, Ekokunzult Bratislava, Výskumný ústav pôdoznalectva a výživy Bratislava, Hydrocomp Bratislava, Geoconsult Košice, Vodné stavby Bratislava, Naftové doly Hodonín (ČR), IAEA Viedeň a ďalšie. Mali sme požiadavky na datovanie podzemných vôd aj z Poľskej republiky.

Veľmi rozsiahla bola spolupráca s Geologickým ústavom D. Štúra v Bratislave, kde sme v rámci úlohy "Využitie geotermálnej energie Slovenska" určovali vek podzemných vôd po celom Slovensku. Úloha bola riešená 3 roky a bolo analyzovaných celkove 104 vzoriek. Tieto výsledky boli prezentované na troch medzinárodných konferenciách (viď Zoznam prác autora dizertačnej práce). V tab. 5. 2 je uvedená časť týchto výsledkov. V spolupráci s GÚ DŠ sme sa podielali aj na riešení úlohy "Výber lokality pre hlbinné úložisko RA odpadov v podmienkach Slovenska". V rámci tejto úlohy sme analyzovali 23 vzoriek.

	Lokalita	Zdroj	δ ¹³ C	δ ¹³ C	PMC	Vek	δ ¹⁸ Ο
No.		,	HCO ₃ ⁻	CO ₂	(%)	(rokov)	H ₂ O
			(%)	(‰)	× ,	· · · · ·	(%)
			· · ·	· · · ·			
1	Koplotovce	KB-1	-4,44	-9,14	2,1 ±0,1	32000 ± 2000	-11,54
		KB-2	-4,52	-8.98	2,2 ±0,4	31000 ± 900	-11,50
2	Santovka	B-6	-0.56	-5 44	20+08	31000 + 3300	-10 19
-	Cuntovita	B-15	-2.84	-8,19	2,0 ±0,0 9 9 +0 4	18000 ± 3000	-10,15
3	Dudince		+0.28	-6.37	<u>3,3 ±0,4</u> 2 0+ 0 3	31000 ± 1050	_11 14
Ŭ	Duamoe	S-3	-0.05	-6 61	2,0±0,3 2,9±0,3	28000 ± 730	-11 27
4	Brusno	ŠHB-2	-7.81	-12 36	12 4+0 3	16300 ± 180	-10.08
-	Diasilo	BC-1	-4.46	-10.60	7 5+ 0 3	20100 ± 280	-10,17
5	Malinovec	B-3	+0.74	-4 94	<u>7,5±0.5</u> 2,9+0,3	28000 ± 200	-11 28
6	Štúrovo	FGŠ-1	-7.61	-15.02	2,0±0,0	28000 ± 700 28000 ± 700	-11 17
7	Piešťany	V-8	-7.95	10,02	2,9±0,4 2,9±0,3	28000 ± 700 28000 + 740	_11 34
'	ricotariy	V-4A	-8.66	-11 55	2,9±0,5 3 0±0 4	26000 ± 740 26000 + 560	-11.33
		•	0,00	11.00	3,9±0,4	20000 ± 500	11,00
8	Kovacova	K-2	-3,94	-8,55	2,9±0,3	28000 ± 740	-11,38
9	Silac	Kupeiny	-2,32	-6,76	3,0±0,3	28000±710	-11,83
10	Siva Brada	B-2	+3,44	-3,35	2,9±0,3	27600 ± 720	-11,48
11	Vrbov	VR-2	+0,92	-6,24	3,2±0,3	27100 ± 790	-11,36
		VR-1	+1,38	-5,98	3,6±0,3	26100 ± 700	-11,50
12	Bešeňová	ZGL-1	-1,20	-6,49	3,4±0,3	27000 ± 750	-10,47
13	Gánovce	Kúpeľný	-0,21	-6,56	3,3±0,3	26900 ± 650	-11,21
		GA-1/A	-0,63	-6,01	4,1±0,3	25200 ± 520	-11,23
14	Liptovský Ján	Rudolf	+1,03	-6,03	3,6±0,4	26000 ± 710	-10,85
15	Turčianske	TJ-20	-2,33	-8,38	3,7±0,3	26000 ± 580	-10,85
	leplice	IIS-1	-2,87	-8,50	4,1±0,3	25100 ± 520	-10,72
		1J-3	-2,20	-8,02	5,2±0,3	23100 ± 490	
16	Lúčka	BS-1	+0,87	-5,00	3,9±0,3	25400 ± 540	-11,62
17	Vyšný Sliač	Certovic	-0,85	-6,54	4,0±0,3	25000 ± 630	-10,34
10	A (1	а	4.00	10.00			44.45
18	Arnútovce	HKJ-3	-4,08	-10,08	4,1±0,3	25000 ± 520	-11,15
19	Mosovce	HV-63	-1,80	-8,20	4,6±0,3	24100 ± 550	-10,87
20	Laskár	S-1 NBII	-4,32	-16,71	5,0±0,3	23400 ± 430	-10,43
		S-1	-5,43	-11,68	6,5±0,3	21000 ± 400	-10,54
21	Trenčianske	P-1	-6,26	-11,65	5,0±0,4	23000 ± 500	-10,79
	I eplice	SB-5	-7,52	-10,05	6,4±0,4	21000 ± 400	-10,62
		V-3	-8,79	-9,40	7,5±0,5	20000 ± 340	-10,62
22	Lúčky	ВЈ — 101	-0,81	-7,27	5,2±0,3	23000 ± 490	-10,75
23	Slatina	BB – 1	-3,71	-7,02	6,3±0,4	22000 ± 480	-10,20
		BB – 2	-7,17	-11,08	27,3±0,3	9000 ± 98	-9,76
24	Lipt. Štiavnica	LŠH – 1	-0,72	-6,47	6,8±0,3	21000 ± 320	-10,55
25	Poprad	PP – 1	-1,21	-6,96	6,8±0,3	20900 ± 380	-11,01
26	B. Bystrica	BB – 1	-2,94	-7,87	7,5±0,2	20100 ± 320	-10,17
27	Malé Bielice	MB – 3	-3,52	-10,23	7,8±0,3	20000 ± 280	-10,44
	Velké Bielice	VB – 2	-6,62	-12,98	13,3±0,4	15000 ± 230	-10,12
28	Patince	SB –2	-9,00	-16,09	8,3±0,6	19200 ± 260	-10,94
29	Vyš.	Izabela	-2,96	-7,99	9,3±0,3	$\overline{18300\pm230}$	-10,78
	Ružbachy						
30	Belušské	Kúpeľný	-5,62	-9,09	11,3±0,4	16700 ± 190	-10,20
L	Slatiny	BS – 2	-4,71	-9,68	11,7±0,4	16400 ± 180	-10,12
31	Bánovce n/B	BNB – 1	-8,81	-12,02	9,3±0,4	18300 ± 280	-10,07

 Tab. 5.2
 Výsledky datovania geotermálnych podzemných vôd Slovenska.

	Lokalita	Zdroj	δ ¹³ C	δ ¹³ C	PMC	Vek	δ ¹⁸ Ο
No.		-	HCO₃ ⁻	CO ₂	(%)	(rokov)	H ₂ O
			(‰)	(‰)			(‰)
32	Rajecké	BJ –19	-4,85	-12,62	10,0±0,3	17700 ± 260	-10,18
	Teplice						
33	Kalameny	HGL – 2	-1,35	-8,39	9,3±0,3	18300 ± 280	-11,25
34	Vyhne	H –1	-3,92	-9,44	10,5±0,3	17300 ± 200	-10,38
35	Sklené	ST –1	-6,77	-12,88	13,2±0,3	15400 ± 190	-10,28
	Teplice	ST – 2	-6,53	-11,95	13,2±0,3	15400 ± 160	-10,31
36	Rajec	RK –22	-6,14	-17,40	13,2±0,3	15400 ± 160	-10,12
37	Stráňavy	ŽK – 2	-8,50	-16,66	14,9±0,3	14400 ± 170	-9,89
38	Chalmová	HCH-1	-4,26	-13,12	18,4±0,5	12700 ± 200	-9,99
39	Kamenná	RTŠ – 1	-8,26	-16,22	17,7±0,3	13000 ± 150	-10,07
	Poruba						
40	Oravice	OZ – 2	-9,14	-16,36	18,1±0,4	12800 ± 170	-11,12
		OZ – 1	-12,66	-20,70	33,6±0,4	7700 ± 90	
41	Kalinčiakovo	HBV – 1	-9,15	-14,34	25,4±0,3	9900 ± 100	-10,72
		HBV –2	-9,54	-8,55	26,4±0,3	9600 ± 100	-10,76
42	Peklina	ŽK – 5	-8,06	-20,98	24,6±0,3	10100 ± 90	-10,28
43	Bojnice	BR – 1	-7,12	-14,11	27,9±0,6	9100 ± 140	-9,96
		BR – 3	-7,36	-14,69	29,4±0,5	8700 ± 110	-10,03

Tab. 5.2 Pokračovanie.

Dlhoročnú spoluprácu máme s VÚJE Trnava a celkove sme pre nich merali ¹⁴C aktivitu asi v stovke vzoriek. Sledovali sme ¹⁴C v komíne JE V1 a V2 v Jaslovských Bohuniciach a tiež v okolí JE. Pre VÚJE Trnava sme urobili aj sériu meraní predprevádzkových aktivít ¹⁴C v okolí RÚ RAO Mochovce. Výsledky týchto meraní sú uvedené v tab. 5.3, kde vzorky L1, L2 a V sú povrchové vody z okolia úložiska a MON 2A, 2B a 2C sú podzemné vody. Na základe týchto meraní bude možné počas prevádzky RÚ RAO sledovať jeho vplyv na prírodné prostredie, čo sa týka kontaminácie rádiouhlíkom.

Vzorka	Obsah HCO ₃	Obsah ¹⁴ C	Objemová aktivita
	mg/l	pmc	A _O ,mBq/l ;#mBg/m ³
L 1	317	97,1 ± 0,4	$13,6\pm0,5$
L 2	458	$102,\!4\pm0,\!3$	$20,9\pm0,7$
V	250	$104,7\pm0,4$	11,6 ± 0,4
MON 2A	458	$\textbf{48,5}\pm\textbf{0,5}$	9,9 ± 0,4
MON 2B	500	$50,0\pm\ 0,3$	11,1 ± 0,4
MON 2C	628	$43,3\pm\ 0,3$	$12,2\pm0,4$
Atm. NOV. 97	-	112,3 ± 0,8	44,5 ± 1,4 #
Atm. JÚN 98	-	115,1 ± 0,9	45,6 ± 1,5 #

Tab. 5.3 Predprevádzkové aktivity ¹⁴C v okolí RÚ RAO Mochovce.

Využitie ¹⁴C v tovaroznalectve

Rádionuklid ¹⁴C možno využívať aj v potravinárstve, kozmetike a pod. na posúdenie tovaru, či je vyrobený na prírodnej báze. Robili sme napr. merania na zistenie pravosti liehu. Na základe obsahu ¹⁴C možno rozlíšiť prírodný lieh od syntetického liehu. Merali sme obsah ¹⁴C v prírodnom liehu (roč. 1999) a v syntetickom liehu. Výsledky merania ¹⁴C v liehu sú uvedené v tab. 5.4. Syntetický lieh má už nulový obsah ¹⁴C a prírodný lieh má obsah ¹⁴C zhodný s obsahom ¹⁴C v atmosfére v danom roku. Pre porovnanie uvádzame v tab. 5.5 hodnoty obsahu ¹⁴C v atmosfére pre letné mesiace roku 1999 (obdobie tvorby plodov ovocia). Stredný obsah ¹⁴C v atmosfére za sledované obdobie (110,8 pmc) sa veľmi dobre zhoduje s obsahom ¹⁴C v prírodnom liehu z daného roku (109,7 pmc).

Vzorka	δ ¹³ C, (‰)	Obsah ¹⁴ C , (pmc)
Prírodný lieh (roč. 1999)	-27,747	109,7 ± 0,6
Denaturovaný lieh	-32,819	≤ 0,5

Tab. 5.5 Obsah ¹⁴C v atmosfére – rok 1999.

Vzorka	δ ¹³ C , (‰)	Obsah ¹⁴ C, (pmc)
Apríl	-10,612	110,6 ± 0,6
Máj	-6,603	109,3 ± 0,7
Jún	-9,147	112,0 ± 0,6
Júl	-9,794	111,6 ± 0,6

Stredná hodnota : $(110,8 \pm 0,6)$ pmc

Počas dlhodobej prevádzky nášho laboratória sme urobili rádiouhlíkovú analýzu asi 400 vzoriek, za účelom rádiouhlíkového datovania resp. stanovenia obsahu ¹⁴C. Výsledky našich analýz prispeli k riešeniu úloh v rôznych vedných odboroch, ako sú archeológia, história, geológia, hydrogeológia, tovaroznalectvo, vodohospodárstvo, pôdohospodárstvo, ochrana životného prostredia a ďalšie.

6. Zhodnotenie dosiahnutých výsledkov

Rádiouhlík patrí k rádiologicky dôležitým nuklidom, umožňuje sledovať a skúmať rôzne procesy a javy v prírode. Skúmanie a sledovanie problémov produkcie rádiouhlíka, jeho zdrojov, migrácie rádiouhlíka cez uhlíkové rezervoáre a štúdium príčin variácií koncentrácie ¹⁴C v atmosfére a biosfére je dôležité pre praktické uplatnenie rádiouhlíkovej metódy v mnohých špeciálnych vedeckých disciplínach.

Problémom merania nízkych aktivít ¹⁴C sa na katedre zaoberáme už dlhšiu dobu. Bolo vybudované rádiouhlíkové laboratórium na báze proporcionálnych počítačov. Na základe vlastného vývoja bolo skonštruovaných niekoľko typov proporcionálnych počítačov. Veľkú pozornosť sme venovali výberu vhodných plynových náplní pre proporcionálne počítače. Boli zhotovené vákuové aparatúry metodiky plynov a vypracované na prípravu a čistenie pracovných pre proporcionálne počítače. Odskúšali sme rôzne plynové náplne, ako CO₂ CH₄, C₂H₂ a pod. Po dôkladnom výbere sme rozhodli používať metán ako plynovú náplň pre rutinné merania ¹⁴C. Metán je pomerne málo citlivý na elektronegatívne prímesi a jeho príprava je relatívne menej náročná ako príprava vyšších uhľovodíkov. Za účelom zvýšenia detekčnej citlivosti proporcionálnych počítačov bol postavený nízkopozaďový tieniaci kryt. Celková hmotnosť tieniaceho krytu je 16 t, hrúbka tieniacej steny 0,36 m a objem tieneného priestoru je 0,54 m³. Nový tieniaci kryt má koeficient potlačenia pozadia 1,4 v porovnaní s malým tieniacim krytom (10 cm olova) a umožňuje skrátiť dobu merania o 30 % pri nezmenenej neistote merania.

Uhlík je dôležitý biogénny prvok a je rozšírený v celej biosfére. Aby bolo možné využívať náš detekčný systém v širokom rozsahu aplikácií, vypracovali sme metodiky separácie ¹⁴C zo všetkých foriem prírodného prostredia. Na separáciu ¹⁴C z atmosféry a pôdneho vzduchu používame viazanie atmosferického a pôdneho CO₂ do roztoku NaOH. Bola vypracovaná metodika na separáciu ¹⁴C z hydrologických vzoriek (povrchové vody, podzemné vody), formou zrážania hydrouhličitanov. Ďalej boli vypracované metodiky pre chemické spracovanie biosferických vzoriek (drevo, rastliny a pod), ktoré následne spaľujeme v prúde kyslíka. Pre precízne meranie ¹⁴C v letokruhoch stromov sme vypracovali metodiku prípravy celulózy, na základe ktorej sa odstraňujú z dreva všetky sprievodné látky.

Na základe meria ¹⁴C v letokruhoch lipy z obdobia 1901-1953 bol ohodnotený Sueessov efekt v oblasti Slovenska, to zn. pokles koncentrácie ¹⁴C v atmosfére v dôsledku spaľovania fosílnych palív. Celkový pokles hodnôt Δ^{14} C za sledované obdobie bol 43,5 ‰, čo znamená ročný pokles 0,8 ‰. Tento súbor dát ďalej potvrdil existenciu krátkodobých variácií rádiouhlíka (11-ročný cyklus) a ukázal na antikorelačnú závislosť od slnečnej aktivity. Fourierova analýza ukázala periodicitu Δ^{14} C rady s významnou periódou 11 rokov a 9,9 roka. Stredná amplitúda variácií Δ^{14} C, pre slnečné cykly XIV až XVIII, s periódou 11 rokov je (1.25±0,45) ‰. Časový posuv medzi Wolfovými číslami a Δ^{14} C, ktorý ukazuje na antikorelačnú závislosť Δ^{14} C od W, je 2,2 roka. Pre cyklus ¹⁴C s periódou 9,9 roka je stredná amplitúda variácií Δ^{14} C (2,18±0,47) ‰ a časový posuv medzi Wolfovými číslami a Δ^{14} C je 3,45 roka. Maximálna amplitúda (6 ‰) bola nameraná pre XVII. slnečný cyklus. Tieto výsledky umožnili stanoviť 11-ročný cyklus variácií ¹⁴C v letokruhoch a majú veľký význam pre výskum ¹⁴C v ďalekej minulosti, pre získanie informácií o dlhodobej slnečnej aktivite.

V súvislosti s rozvojom jadrovej energetiky sa do popredia dostáva otázka monitorovania rádionuklidov v exhalátoch vypúšťaných komínom jadrovej elektrárne a v jej blízkom okolí. Pre Výskumný ústav jadrových elektrární v Trnave sme vypracovali metódu merania aktivity ¹⁴C v komíne JE (vo forme CO₂ a vo forme CH₄ a vyšších uhľovodíkov). Na základe meraní ¹⁴C v komínoch JE V1 a V2 v Jaslovských Bohuniciach sme stanovili podiel ¹⁴C aktivity v jednotlivých jeho formách pre tlakovodný jadrový reaktor. Merania aktivity ¹⁴C v blízkom okolí jadrovej elektrárne (miesto maximálnej prízemnej koncentrácie) ukázali, že namerané hodnoty sú o niekoľko rádov nižšie ako sú maximálne prípustné koncentrácie pre obyvateľstvo. Napriek tomu je radiačná kontrola znečistenia atmosféry a životného prostredia stále dôležitá.

Na základe monitorovania ¹⁴C v atmosfére Bratislavy a Žlkoviec sme získali rozsiahli súbor dát Δ^{14} C, ktorý nám ukazuje na celkový trend priebehu ¹⁴C v atmosfére. V súlade očakávaním dáta z oboch lokalít vykazujú postupný pokles strednej hodnoty Δ^{14} C, na ktorú je naložená tlmená variácia. Stredná hodnota Δ^{14} C klesá približne exponenciálne s časom, v Bratislave je ten pokles rýchlejší (polčas 12,4 roka) ako v Žlkovciach (polčas 23,4 roka). Tento pomalší pokles v Žlkovciach poukazuje na vplyv jednak technogénneho ¹⁴C a ďalej na vplyv fosílneho CO₂ v atmosfére Bratislavy. Namerané varácie majú periódu jeden rok a ich amplitúda s časom tak isto klesá. Na základe meraní δ^{13} C bolo ukázané, že na vzniku zimných miním sa podieľa hlavne zvýšený prísun fosílneho CO₂ do atmosféry v zimnom období. Štúdium charakteristík δ^{13} C a Δ^{14} C ukázalo, že tieto môžu byť využité ako účinný nástroj na stanovovanie miery znečistenia atmosféry antropogénnym CO₂.

Ďalej boli získané hodnoty Δ^{14} C a δ^{13} C v pôdnom vzduchu z hĺbky 80 cm a vo vzduchu exhalovanom z pôdy. Bola potvrdená existencia variácií Δ^{14} C a δ^{13} C v pôdnom vzduchu a kvalitatívne vysvetlená podstata ich vzniku. Metódami regresnej analýzy boli určené trendy stredných hodnôt. V pôdnom vzduchu klesá stredná hodnota Δ^{14} C pomalšie ako v atmosfére (polčas 330 rokov).

Vybudovaný detekčný systém na meranie nízkych aktivíť ¹⁴C, vzhľadom na dosiahnutý detekčný limit, je možné využívať aj na rádiouhlíkové datovanie a na monitorovanie ¹⁴C v prírodnom prostredí. Sme jediné pracovisko tohto druhu v Slovenskej republike a naše služby využívajú pracoviská s rôznych vedeckých oblastí. Doteraz sme urobili asi 500 rádiouhlíkových analýz pre praktické aplikácie a výsledky našich analýz prispeli k riešeniu úloh v rôznych vedných odboroch, ako sú archeológia, história, geológia, hydrogeológia, tovaroznalectvo, vodohospodárstvo, pôdohospodárstvo, ochrana životného prostredia a ďalšie.

LITERATÚRA

- [1] Lal D., Peters B., Cosmic Ray Produced Radioaktivity on the Earth, Handbuch der Physic, XLVI/2, 1965
- [2] Lujanas V., Kosmogennyje radionuklidy v atmosfere, Mokslas, Vilnius, 1979
- [3] Hess W. H., Canfield E. H., Lingenfelter R. E., cosmic/ray neutron demografy, J. Geophys. Res., 1961, N 3, p.66
- [4] Newkirk L. L., Calculation of low-energy flux in theatmosphere by the Sn method, J. Geophys. Res., 1963, 68, N 7, p. 1825-1833
- [5] Lingenfelter R. E., Ramaty R., Astrophysical and geophysical Variation in ¹⁴C production, XII-th Nobel Symposium, Uppsala, Sweden, 1969
- [6] De Wries H., Konikl. Ned. Akad. Wedenshop. Porc., B 61, 1958, p. 94
- [7] Damon P. E., The report at the XII-th Nobel Symposium, Uppsala, Sweden, 1969
- [8] Dergacev V. A., Malcenko S. J., Proc. Astrof. javl. radiouglerod, Tbilisi, 1974
- [9] Lingenfelter R. E., Rev. Geophys., 1, 1963, p. 35
- [10] Hourtermans J., Suess H. E., Oeshger H., J. Geophys. Res., 78, 1973, 1897
- [11] Hourtermans J., Z. Phys., 193, 1966, p.13
- [12] Dergachev V. A., Supneva A. V., preprint FTI AN SSSR N. 491, 1975
- [13] Oeshger H., Siegenthaler U., Schotterer U., Gugelmann A., Tellus 27, 1975, p.168
- [14] Lerman J. C., Mook W. G., Vogel J. C., Nature 216, 1965, p. 861
- [15] Stuiver M., Science 149,1965, p. 533
- [16] Suess H. E., J. Geophys. Res., 70,1965, p. 5937
- [17] Baxter M. S., Walton A., Proc. R. Soc. London, Ser. A 321, 1971, p.105
- [18] Baxter M. s., Farmer J. G. Earth and Planet. Sci. Lett., 20,1973, p. 300
- [19] Damon P. E., Long A., Wallick E. I., Earth and Planet. Sci. Lett., 20,1973, p. 300
- [20] Burčuladze A.A., Pagava S.V., Povinec P., Togonidze G.I, Usačev S. Nature, 287, 1980, p. 320-322
- [21] Suess H. E., Science, 120,1954, p. 415
- [22] Fergusson G. J., Proc. Roy. Soc., 243,1958, p. 1235
- [23] Rewelle R. Suess H. E., Tellus, 1957
- [24] Libby W. F., In: Fallout from Nuclear Tests. Remarks at University Washington, Mar. 13, 1959

- [25] Lejpunskij O. I., Radioaktivnaja opasnost vzryvov čistovodorodnoj bomby a obyčnoj atomnoj bomby, Atomnaja energija, V. 12, T. 3, 1957, s. 530-539
- [26] Rublevskij V. P., Goleneckij S. P., Kirdin G. S., Radioaktivnyj uglerod v biosfere, Moskva, 1979
- [27] Rafter T. A., Fergusson G. J., Atom bomb effect-recent increase of carbon-14 content of the atmosphere and biosphere, Science, Vol 126, N. 3273,1957, p. 557-558
- [28] Nydal R., Lövseth K., Distribution of radiocarbon from nuclear tests, Nature, Vol 206, N. 4988, 1965, p. 1029
- [29] Šáro Š., Tölgessy J., Rádioaktivita prostredia, Bratislava, 1985
- [30] Levin I., Munnich K. O., Weis W., Radiocarbon, 1980, Vol. 22, N 2, p. 379-391
- [31] Riedel H., Gesewsky P., STH-Bericht 13/77, Neuherberg, 1977
- [32] Babaev N. S., Demin V. F., et all., Jadernaja energetika, čelovek i okružajuščaja sreda, Moskva, Energoizdat, 1981
- [33] Fowler T. W., Nelson CH. B., Health Impact Assessment of ¹⁴C Emissions from Normal Operations of Uranium Fuel, EPA-520/5-80-004, 1981
- [34] Chylý P. Morávek J. Slávik O., Meranie aktivity ¹⁴c v plynných výpustiach z jadrových elektrarní V1 a V2 Bohunice, Sprav. VUJE, X., 1993, č. 4
- [35] Usačev S. Povinec P. Chudý M., a kol., Štúdium migrácie rádionuklidov v prírodných sférach, Výsk. správa, Bratislava, KJF UK, 1977
- [36] Závodský D., Modelovanie znečistenia ovzdušia, SHMÚ, Bratislava
- [37] Haspra L., Carbon dioxide concentration measurements at a rural site in Hungary, Tellus 47B, 1995, p. 17-22
- [38] Levin I., Graul R., Trivett N. B. A., Long-term observations of atmosferic CO₂ and carbon isotopesat continental sites in Germany, Tellus 47B, 1995, p. 1-12
- [39] Dörr H., Münnich K. O., Annual variations in soil respiration in selected areas of the temperate zone, Tellus 39B, 1987, p. 114-121
- [40] Rehs B., Reineking A., Wendet J., Porstendöfer J., The influence meterological parameters on ²²²Rn exhalation rate from soil to the atmosfere, Universität Göttingen, European Conference on Protection against Radon at Home and at Work, Praha, 1997
- [41] Matoš M., ²²²Rn v pôdnom vzduchu a jeho využitie pre štúdium exhalácie CO₂
 z pôdy, Diplomová práca, MFF UK, Bratislava, 1998

- [42] Dörr H., Münnich K. O., ²²²Rn flux and soil air concentratio profiles in West-Germany. Soil ²²²Rn as tracer for gas transport in the unsaturated soil zone, Tellus 42B, 1990, p. 20-28
- [43] Dörr H., Münnich K. O., Annual variations of the ¹⁴C content of soil CO₂, Radiocarbon, Vol 28, N 2A, 1986, p. 338-345
- [44] Dörr H., Münnich K. O., CO₂ and Radon 222 as tracers for atmospheric transport, Journal of Geophysical Research, Vol 88, N. C2, 1983, p. 1309-1313
- [45] Dörr H., Münnich K. O., Carbon –14 and carbon-13 in soil CO₂, Radiocarbon, vol 22, N. 3, 1980, p. 909-918
- [46] Libby W. F., Radiocarbon dating, Chicago, 1955
- [47] Fergusson G. J., Nucleonics, Vol 13, 1955, p. 18
- [48] Vinogradov A. P., Radioisotopes in the Physical science and Industry, IAEA, Viena, 1962
- [49] De Vries H., Barendsen G. W., Physica, 19,1953, p. 957
- [50] Nydal R., Rev. sci. Instrum., 33,1962, p.1313
- [51] Houtermans F. G., Oeschger H., Helv. Phys. Acta, 31,1958, p.117
- [52] Drever R. V., Moljk A., Curran S. C., Nucl. Instrum. Meth., 1,1957, p. 41
- [53] Loosli H., Oeschger H., Proc. Radioactive dating and methods of low level counting, IAEA, Viena, 1967, 593
- [54] Povinec P., Čs. čas. fys., A22, 1972, p.133
- [55] Burke W. H., Meinshein, Rev. Sci. Instrum., 26,1953, p.1137
- [56] Lal D., Proc. 6-th Intern. Conf. on Radiocarbon and Tritium Dating, Pullman, Washington, 1965, p. 487
- [57] Sues H. E., Science, 120,1954, p. 5
- [58] Tamers M. A., Acta Scientif. Venezolana, 16, 1965, p. 156
- [59] Geyh M. A., Proc. 6-th Intern. Conf. on Radiocarbon and Tritium Dating, Pullman, Washington, 1965, p. 29
- [60] Watt D. E., Ramsden D., High Senzitivity Counting Techniques, Pergamon Press, Oxford, London, 1964
- [61] Moghissi A. A., Menellis D. N., Plott W. F., Carter M. W., Rapid Methods for Measuing Radioactivity in the Environment, IAEA, Viena, 391, 1971
- [62] Nystrom R. F., Yanko W. H., Brown W. G., J. Am. Chem. Soc., 70 /1948/ 441
- [63] Pringle R. W., Turchinetz W., Funt B. L., Rev. Sci. Instr., 26,1955, p.859

- [64] Starik I. E., Rudenko S. I., Artemev V. V, Butomo S. V., Drozhzin V. M., Romanova E. N., Int. J. Appl. Rad. Isot., 9,1961, p.193
- [65] Tamers M. A., Science, 132 ,1960, p. 668
- [66] Chudý M., Meranie veľmi nízkych aktivít kvapalnými scintilačnými spektrometrami, KJF PFUK, Bratislava, 1973
- [67] Anbar M., Proc. of 22-nd Conf. of Mass Spectrometry, Philadelphia, 1974
- [68] Hall E. T., Contemp. Phys., 21,1980, p. 345
- [69] Hall E. T., Hedges R. E. M., White N. R., Hyder H. R. M., Sinclair D., Proc. of the 1st Conf. on Radiocarbon Dating with Accelerators, ed. H. E. Gove, University of Rochester, 1978
- [70] Tuniz C., Inter. Symposium on "Three-day in depthre view on the nuclear accelerator impact in the interdisciplplinary field", May 1984, Padova, Italy
- [71] Pauling L., Science, 128 ,1958, p.1183
- [72] Pomeranceva M. D., Radiobiologia, 4,1964, p. 810
- [73] Stuiver M., Polach H. A., Radiocarbon, Vol. 19, No. 3, 1977, p. 355-363
- [74] Povinec P. a kol., Vývoj metód stanovenia veľmi nízkych aktivít ¹⁴C proporcionálnym počítačom, KJF MFF UK-15/71, 1971
- [75] Planinic J., Barometric effect in low counting, Zagreb, 1977
- [76] Povinec P., Polášková A., Šivo A., a kol., Techniques for high accuracy radiocarbon measurements gas proportional counting, Radiochem., Radional. Letters, Vol. 33, 1978, p. 67-76
- [77] Povinec P. a kol., Komplexná rádionuklidová analýza, KJF MFF UK-77/84, Bratislava, 1984
- [78] Krnáč Š., Práca ŠVOČ, Bratislava, KJF UK, 1982
- [79] Damon P. E., Long A., Wallick E. I., Earth and Planet. Sci. Lett., Vol. 20, 1973, p.300
- [80] Baxter M. S., Walton A., Earth and Planet. Sci. Lett., Vol. 20, 1973, p. 307
- [81] Dergačev V. A., Kočarov G. E., Vekovoj cikl vremennych variacij kocentracii radiougleroda v atmosfere zemli, Proc. of Int. Conf. "Low-radioactivity maeasurements and applications", Bratislava, 1977, p. 279
- [82] Kramer P., Kozlovskij T., Fiziologia drevesnych rastenij, Goslesbumizdat, Moskva, 1963

- [83] Jansen H. S., Secaular Variations of radiocarbon in New Zealand and Australian frees, Radiocarbon variations and absolute chronology, Proc. 12th Nobel symposium, New York, Wiley and sons, 1970, p. 261-274
- [84] Burchuladze A. A., Pagava S. V., Togonidze G. I., Povinec P, Usačev S., Study of 11-yr radiocarbon variations in vine and tree-ring samples, Acta F. R. N. Univ. Comen-Phycica XXI, 1980, p. 181-199
- [85] Levin I., Munnich K., Weiss W., The effect of anthropogenic CO₂ and ¹⁴C sours on the dilution of ¹⁴C in atmosphere, Radiocarbon, Vol. 22, 1980, p. 379-391
- [86] Burchuladze A. A., Anthropogenicc ¹⁴C variations in atmospheric CO₂ and wines, Radiocarbon, Vol. 31, 1989, p. 771-776
- [87] Winkelmann I., Gesewsky P., Vogel K., Schwibach J., ISH-Bericht, 10, Neuherberg, 1982
- [88] Kunz C., Proc. of the 17th DOE Nuclear Air Cleaning Conf., Denver, 4
- [89] Otruba J., "Cirkulačné podmienky v regióne Bratislavy". Klíma a bioklíma Bratislavy, Veda, Bratislava, 1979, p. 83-116
- [90] Atlas of the Slovak Republic, Slovak academy of Sciences, Bratislava, 1980, 296 p.
- [91] http:// www.iup.uni-heidelberg.de/
- [92] Levin I., et al., Long-term observations of atmospheric CO₂ and carbon isotopes at continental sites in Germany. Tellus, Heidelber, 1994
- [93] The Second National Communication on Climate Change, Ministry of Environment, Bratislava, 1997, 97 p.
- [94] Marečková K., et al., Arrangement of the international duties of Slovakia-Evalution of pollution of the atmosphere and its globaln risks. Report of the Slovak Hydrometeorological Institute, 2000
- [95] Šimon J., Analýza variacií ¹⁴C a jeho aplikácie. FMFI UK, Bratislava, 2004, 90 s. Diplomová práca
- [96] Libby W. F., Radioactive dating and methods of low-level counting, IAEA, Viena, 1967, p. 27
- [97] Stuiver M., Radioactive dating and methods of low-level counting. IAEA, Viena, 1967, p. 27
- [98] De Vries H., Barendsen G. W., Physica, 19, 1953, p. 987
- [99] Pospíšil P., Hulla J., Šáro Š., Využitie nuklidov v hydrogeológii, Alfa, Bratislava, 1981

- [100] Münnich K. O., Naturwissenschaften, 55, 1953, p. 987
- [101] Geyh M. A., Inter. Geol. Congress, XXIV Session, Section 11, Hydrogeology, Montreal, 1972, p. 227-234
- [102] Vogel J. C., Carbon-14 Dating of Groundwater. In: Isotope Hydrology, IAEA, Viena, 1970, p. 225
- [103] Tamers M. A., Surface-water infiltraction and groundwater movement in arid zones of Venezuela, in Isotopes in Hydrology, IAEA, Viena, 1967, p. 339
- [104] Tamers M. A., Scharpenseel H. W.,Sequential sampling radiocarbon in groundwater, in Isotope Hydrology, IAEA, Viena, 1970, p. 245-256
- [105] Ingerson E., Pearson F. J., Jr., Estimation of age and rate of motion of groundwater by the ¹⁴C/method, in Recent Researches the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry, Maruzen, Tokyo, 1964, p. 263-283
- [106] Mook W. G., On the reconstruction of the initial ¹⁴C content groundwater from the chemical and isotopic composition, in Proc. of Eighth Inter. Conf. on Radiocarbon Dating, Wellington, 1972, p. 342-352
- [107] Fontes J. Ch., Garnier J. M., Determination of Initial ¹⁴C Activity of the Total Dissloved Carbon, A Rewiew of the Exiosting Models and New Approach. In: Water Resources Res., Vol. 15. No. 2, 1979, p. 399

Zoznam publikácií autora súvisiacich s dizertačnou prácou

- P. Povinec, A. Polášková, A. Šivo, S. Usačev, A. A. Burčuladze, I. V. Eristavi,
 V. S. Pagava, G. I. Togonidze: Techniques for high accuray radiocarbon measurements I: Gas proportional counting, Radiochem. Radional. Letters, 33, 1978, p.67-76
- [2] Šáro Š., Šivo A., Usačev S., Determination of Radiocarbon Activity by ¹⁴CO₂ absorption Liquid Scintillator, Radiochem. Radional.Letters, 33, 1978, p.113-120
- [3] P. Povinec, A. A. Burčuladze, S. Usačev, S. V. Pagava, G.I. Togonidze, V. I. Eristavi, A. Šivo: Preparation of counter fillings for high precision radiocarbon measurements, Acta F.R.N. Univ. Comen.-Physica, 20, 1980, p. 185-195
- [4] Š. Cimbák, A. Čechová, M. Grgula, A. Šivo: Anthropogenic radionuklides ³H, ¹⁴C, ⁸⁵Kr and ¹³³Xe in the atmosphere around nuclear power reactors, Nuclear Instruments and Methods in Physics Research, B 17, 1986, p.560-563
- [5] P. Povinec, A. Šivo, M. Chudý, A. A. Burčuladze, V. S. Pagava, G. I. Togonidze, I. V. Eristavi: Seasonal variations of antropogenic radiocarbon in the atmosphere, Nuclear Instruments and Methods in Physics Research, B 17, 1986, p. 556-559
- [6] P. Povinec, M. Chudý, A. Šivo: Antropogenic radiocarbon: past, present and future, Radiocarbon, Vol. 28, 1986, p. 668
- [7] P. Povinec, M. Chudý, I. Sýkora, J. Szarka, M. Pikna, K. Holý, A. Šivo, M. Grgula, A. Čechová: Radioactivity of atmosphere in Bratislava after the Chernobyl accident, Acta Physica Univ. Comen. XXIX, 1988
- [8] A. Čechová, M. Grgula, P. Povinec, A. Šivo: Preparation of CH₄ for ¹⁴C measurement, Acta Physica Univ. Comen.-XXVIII, 1988, p. 153-159
- [9] A. A. Burchuladze, M. Chudý, I. V. Eristavi, V. S. Pagava, P. Povinec, A. Šivo,
 G. I. Togonidze: Anthropogenic ¹⁴C variations in atmospheric CO₂ and wines,
 Radiocarbon 31, 1989, p. 771-776
- [10] P. Povinec, M. Chudý, K. Holý, A. Šivo, M. Grgula, L. Ďurana, T. Beláň, J. Staníček, P. Vojtyla, A. Čechová, D. Levaiová, M. Richtáriková: Investigation of ³H, ¹⁴C, ⁸⁵Kr and ²²²Rn variations in the Bratislava, Progress report, Res. Contract No. 5609/RB, UK JF 100/90, Bratislava, 1990, 58 p.

- [11] T. Beláň, M. Chudý, L. Ďurana, M. Grgula, K. Holý, D. Levaiová, P. Povinec, M. Richtáriková, A. Šivo: Investigation of Radionuclide variations in the Bratislava air, World Scientific Publishing, Singapore, 1991
- [12] P. Povinec, J. Gastaud, A. Šivo : Corals-isotopic archives of Marine environmental change, Proceedings Study of Envinronmental Change using Isotope Techniques, IAEA, Vienna, 2002
- [13] A. Šivo, M. Chudý, K. Holý, P. Povinec, M. Richtáriková, J. Šimon: Changes of atmospheric ¹⁴CO₂ concentrations in two localities of Slovakia in the last fifteen years. Proc. of radiation Protection in Central Europe, Bratislava, Slovakia 22-26.2003, (IRPA Regional Congress).
- [14] M. Florek, K. Holý, A. Šivo, I. Sýkora, M. Chudý, M. Richtáriková, A. Polášková,
 O. Holá, J. Merešová, D. Ondo-Eštók, B. Mankovská, M. V. Frontasyeva, E. V. Ermakova: Environmental monitoring in Slovakia using nuclear techniques. Environmental Physics Conference, Minya, Egypt, February 24-28, 2004. In: Conference Proceedings. Cairo: Atomic Energy Authority, Egypt, 2005 p. 25-33
- [15] O. Franko, A. Šivo: Vzťah geotermálnych vôd a travertínov na okrajoch Levočskýh vrchov, Zborník z konf. "Geotermálna energia východného Slovenska, Stará Lesná, 30.-31.10.1997, s. 77-84
- [16] O. Franko, A.Šivo : Relative, geological and "absolute age" of the geothermal waters in north Slovakia, XXIX Congress of International Association of Hydrogeologists, Bratislava, Slovac republic 6.-10. September 1999, p. 681-684
- [17] O. Franko, J. Michalko, A. Šivo : Isotopes of oxygen and 14-C in the geothermal waters of Danube basin,Medzynarodowe seminarium "Rola energii geotermalnej w zrównowazonymm rozwoju regionów Mazowieckiego i Lódzkiego", Osuchow, 4.-6. pazdziernika 2000 g., Sympozja i Konferencje nr. 45, Kraków 2000, p. 229-239
- [18] A. Šivo, M. Chudý, K. Holý, P. Povinec, M. Richtáriková, J. Šimon: Changes of atmospheric ¹⁴CO₂ concentrations in two localities of Slovakia in the last fifteen years. Proc. of radiation Protection in Central Europe, Bratislava, Slovakia 22-26.2003, (IRPA Regional Congress).

PRÍLOHY

- P. Povinec, A. Polášková, A. Šivo, S. Usačev, A. A. Burčuladze, I. V. Eristavi,
 V. S. Pagava, G. I. Togonidze: Techniques for high accuray radiocarbon measurements I: Gas proportional counting, Radiochem. Radional. Letters, 33, 1978, p. 67-76
- [2] Šáro Š., Šivo A., Usačev S., Determination of Radiocarbon Activity by ¹⁴CO₂ absorption Liquid Scintillator, Radiochem. Radional. Letters, 33, 1978, 113-120
- [3] Š. Cimbák, A. Čechová, M. Grgula, A. Šivo: Anthropogenic radionuklides ³H, ¹⁴C, ⁸⁵Kr and ¹³³Xe in the atmosphere around nuclear power reactors, Nuclear Instruments and Methods in Physics Research, B 17, 1986, p. 560-563
- [4] P. Povinec, A. Šivo, M. Chudý, A. A. Burčuladze, V. S. Pagava, G. I. Togonidze, I. V. Eristavi: Seasonal variations of antropogenic radiocarbon in the atmosphere, Nuclear Instruments and Methods in Physics Research, B 17, 1986, p. 556-559
- [5] P. Povinec, M. Chudý, A. Šivo: Antropogenic radiocarbon: past, present and future, Radiocarbon, Vol. 28, 1986, p. 668
- [6] A. A. Burchuladze, M. Chudý, I. V. Eristavi, V. S. Pagava, P. Povinec, A. Šivo,
 G. I. Togonidze: Anthropogenic ¹⁴C variations in atmospheric CO₂ and wines,
 Radiocarbon 31, 1989, p. 771-776