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Annotation: Neutrinos hold the key to many unanswered questions about the universe.
They can help us understand how the universe was created, what dark matter
is, why matter is more prevalent than antimatter, and what occurs during the
collisions of neutron stars or black holes. Neutrinos were produced within
the first second of the Big Bang and continue to be generated everywhere in
the universe. They are one of its fundamental components. It is fascinating
that, despite their significance, we still do not fully understand their basic
physical properties, such as their fermionic nature, mass, CP properties, or
even how many different types exist. Neutrino physics research benefits from
using atomic nuclei as probes to explore fundamental properties and interactions
of neutrinos. Combining theoretical and experimental studies of beta decay,
double beta decay, and other nuclear processes may resolve many neutrino
physics problems. These processes will be theoretically explored using modern
field theory tools and advanced many-body methods. This Ph.D. study has the
following main objectives:

• Studying the β-spectrum shape is vital for understanding physics beyond the
standard model and neutrino physics. With improved experimental capabilities
and increased statistics in the low-energy region, electron exchange corrections
play a crucial role. It is planned to investigate the role of the orthogonality
continuum and bound states in the final atom on the energy distribution of
emitted electrons. There is a chance that it might resolve the mismatch between
previous predictions and experimental measurements in the low-energy region.
• Measuring neutrino mass from β-decay involves analyzing the electron
spectrum, particularly near its endpoint, where detectable effects occur. The
low Q value enhances the number of events in this critical interval. The most
sensitive measurements come from tritium's superallowed β transition, with
the KATRIN experiment recently reporting an upper limit of mβ = 0.45 eV.
Rhenium-187 is a strong candidate for neutrino mass measurement because of
its low Q value of 2.4709 keV. Its unique forbidden β ground state to ground state
transition will be theoretically investigated, including atomic electron exchange,
finite nuclear size, and screening effect corrections.
• Research into new physics beyond the Standard Model through 2νββ decay
is becoming increasingly promising. Key areas of focus include neutrino
self-interactions, right-handed neutrinos, the existence of bosonic neutrinos,
and sterile neutrinos with masses up to the process's Q-value. Additionally,
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studies are investigating violations of Lorentz invariance and 0νββ decays with
Majoron emission. In this context, the improved formalism of the 2νββ decay
and 2ν double electron capture to ground and excited states of the final nucleus
will be presented. The Taylor expansion will consider the lepton energies in
energy denominators, leading to a set of kinematic factors and related nuclear
matrix elements.
• Research is planned to explore the effects of electron state phase shifts on
Molybdenium-100 2νββ decay, specifically the angular correlation of emitted
electrons. The findings will underscore the significance of investigating how
electron phase shifts influence the distinct features of β and ββ decay.
• A novel semi-empirical framework will be introduced to describe the
2νββ NMEs deduced from measured half-lives. This framework will consider
the number of protons and neutrons, pairing effects, isospin, and nuclear
deformation degrees of freedom. A comparison with the systematic calculation
of 2νββ NME within the most advanced nuclear models will be presented.
Predictions for observing additional 2νββ decay transitions will be given.

Addressing these tasks is essential to advancing experiments on double beta
decay in underground labs, neutrino mass measurements, and our understanding
of neutrino physics and nuclear structure.

Aim: This PhD thesis intends to improve the theoretical description of β and
ββ decays, enabling more accurate investigations of neutrino properties and
interactions.
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Štúdium β a ββ rozpadov jadier zamerané na fyziku neutrín

Anotácia: Neutrína skrývajú odpovede na množstvo dôležitých nezodpovedaných otázok.
Môžu nám poodhaliť ako vznikol vesmír, čo je jeho tmavá hmota, prečo
vo vesmíre dominuje hmota nad antihmotou, a čo sa deje pri zrážkach
neutrónových hviezd či čiernych dier. Neutrína vznikli v prvej sekunde
Veľkého tresku a odvtedy vznikajú všade vo vesmíre dodnes. Sú jeho
hlavnou komponentnou. Fascinujúce je, že napriek tomu doposiaľ nepoznáme
ich základné fyzikálne vlastnosti - fermiónovú podstatu (dirakovská alebo
majoranovská), hmotnosti, CP vlastnosti a ani to, koľko majú identít. Atómové
jadrá sú sondami pre štúdium základných vlastností a interakcií neutrín.
Experimentálnym a teoretickým štúdiom beta rozpadu, dvojitého beta rozpadu
a iných jadrových procesov možno vyriešiť tieto problémy. Tento projekt má
za cieľ teoreticky preskúmať uvedené procesy s využitím nástrojov modernej
teórie poľa a moderných mnoho-nukleónových metód. Hlavné ciele dizertačnej
práce sú nasledovné:
• Presne určenie energetického spektra elektrónov emitovaných v beta premene
jadier umožňuje študovať javy súvisiace s fyzikou za Štandardným modelom
fyziky častíc o ktorej existencii máme dôkaz v podobe malých hmotností neutrín
určených pozorovaniami neutrínových oscilácií. Zdokonalené experimentálne
techniky a zariadenia umožňujú meranie spektra elektrónov v oblasti
nízkych energií, kde dôležitú úlohu majú korekcie vyplývajúce z atómového
elektrónového výmenného efektu. Formalizmus tohto fenoménu, ktorý zahŕňa
opis viazaných elektrónov dcérskeho atómu a emitovaných elektrónov,
bude zdokonalený zabezpečením orthogonality týchto dvoch kategórií
stavov elektrónov. Ďalej, vlnové funkcie viazaných elektrónov budú
určené mnohočasticovou Dirac-Hartree-Fock-Slater metódou. Predpokladá
sa, že uvedeným spôsobom nesúlad medzi teoretickými predpoveďami
a experimentálnymi meraniami v uvedenej oblasti energií môže byť vyriešený.
• Laboratórne merania hmotností neutrín sa realizujú štúdiom konca
energetického spektra beta rozpadu jadier, kde sa prejavujú efekty hmotnosti
neutrín. Preferované na štúdium sú beta premeny s malou Q hodnotou, ktorej
zodpovedá väčší počet eventov v študovanom energetickom intervale energií
elektrónov. V súčasnosti najsilnejšie horné ohraničenie na efektívnu hmotnosť
neutrín 0.45 eV bolo určené experimentom KATRIN registrujúceho beta rozpad
trícia. Zakázaný beta rozpad rénia-187 s ešte nižšou Q hodnotou (2,4709
keV) je taktiež preferovaným kandidátom na meranie hmotnosti neutrín.
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Bude realizovaný presnejší výpočet beta spektra rénia-187 do základného
stavu konečného jadra zahrňujúci atómový elektrónový výmenný efekt, efekty
konečného rozmeru jadra a vplyvu atómových elektrónov na určenie vlnovej
funkcie emitovaného elektrónu.
• Výskum zameraný na hľadanie novej fyziky za Štandardným modelom fyziky
častíc pomocou dvojneutrínového dvojitého beta rozpadu (2νββ) jadier sa
úspešne rozvíja a napreduje. Zahŕňa možnosť existencie vlastných interakcií
neutrín, interakcie neutrín cez pravé prúdy, možnú existenciu čiastočne
bozónových neutrín a sterilných neutrín, narušenie Lorentzovej invariancie
atď. V tejto súvislosti bude prezentovaný dokonalejší formalizmus 2νββ
rozpadu a dvojneurínového dvojitého záchutu elektrónov do základného
a vzbudených stavov konečného jadra. Využitím taylorovskej expanzie budú
brané do úvahy energie leptónov v energetických menovateľoch jadrových
maticových elementov. Ako dôsledok, rozpadová šírka procesu bude daná
sumou kinematických faktorov váhovaných súčinom maticových elementov.
• Predmetom záujmu bude vplyv fázových posunov elektrónových stavov
v coulombickom potenciáli atómového jadra na charakteristiky dvojitého
beta rozpadu jadier. Výpočty budú zamerané na určenie uhlového rozdelenia
vyletujúcich elektrónov v prípade 2νββ rozpadu molybdénu-100. Získané
výsledky umožnia určiť potrebu výskumu vplyvu fázových posunov
elektrónových stavov na charakteristiky β aj ββ jadrových prechodov
vo všeobecnosti.
• 2νββ rozpad jadier je najzriedkavejší pozorovaný proces s polčasom rozpadu
približne 100 miliónkrát a viacej väčším v porovnaní dobou existencie vesmíru.
Bol pozorovaný v prípade jedenástich párno-párnych izotopov. Hodnoty
maticových elementov 2νββ-rozpadu jadier, odvodené z nameraných polčasov
rozpadu, vykazujú značné rozdiely jednotlivých hodnôt a sú predmetom záujmu
vedeckej komunity. Bude navrhnutý semi-empirický vzťah na reprodukciu
uvedených maticových elementov, ktorého stupňami voľnosti budú rôzne
kombinácie pomeru protónového a neutrónového čísla, hodnoty izospinu
párno-párneho jadra v základnom stave, charakteristiky spárovania nukleónov
a deformácie počiatočného a konečného jadra. Dosiahnuté výsledky budú
porovnané s výsledkami teoretických modelov atómového jadra a iných
fenomenologických modelov. Budú predpovedané 2νββ polčasy rozpadov
ďalších jadier, ktoré sú predmetom experimentálneho záujmu.

Vyriešenie vyššie stanovených úloh je dôležité pre súčasné a budúce
experimenty v dvojitého beta rozpadu jadier v podzemných laboratóriách,
laboratórne merania hmotnosti neutrín a vo všeobecnosti pre fyziku neutrín
a porozumenie štruktúry atómových jadier.

Cieľ: Cieľom tejto dizertačnej práce je zdokonaliť teoretický popis β a ββ rozpadov
jadier, čo umožní presnejšie určenie základných vlastností neutrín a ich
interakcií.

Literatúra: [1] F. Šimkovic: Neutrino masses and interactions and neutrino experiments in
the laboratory (review article). Physics-Uspekhi 64 (12), 1238-1260 (2021).
[2] S.M. Bilenky: Introduction to the Physics of Massive and Mixed Neutrinos.
Lecture Notes in Physics 817. Springer-Verlag Berlin Heidelberg 2010.
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na internete.
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Abstract

Neutrinos remain the most mysterious fundamental particles despite significant
advancements in neutrino physics over the last two decades. Several fundamental
questions remain unanswered concerning the nature of neutrinos, their absolute mass
scale, hierarchy, CP violation properties, and the potential existence of additional
sterile neutrinos. Atomic nuclei serve as valuable probes for studying neutrinos’
fundamental properties and interactions, revealing insights in complex ways. These
questions can be answered through experimental and theoretical studies of nuclear β
and ββ decays and other nuclear processes. This dissertation uses field theory and
advanced many-body methods to explore and improve the theoretical description of
these processes.

The atomic exchange effect involving the final atom’s bound electrons and those
emitted in the β-decay and two-neutrino double beta (2νββ)-decay is re-examined.
The Dirac-Hartree-Fock-Slater self-consistent calculations provide the electron wave
functions. In contrast to prior research, the orthogonality of the final atom’s continuum
and bound electron states is guaranteed. This approach demonstrably resolves the
discrepancy between previous theoretical predictions and experimental measurements
in the low-energy region of the β spectrum. The significance of exchange corrections
is also examined in the context of a leading candidate for establishing the neutrino
mass scale: the unique first forbidden β-decay of 187Re. A significant change in the
energy distribution of emitted electrons is found.

The Taylor expansion formalism for describing the 2νββ-decay rate to 0+ states is
extended to 2+ excited states and the two-neutrino double electron capture (2νECEC).
In addition, the presented study differs from previous ones by incorporating radiative
and atomic exchange corrections in the predictions of 2νββ-decay observables. The
impact of the electron phase shift on the angular correlation between the emitted
electrons is investigated. Additionally, the contribution of all bound s-wave electrons
available for capture in the 2νECEC processes is evaluated, unlike in prior studies in
which only the K and L1 orbitals were considered. A systematic study is conducted
for all nuclei undergoing the 2νECEC transition, and a more detailed calculation
leading to significant improvement is presented for the recently measured 2νECEC
of 124Xe.

Finally, another subject of interest is the large spread of the effective nuclear
matrix elements (NMEs) of 2νββ-decay, deduced from measured half-lives. A novel
semi-empirical formula (SEF) for calculating 2νββ-decay NMEs is proposed. The
degrees of freedom are the ratio of proton and neutron numbers, isospin, like nucleon
pairing, and the deformation properties of the initial and final nuclei. Compared with
the previous phenomenological and nuclear models, the SEF yields the best agreement
with the experimental NMEs. Its stability and predictive power are cross-validated,
and predictions are provided for nuclear systems of experimental interest.
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Abstrakt

Napriek intenźıvnemu výskumu a výraznému pokroku dosiahnutému vo fyzike
neutŕın za posledné dve desaťročia, neutŕına zostávajú najzáhadneǰśımi elementárnymi
časticami. Nezodpovedané sú otázky týkajúce sa podstaty neutŕın (dirakovská alebo
majoranovská), absolútnej škály a hierarchii hmotnost́ı neutŕın, možného narušenie
nábojovo-priestorovej symetrie a potenciálnej existencie sterilných neutŕın. Atómové
jadrá predstavujú laboratórium na štúdium základných vlastnost́ı a interakcíı neutŕın,
ktoré poskytuje dôležité poznatky o týchto najrozš́ıreneǰśıch časticiach vo vesmı́re.
Odpovede na uvedené otázky je možné nájsť experimentálnym a teoretickým štúdiom
β a ββ rozpadov jadier a ďaľśıch jadrových procesov. Predkladaná dizertácia prezen-
tuje presneǰśı teoretický popis uvedených procesov s využit́ım aparátu teórie pǒla a
moderných mnohočasticových metód.

Predmetom záujmu bol vplyv atómového výmenného efektu, ktorý zahŕňa opis
viazaných elektrónov dcérskeho atómu a emitovaných elektrónov, na energetické rozde-
lenie elektrónov v β a ββ rozpade jadier. Vlnové funkcie viazaných elektrónov boli
určené mnohočasticovou Dirac-Hartree-Fock-Slater metódou. Na rozdiel od predošlých
výpočtov, bola zabezpečená orthogonalita stavov viazaných elektrónov s tými v
kontinuu, čo sa ukázalo ako vělmi podstatné. Preukázatělne to vyriešilo problém
nesúhlasu teoretických výpočtov s experimentálnymi meraniami v ńızkoenergetickej
oblasti β spektra. Výpočty zahrňujúce atómový výmenný efekt boli realizované aj
v pŕıpade zakázaného β-rozpadu jadra 187Re, ktorý umožňuje laboratórne meranie
hmotnosti neutŕın. Zistilo sa, že zahrnutie daného efektu do výpočtov vedie na
podstatnú modifikáciu energetického rozdelenia emitovaných elektrónov.

Ďalej, formalizmus taylorovskej expanzie polčasu rozpadu dvojneutŕınového dvo-
jitého beta (2νββ) rozpadu jadier do 0+ stavov konečného jadra bol zovšeobecnený aj
na pŕıpad prechodov do 2+ vzbudených stavov a proces dvojneutŕınového dvojitého
záchytu elektrónov jadrom (2νECEC). Zodpovedajúce výpočty polčasov rozpadov
týchto procesov zahrnuli aj radiačné korekcie a korekcie majúce pôvod v atómovom
výmennom efekte. Novým elementom bola aj analýza vplyvu fáz vlnových funkcíı
emitovaných elektrónov v ββ rozpade jadier na ich uhlové rozdelenie. Na rozdiel
od predošlých štúdíı týkajúcich sa 2νECEC procesu, keď bol uvažovaný len záchyt
elektrónov z K a L1 orb́ıt, boli brané do úvahy pŕıspevky do rozpadovej š́ırky tohto
procesu od záchytu všetkých viazaných elektrónov v s-stave. Bol prezentovaný system-
atický výpočet polčasu rozpadu 2νECEC prechodov a detailný výpočet pre 2νECEC
rozpad jadra 124Xe vedúci k lepšiemu súhlasu s výsledkami nedávno realizovaného
experimentu.

Napokon, predmetom štúdíı boli aj hodnoty maticových elementov 2νββ-rozpadu
jadier, odvodené z nameraných polčasov rozpadu, ktoré vykazujú značné rozdiely
jednotlivých hodnôt. Bola navrhnutá semi-empirická formula na výpočet týchto
maticových elementov, ktorej vstupmi sú pomer protónového a neutrónového č́ısla
jadra, hodnota izospinu zodpovedajúceho párno-párneho jadra v základnom stave,
charakteristiky spárovania nukleónov a deformácie počiatočného a konečného jadra.
Bolo demonštrované, že v porovnańı s výsledkami teoretických modelov atómového
jadra a iných fenomenologických modelov, prezentovaný formalizmus vykazuje na-
jlepšiu zhodu s experimentálnymi hodnotami 2νββ maticových elementov. S využit́ım
prezentovanej metódy boli určené 2νββ polčasy rozpadov jadier, ktoré sú predmetom
experimentálneho záujmu.
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1 Introduction

1.1 Nuclear β-decay

Over the past century, the weak interaction has been one of the most intensely debated
topics in physics. Together with electromagnetism, the strong interaction, and gravitation,
it is one of the four known fundamental forces of the Standard Model (SM) of particle
physics. Today, we understand several unique characteristics of the weak interaction: it is
the only force that violates parity symmetry, the only one capable of changing the flavor
of quarks and leptons, and it involves mediators with remarkably large masses. Beyond
these distinct characteristics, what truly sets the weak interaction apart is its ability to
provide tangible ways to test our current understanding of physics through processes such
as nuclear β-decay and ββ-decay.

Nuclear β-decay is one of the most common types of radioactive decay found in nature
as can be seen from Fig. 1.1 which displays the main decay modes of the observed nuclei.
It was first theoretically described by Fermi in his seminal 1934 paper on the theory of
β-decay [1]. Fermi was trying to describe the following experimentally observed process,

(A,Z)→ (A,Z + 1) + e− + ν̄e, (1.1)

in which an atomic nucleus with mass number A and atomic number Z undergoes a
charge change by one unit, emitting an electron and an antineutrino. Nowadays, nuclear
β-decay includes three distinct modes, where one nucleon in the initial nucleus, (A,Z), is
transformed as follows

(A,Z)→ (A,Z + 1) + e− + ν̄e (β−-decay),

(A,Z)→ (A,Z − 1) + e+ + νe (β+-decay),

e− + (A,Z)→ (A,Z − 1) + νe (electron capture).

(1.2)

In the electron capture process the capture take place from an atomic bound orbital. The
Q-value of each of the process from Eq. (1.2) is defined as the total kinetic energy of the
final-state leptons.

These nuclear transitions can be described in the first order perturbation theory by
considering the weak interaction β-decay Hamiltonian density,

Hβ(x) =
GF cos θC√

2
e(x)γµ(1− γ5)νe(x)jµ(x), (1.3)

where e(x) and νe(x) are the field operators for the electron and neutrino, respectively,
entering the left-handed leptonic current and jµ(x) is the hadronic current. Here, GF is the
Fermi coupling constant,GF = 1.16637×10−5 GeV−2 and θC is the mixing angle of Cabibbo-
Kobayashi-Maskawa (CKM) matrix for mixing quark flavors with cos θC = 0.97373±0.00031
[2]. A detailed derivation from hadronic and leptonic weak-interaction currents is beyond
the scope of this thesis. For an in-depth discussion, readers are encouraged to consult the
seminal works of Shopper [3] and of Behrens and Bühring [4].

The β-decay nuclear transitions are classified in accordance with the final-state leptons
orbital angular momenta. By definition, the β±-decay is called allowed if the final-state
leptons are emitted with l = 0 (or in a s-state) relative to the nucleus. In the allowed
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Figure 1.1: The main decay modes for the nuclei observed in nature. The figure was
constructed using [5].

electron capture, the atomic electron is captured from a bound s-state of the initial atom.
If the final-state particle carries away a non-zero orbital angular momentum, the decays
are called forbidden transitions, although this terminology can be misleading [3]. If L is
the total final state lepton orbital angular momentum and L > 0, the transition is called
Lth-forbidden β-decay. In addition, if the change in the total nuclear angular momentum is
maximal, the forbidden transition is called unique-forbidden, while the others are called
non-unique forbidden transition.

In addition to the orbital angular momentum, the leptons involved in the decay has
spin s = 1/2. Thus the final-state particles form β±-decay can couple to total spin S = 0
or S = 1. In the allowed electron capture, the initial proton and the captured electron can
couple to j ± 1/2 and the final neutron and the emitted neutrino can couple to j ± 1/2
or j ∓ 1/2. The selection rules for allowed β-decay are presented in Table 1.1, where
(Ji, πi) and (Jf , πf ) are the initial and final nuclear total angular momenta and parities.
The difference in the total nuclear angular momentum is denoted as ∆J = |Jf − Ji|. The
allowed β-decay with S = 0 are called Fermi transitions, while the ones with S = 1 are
called Gamow-Teller transitions.

In this work, we focus on addressing corrections to the electron spectra for allowed and
first unique forbidden transitions. While the separation of the nuclear matrix element and
the phase-space factor is not straightforward for non-unique forbidden β-decays [4, 6], this
separation can be more easily achieved for allowed and unique forbidden transitions. For

Table 1.1: Classification of allowed β-decay.

Transition ∆J πfπi
Fermi 0 +1
Gamow-Teller 1 (Ji = 0 or Jf = 0) +1
Gamow-Teller 0,1 (Ji > 0,Jf > 0) +1
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allowed β-decays, the electron spectrum is proportional to the following product [4]:

dΓ

dEe
∝ peEe(E0 − Ee)

2F0(Z,Ee), (1.4)

where F0(Z,Ee) is the so-called Fermi function and the term peEe(E0−Ee)
2 is the statistical

phase space factor that reflects the momentum distribution between the neutrino and
the electron. Here, Ee is the total energy of the electron, pe =

√
E2

e −m2
e is the electron

momentum, and E0 = Q+me is the maximum energy of the electron. The Fermi function,
which encodes the electrostatic interaction between the electron and the final atom, can
be expressed in terms of the large- and small-component radial functions, g̃κ(Ee, r) and
f̃κ(Ee, r), respectively, of the emitted electron,

F0(Z,Ee) =
g̃2−1(Ee, R) + f̃21 (Ee, R)

j0(peR) j0(peR)
, (1.5)

evaluated on the nuclear surface of the final nucleus R. The radial functions are discussed
in detail in Section A.3. Here, j0(per) are the spherical Bessel functions.

For unique first forbidden transitions the spectrum is a sum of two contributions
associated with emission of electrons in s-state or p3/2-state,

dΓ

dEe
=

dΓp3/2

dEe
+
dΓs1/2

dEe

∝ peEe(E0 − Ee)
2
[
F1(Z,Ee)p

2
e + F0(Z,Ee)(E0 − Ee)

2
]
, (1.6)

where the corresponding Fermi function for the p3/2-state electrons is

F1(Z,Ee) =
g̃2−2(Ee, R) + f̃22 (Ee, R)

j1(peR) j1(peR)
. (1.7)

This dissertation investigates specific nuclear β-decay transitions, but it is essential
to recognize that nuclear β-decays have played a foundational role in the development
of the SM [7] and remain a critical focus of modern physics research [8]. Advancements
in experimental techniques have enabled detailed explorations of both SM and beyond
Standard Model (BSM) phenomena through nuclear β-decay studies.

Nuclear β-decay provides a rich platform for testing the limits of the SM. It serves as
a testing ground for deviations from the pure V − A theory [9], including the potential
existence of right-handed currents associated with new heavy particles. Additionally,
nuclear β-decay offers a framework for examining Lorentz invariance through sidereal
variations in experimental measurements [10]. High-precision measurements of the β
spectrum are especially valuable for probing exotic currents beyond the SM’s electroweak
framework or identifying form factors arising from quantum chromodynamics (QCD) effects
[11, 12, 13]. These investigations, by closely analyzing the spectrum’s shape and features,
can reveal deviations from theoretical predictions, offering insights into the dynamics of
weak interactions and the possibility of new physics.

One area of contemporary focus is the study of Fermi allowed transitions, often referred
to as super-allowed transitions. These are particularly significant because they provide
a highly sensitive means of testing the conserved vector current (CVC) hypothesis and
the unitarity of the CKM matrix, which governs quark mixing in the weak interaction.
Any deviation observed in super-allowed β-decay measurements could indicate new physics
beyond the SM, potentially involving hypothetical particles or interactions absent in the
current theoretical framework. Recent comprehensive reviews of these studies are available
in [14, 15, 16]. The electron capture (EC) process also holds a critical position in both
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fundamental and applied research. It plays a pivotal role in various studies such as neutrino
mass scale determination [17, 18, 19], nuclear astrophysics [20], radionuclide metrology [21],
and nuclear medicine [22, 23, 24, 25].

Furthermore, nuclear β-decay experiments are important for studying the fundamental
properties of neutrinos, including their masses, mixing angles, and potential sterile neutrino
components [26, 27, 28]. Such measurements contribute significantly to understanding
neutrino oscillations and addressing unresolved questions in neutrino physics, advancing
our knowledge of these elusive particles and their role in the universe.

1.2 Nuclear ββ-decay

In 1935, about a year after the Fermi weak interaction theory was introduced [1],
Goeppert-Mayer considered, at the suggestion of Wigner, the two-neutrino double-beta
decay (2νββ-decay) [29]:

(A,Z)→ (A,Z + 2) + e− + e− + νe + νe. (1.8)

In this process, two neutrons in the initial even-even nucleus are converted into two protons
while emitting two electrons and two electron antineutrinos. The half-life of 2νββ-decay
was estimated to be 1017 years, assuming a Q-value of about 10 MeV [29]. In 1939, after
the theory of Majorana neutrinos was introduced [30], Furry proposed the concept of
neutrinoless double-beta decay (0νββ-decay) [31],

(A,Z)→ (A,Z + 2) + e− + e−, (1.9)

involving two subsequent β-decays of neutrons connected via the exchange of virtual
neutrinos [32]. This process is forbidden within the SM as it violates lepton number
conservation. Its detection would provide direct evidence of total lepton number violation
(LNV) by two units (∆L = 2), signaling physics beyond the SM. Moreover, such an
observation would indicate that neutrinos are Majorana fermions, meaning they are their
own antiparticles, as initially proposed by Majorana [30].

For proton-rich nuclei other modes of double-beta decay (DBD) transforming the
even-even (A,Z) nucleus into the even-even (A,Z− 2) nucleus [33, 34]: the double-positron
emitting (2ν/0νβ+β+) mode, the atomic electron capture with coincident positron emission
(2ν/0νECβ+) mode, and the double electron capture (2ν/0νECEC) mode. Each channel
has two variants: neutrinoless (0ν) and two-neutrino (2ν) mode, depending on whether the
neutrinos are emitted:

(A,Z) → (A,Z − 2) + e+ + e+ + (νe + νe) ,

e−b + (A,Z) → (A,Z − 2) + e+ + (νe + νe) , (1.10)

e−b + e−b + (A,Z) → (A,Z − 2) + e+ + e+ + (νe + νe) .

The transitions of proton-rich nuclei are less favored due to smaller Q-value, small overlap
of the bound electron wave function with the nucleus, and Coulomb repulsion on positrons.
However, compared to ββ-decay, β+β+ or ECβ+ modes have clear experimental signatures–
at least four or at least two 511 keV γ-rays, respectively, from positrons annihilation
with atomic electrons– and coincidence trigger logic might be employed in their detection
[35, 36].

The DBD transitions occur whenever the β-decay of the initial nucleus to the inter-
mediate odd-odd nucleus is energetically forbidden or significantly suppressed by angular
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momentum selection rules. This suppression is attributed to the enhanced stability of
even-even nuclei compared to odd-odd nuclei, resulting from the pairing interaction between
nucleons, as illustrated in Figure 1.2.

Figure 1.2: The mass parabola of even-even (blue) and odd-odd (red) nuclei. The even-even
nuclei are more stable then odd-odd ones. The ββ-decay, (a)→(c), is energetically allowed,
while β-decay, (a)→(b), is forbidden. Figure is taken from [37].

The first direct observation of 2νββ-decay, allowed by the SM, was achieved for 82Se in
1987 [38, 39]. Nowadays, the 2νββ-decay has been detected in direct counter experiments
in nine different nuclei, including decays into two excited states. In addition to laboratory
experiments, geochemical and radiochemical observations of 2νββ-decay transitions have
been recorded [40] (and references therein). There are also positive indications of the
2νECEC mode for 130Ba and 132Ba from geochemical measurements [41, 42, 43], as well
as for 78Kr [44, 45]. Recently, the first direct observation of the 2νECEC process in 124Xe
was reported [46, 47, 48, 49]. In Table 1.2 and Table 1.3 we present the most precise
experimental half-lives for 2νββ-decay and for 2νECEC processes, respectively.

From the theoretical point of view, the 2νββ-decay can be described within the SM
as a second-order weak interaction process. Schematically, DBD can be depicted as two
consecutive virtual single β-decays. The first virtual β-decay transition occurs from the
ground state of the parent nucleus to excited states of an intermediate odd-odd nucleus,
while the second transition takes place from the excited states of the intermediate nucleus
to either the ground state or excited states of the daughter nucleus. Figure 1.3 illustrates
an example of this process specifically for the DBD of 100Mo.

The inverse half-live of the 2νββ-decay is usually expressed as a product,

[
T 2ν
1/2

]−1
= G2νg4A

∣∣∣∣∣M
2ν
GT −

(
gV
gA

)2

M2ν
F

∣∣∣∣∣

2

, (1.11)

between the phase-space factor (PSF), G2ν , and the nuclear matrix element (NME) which
contains the double Gamow-Teller (GT) component, M2ν

GT, and Fermi (F) component, M2ν
F .

gV (gA) is the vector (axial-vector) coupling constant. The NMEs for 2νββ-decay NMEs
are given by [63, 64, 65, 66]

5



Table 1.2: The measured half-lives, in years (yr), for different 2νββ-decay transition from
0+ ground state to 0+ ground state. For the transitions to excited states we consider
the recommended values from [40] and the final excited state is indicated in parenthesis
near the final nucleus. For 128Te, the experimental half-life is obtained using the ratio
T 2ν−exp
1/2 (130Te)/T 2ν−exp

1/2 (128Te) = (3.52± 0.11)× 10−4 [50].

2νββ-decay T 2ν
1/2[yr]

48Ca→48Ti 6.4+1.3
−1.1 × 1019[51]

76Ge→76Se 2.022+0.042
−0.042 × 1021[52]

82Se→82Kr 8.69+0.10
−0.07 × 1019[53]

96Zr→96Mo 2.35+0.21
−0.21 × 1019[54]

100Mo→100Ru 7.07+0.11
−0.11 × 1018[55]

100Mo→100Ru (0+2 ) 6.7+0.5
−0.4 × 1020 [40]

116Cd→116Sn 2.63+0.11
−0.12 × 1019[56]

128Te→128Xe 2.49+0.09
−0.09 × 1024

130Te→130Xe 8.76+0.17
−0.18 × 1020[57, 58]

136Xe→136Ba 2.17+0.06
−0.06 × 1021[59]

150Nd→150Sm 9.3+0.7
−0.6 × 1018[60]

150Nd→150Sm (0+2 ) 1.2+0.3
−0.2 × 1020[40]

238U→238Pu 2.0+0.6
−0.6 × 1021[61]

Table 1.3: The measured half-lives, in years (yr), for different 2νECEC transitions. 2νKK
means that only the capture from K-orbital have been observed. For 130Ba we consider
the recommended value from [40] as the current measurements are geochemical.

2νECEC transition T 2νECEC
1/2 [yr]

78Kr→78Se
2νKK 1.9+1.3

−0.8 × 1022[45]
124Xe→124Te
2νKK (1.8± 0.5)× 1022 [46]
124Xe→124Te
2νECEC (1.1± 0.2)× 1022 [47]

(1.09± 0.15)× 1022 [48]
(1.03± 0.16)× 1022 [49]

130Ba→130Xe
2νECEC (2.2± 0.5)× 1021 [40]

M2ν
GT,F =

∑

n

⟨f∥OGT,F ∥J+
n ⟩⟨J+

n ∥OGT,F ∥i⟩
En − (Ei + Ef ) /2

(1.12)

where the operators,

OGT =
A∑

k=1

τ+k σk, OF =
A∑

k=1

τ+k , (1.13)

are connecting the initial |i⟩ and final |f⟩ states, with energies Ei and Ef , respectively, with
the states of the intermediate nucleus |J+

n ⟩ with energies En. The summation goes over all
possible states of the intermediate odd-odd nucleus, 1+ states for GT component and 0+

states for F component. Here τ+k is the isospin-raising operator transforming a neutron
into a proton, and σk is the nucleon spin operator. Due to the reliable approximation
of a conservation of isospin in nuclei, the F contribution is typically disregarded in the
calculation of NMEs for 2νββ-decay, and the GT contribution is considered to be dominant.
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Figure 1.3: The nuclear levels involved in DBD of 100Mo. For the intermediate nucleus,
100Tc, only a few excited states are shown. Figure is reproduced from [62].

For the 0νββ-decay, if the light neutrino exchange produced by left-handed currents is
assumed as the underlying mechanism triggering the decay, the inverse half-life is commonly
written as [67],

[
T 0ν
1/2

]−1
= G0νg4A

∣∣M0ν
∣∣2
(
mββ

me

)2

, (1.14)

where mββ is the effective Majorana neutrino mass. Assuming the exchange of a Majorana
neutrino in the standard light-neutrino mechanism of 0νββ-decay provides a direct link
between the effective neutrino mass and the decay rate. Thus, a measurement of the half-life
of 0νββ-decay could provide crucial information about the absolute neutrino mass scale
and its ordering. This will be discussed in the following Section.

Beyond the simplest light-neutrino exchange mechanism, various alternative theoretical
models predict different exchange mechanisms for 0νββ-decay [67, 68, 69, 28]. Assuming
multiple mechanisms, the inverse half-live of the 0νββ-decay can be written as [67],

[
T 0ν
1/2

]−1
=

∑

i

G0ν
i g

4
A

∣∣M0ν
i

∣∣2
(
ηi
me

)
, (1.15)

where the PSFs, G0ν
i , and the NMEs, M0ν

i , are distinct for each mechanism. The lepton
number violating parameters (LNVP) ηi serve to differentiate between various mechanisms
and in the case of light-neutrino exchange mechanism η ≡ mββ . One of the most prominent
new physics model that incorporates the LNV is the minimal left-right symmetric model
(LRSM) [70], which extends the SM gauge symmetry to the group SU(2)L ⊗ SU(2)R ⊗
U(1)B−L. In addition to the left-handed V −A weak currents, the LRSM also includes the
leptonic and hadronic right-handed V +A weak currents. This extension allows for multiple
0νββ-decay mechanisms, including light and heavy Majorana neutrino exchange, both
with and without right-handed currents. Beyond these, additional exchange mechanisms
may involve sterile neutrinos, neutralinos, and contributions from short-range interactions
arising from higher-dimensional operators within effective field theory descriptions of physics
beyond the SM. For an overview of various mechanisms that can trigger 0νββ-decay, see
[71, 72, 73, 74].

One of the theoretical challenges in 2νββ-decay and 0νββ-decay is the calculation of the
NMEs, a long-standing problem in this field. The difficulty arises because the nuclei involved
in ββ-decay are typically open-shell medium and heavy nuclei with complex structures.
Moreover, for the two-neutrino mode, a complete set of 1+ intermediate nucleus states must
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be described, while for the neutrinoless mode, contributions from all multipolarities are
required. An overview of the NMEs calculations and predictions is provided in Chapter 8

In addition to NMEs, the precision of observables such as the single and summed
energy distributions and angular correlation between the emitted electrons is crucial for
understanding various hypothesis in 2νββ-decay [75, 76] and for unraveling the underlying
mechanism driving 0νββ-decay [77, 73, 78, 79, 80]. Additionally, the SM predictions
for the 2νββ-decay also play an important role in the experimental searches for weakly
interacting massive particles (WIMPs) and coherent elastic neutrino-nucleus scattering
(CEνNS). In particular, in liquid Xenon experiments, the 2νββ-decay of 136Xe represents an
inevitable source of background. Therefore, precise theoretical predictions for 2νββ-decay
are necessary for several upcoming experiments aiming to detect WIMPs and CEνNS
[81, 82, 83, 84].

The eager search for the hypothetical 0νββ-decay [85] translates into rich statistics for
2νββ events. This is primarily due to the role played by the 2νββ-decay spectrum as a
background for the expected 0νββ-decay signal. The growing statistics for the 2νββ-decay
make the exploration of new physics BSM possible. Three fundamental concepts have
been employed in the BSM models that extend the 2νββ-decay [86]: (i) non-standard
interactions, (ii) violation of fundamental symmetries, and (iii) emission of new bosons
or fermions emitted in the decay. Today, these models include the exploration of right-
handed neutrino interactions [87], neutrino self-interaction [88], violation of the Pauli
exclusion principle [89], violation of Lorentz invariance [90, 91, 92, 93], sterile neutrinos
with masses up to the Q-value of the process [94, 95], 0νββ decays with Majoron(s) emission
[96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106], and quadruple-β-decay [107].

The current experimental constraints on various strength parameters associated with
the BSM models are obtained by analyzing the shape of the summed electron energy
distribution of 2νββ-decay [86]. However, the most striking signatures in many BSM
scenarios are expected in the angular correlation distributions between the emitted electrons
[87, 88, 94, 89, 92, 93, 105, 104]. A notable example is the direction flip in the emission
of electrons when right-handed currents are included in 2νββ-decay [87]. Fortunately, the
concept of tracking individual electrons [108] is also actively pursued in next-generation
experiments such as SuperNEMO [109] and NEXT-100 [110]. The tracking capability will
provide valuable insights into the underlying mechanism of 0νββ-decay [77, 73, 72, 79, 80],
if observed, and will strongly enhance the sensitivity to BSM scenarios in 2νββ-decay.

1.3 Neutrino mass measurements

Early measurements of neutrinos produced in the sun, atmosphere, and accelerators
hinted at the possibility of neutrino oscillations, where neutrinos transition between different
”flavors” (electron, muon, and tau). Such oscillations imply non-zero neutrino masses.
Starting in 1998, compelling evidence for neutrino oscillations emerged through observations
from Super-Kamiokande [111, 112, 113, 114], SNO [115, 116, 117, 118, 119, 120, 121],
KamLAND [122], and several other experiments. Nowadays, these oscillations are analyzed
within the minimal three-neutrino framework. This model considers that the known flavors
states (νe, νµ, ντ ) are quantum superpositions of three massive states νk with masses mk

(k = 1, 2, 3), i.e.,

να =
3∑

k=1

U∗
αkνk, with α = e, µ, τ. (1.16)
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For Dirac neutrinos, the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino
mixing matrix can be written as,

U = R23R̃13R12, (1.17)

where

R23 =



1 0 0
0 c23 s23
0 −s23 c23


 , R12 =



c12 s12 0
−s12 c12 0
0 0 1


 ,

R̃13 =




c13 0 s13 exp(−iδ)
0 1 0

−s13 exp(iδ) 0 c13


 .

(1.18)

Here, sij = sin(θij) and cij = cos(θij) for the mixing angles θij and δ is the charge-parity
(CP) phase. For Majorana neutrinos the PMNS neutrino mixing matrix from Eq. (1.17)
must be multiplied the the diagonal P matrix defined as,

P =



exp(iα1) 0 0

0 exp(iα2) 0
0 0 1


 (1.19)

where additional phases, α1 and α2, are the so-called Majorana phases.

If only three neutrino masses are assumed, the data from neutrino oscillation experiments
constrain three mixing angles, i.e., θ12, θ23, and θ13, the CP-violating phase, and two
independent mass-squared differences [123],

δm2 = m2
2 −m2

1, ∆m2 = m2
3 − (m2

1 +m2
2)/2. (1.20)

Under these conditions, two types of mass spectra (or mass ordering) are possible:

• Normal Ordering (NO): In this scenario, the mass eigenstates are arranged such that
m1 < m2 < m3 and ∆m2 > 0. In this case,

m2 =
√
δm2 +m2

lightest, m3 =

√
∆m2 +

δm2

2
+m2

lightest, (1.21)

where mlightest = m1.

• Inverted Ordering (IO): In this scenario, the mass eigenstates are arranged such that
m3 < m1 < m2 and ∆m2 < 0. In this case,

m1 =

√
−∆m2 − δm2

2
+m2

lightest, m2 =

√
−∆m2 +

δm2

2
+m2

lightest, (1.22)

where mlightest = m3.

Additional information about neutrino masses is needed to fully determine the three light
neutrino masses, which would provide the absolute neutrino mass scale. This information
might be obtained through direct measurements of neutrino mass in tritium β-decay,
the observation of 0νββ-decay, or cosmological measurements. However, none of these
experiments currently possess the necessary sensitivity to achieve the required results.
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Figure 1.4: The effective neutrino mass, mβ measured from the β-decay as a function of the
lightest neutrino mass, mlightest. The function is presented for normal ordering (blue) and
inverted ordering (orange). The best fit values for the neutrino oscillation parameters are
adopted from [123]. The lowest limit from KATRIN [124] (mβ < 0.8 eV) and the exclusion
from cosmology [125, 126] (mlightest < 30 meV for NO scenario from

∑
kmk < 0.12 eV)

are displayed in the gray boxes. The future KATRIN sensitivity (mβ < 0.2 eV) is shown in
black.

The distortion in the endpoint measurements of the spectrum of electrons emitted in a
β-decay offers a direct means of determining the absolute neutrino mass scale. However,
the number of events emitted near the endpoint, within an interval ∆Te, is proportional
to (∆Te/Q)

3 [127, 128]. Therefore, a low Q-value β transition is desirable to enhance
sensitivity. Consequently, some experiments are based on the ground-state to ground-state
β-decays of tritium (3H) and rhenium (187Re) with Q-values of 18592.01(7) eV [129] and
2470.9(13) eV [130], respectively. Other experiments, such as HOLMES [17], NuMECs
[18], and ECHo [19], aim to use the lowest energy electron capture of 163Ho, which has
a ground-state to ground-state Q-value of 2.833 keV [131]. Recently, there has also been
a growing interest in ultra-low Q-value (under 1 keV) ground-state-to-excited-state β
transitions [132, 133, 134], which represent potential candidates for future neutrino mass
scale determination experiments.

The current best upper limit on effective neutrino mass from β-decay,

mβ =

√√√√
3∑

k=1

|Uek|2m2
k (1.23)

was recently fixed from the tritium β-decay, measured by the KATRIN experiment [124],
mβ ⩽ 0.8 eV. This limit far exceeds the previous investigations by Troitsk experiment,
mβ ⩽ 2.2 eV [135], and Mainz experiment, mβ ⩽ 2.3 eV [136], also based on tritium
β-decay. Even more recently, Project 8 has demonstrated that cyclotron radiation emission
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spectroscopy (CRES) can constrain mβ ≤ 155 eV from the tritium β spectrum using only
a cm3-scale physical detection medium [137]. This suggests that CRES is an attractive
technique for next-generation direct neutrino mass experiments and for measuring the
β spectra in general. In Fig. 1.4, mβ is displayed as a function of the lightest neutrino
eigenstate. The current best upper limit and the future sensitivity of KATRIN experiment
is also shown. We note that on the region disfavored by cosmology measurements, mβ is
quite different depending on the ordering. It should be noted that the cosmological limit
from Fig. 1.4 assumes the normal hierarchy of neutrino masses.

10-4 0.001 0.010 0.100 1
10-4

0.001

0.010

0.100

1

Figure 1.5: The effective Majorana mass mββ as a function of the lightest neutrino
mass, mlightest. The function is presented for normal ordering (blue) and inverted ordering
(orange). The best fit values for the neutrino oscillation parameters are adopted from
[123]. The domains are obtained with the variation of the Majorana phases. The most
stringent limit achieved by KamLAND-ZEN collaboration [138] (mββ < 36 − 156 meV)
and the exclusion from cosmology [125, 126] (mlightest < 30 meV for NO scenario from∑

kmk < 0.12 eV) are displayed in the gray.

Although the most direct method for assessing neutrino mass involves the kinematics
of single β transitions and electron capture processes, valuable insights can also be derived
from cosmological observations and 0νββ decay. Recent cosmological studies have provided
an upper limit for the sum of neutrino masses, which is approximately 0.12 eV, i.e.,∑

kmk < 0.12 eV [125, 126]. However, it is important to note that these limits rely on
the specific cosmological assumptions employed [139, 140]. The lower limit of the half-life
for 0νββ can also be used to establish an upper limit of the effective neutrino mass from
0νββ-decay,

mββ =

∣∣∣∣∣
3∑

k=1

U2
ekmk

∣∣∣∣∣ . (1.24)

also known as the effective Majorana mass. Its behavior is more complicated as a function
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Table 1.4: The best limits on T 0ν
1/2 at 90% confidence level for different isotopes and the

limits obtained for the effective Majorana mass. We adopt data from [85].

0νββ-decay T 0ν
1/2[yr] mββ [eV]

48Ca→48Ti > 5.8× 1022 < 3.5− 22
76Ge→76Se > 1.8× 1026 < 0.079− 0.180
82Se→82Kr > 4.6× 1024 < 0.263− 0.545
96Zr→96Mo > 9.2× 1021 < 3.9− 19.5

100Mo→100Ru > 1.8× 1024 < 0.28− 0.49
116Cd→116Sn > 2.2× 1023 < 1.0− 1.7
128Te→128Xe > 3.6× 1024 < 1.5− 4.0
130Te→130Xe > 2.2× 1025 < 0.090− 0.305
136Xe→136Ba > 2.3× 1026 < 0.036− 0.156
150Nd→150Sm > 2× 1022 < 1.6− 5.3

of the lightest neutrino eigenstate as can be seen in Fig. 1.5. For inverted ordering mββ is
in the range of tens of meV or larger. For normal ordering mββ is smaller, in the range of
a few meV, but it can also be strongly suppressed when 2 meV < mlightest < 6 meV. As
in Fig. 1.4, the cosmological limit presented in Fig. 1.5 is obtained assuming the normal
hierarchy of neutrino masses.

The latest lower limits on T 0ν
1/2 for various isotopes, along with the corresponding mββ

upper limits, are presented in Table 1.4. The data are taken from [85]. The most stringent
current limits are mββ < 79−180 meV [141] (76Ge), mββ < 90−305 meV [142] (130Te) and
mββ < 36−156 meV [138] (136Xe). The provided intervals are associated with the ranges of
model-dependent nuclear matrix element calculations. It is important to mention that these
limits are applicable under the assumptions that neutrinos are Majorana particles (meaning
they are their own antiparticles) and that the light-neutrino mechanism is responsible for
driving 0νββ-decay.
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2 Main aims of the thesis

The main goal of the Ph.D. thesis is to revisit and further progress in the understanding
of different nuclear and atomic corrections for nuclear β and 2νββ-decay. The implications
of those corrections in neutrino physics are of crucial importance. The main tasks of the
dissertation thesis are presented below.

1. Re-examining the atomic exchange correction in β-decay

Recently, the exchange correction was calculated for the nuclear β-decay of 45Ca,
63Ni, 85Kr, 212Pb, 214Pb and 241Pu [143, 144, 8, 145]. Although there is an increasing
interest in the field, emerged from the new experimental measurements of the low
energy β-decay, it seems that the exchange correction function has a completely
different behavior than the recent measurements. We aim to re-examine the exchange
correction for those β transitions and bring light to this ambiguity. On this part
we focus on allowed β-decays transitions, but the results are extended to unique
forbidden transitions in a subsequent part of the thesis. We will also investigate if
the β-decay spectra including the reexamined exchange correction is in agreement
with the experimental data for 67Ni, 151Sm and 210Pb.

Dealing with the exchange correction for nuclear β-decay requires precise knowledge
of the wave functions of the bound electrons for the initial and final atom and the
continuum wave function of the emitted electron from β-decay. We aim to develop the
electrostatic potential for the initial and final atom with the Dirac-Hartree-Fock-Slater
self-consistent method, which provides through the most reliable binding energies
compared to the experimental values. For the continuum wave function of the β
electron, the Dirac equation will be solved in the Dirac-Hartree-Fock-Slater potential
for the final atom but modified to fulfill the asymptotic requirement for a scattering
process.

The exchange correction is expressed in terms of the overlaps between the initial
atom’s bound states and the final atom’s continuum states. In the computation of the
exchange correction, special care will be addressed to the integration procedure for
the overlaps, which are fast oscillating functions. Furthermore, the orthogonalization
of bound and continuum states of the final system will be investigated.

2. Accurate energy distributions in the β-decay of 187Re for neutrino mass
measurement

Experimental efforts to achieve sub-eV sensitivity to the neutrino mass through the
β spectrum of rhenium culminated in the collaboration between the MANU and
MIBETA groups, forming the Microcalorimeter Arrays for a Rhenium Experiment
(MARE) [146]. However, the MARE project eventually transitioned to holmium-based
experiments like ECHo and HOLMES [147]. One possible reason for this shift is
the limited theoretical understanding of the rhenium β spectrum, especially when
compared to the comprehensive theoretical corrections available for tritium β-decay.
Tritium decay benefits from a detailed theoretical framework, including corrections for
screening, atomic exchange, finite nuclear size, radiative effects, and recoil [148, 149].

This work aims to advance the theoretical description of 187Re β-decay by incor-
porating all relevant corrections to its spectrum. The study begins by employing
the same relativistic wave functions for emitted electrons as in our previous work
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[128]. Building on this foundation, the theoretical precision of the rhenium decay
spectrum will be enhanced by including corrections for finite nuclear size, diffuse
nuclear surface, and screening effects. Screening will be calculated using the self-
consistent Dirac-Hartree-Fock-Slater method, which accurately describes the atomic
bound electrons surrounding the emitted electron during the decay process.

Additionally, this study aims to include the atomic exchange correction in the β-decay
spectrum of 187Re. The potential implications of these corrections on neutrino mass
measurements using 187Re will also be discussed, providing insights that could address
the gaps in theoretical knowledge and potentially revitalize interest in rhenium-based
neutrino mass experiments.

3. Improved formalism for 2νββ-decay and 2νECEC process

With the increasing data availability for the 2νββ-decay mode, it is becoming feasible
to place constraints on various BSM parameters by analyzing the experimental
electron spectrum. Traditionally, the theoretical description of this process excluded
the dependence of lepton energies in the energy denominators of NMEs. However,
significant advancements in the theoretical framework for 2νββ-decay observables
have been achieved by incorporating this dependence [78].

The aim of this work is to further extend the Taylor expansion formalism for 2νββ-
decay by including the often-neglected Fermi component of the NMEs. Additionally,
the formalism will be expanded to describe 2νββ-decay transitions from 0+ to 2+

states and the 2νECEC process. Predicted half-lives for transitions to excited states
will be compared against recent experimental results.

To enhance the precision of 2νββ-decay observables, this study will apply the DHFS
model, initially developed for β-decay, to describe the emitted electrons. Atomic
exchange and radiative corrections will also be incorporated. For radiative corrections,
contributions from both virtual photon exchange and real photon emission during
2νββ-decay will be accounted for. These corrections will be integrated into the Taylor
expansion formalism for transitions to both ground and excited states.

For 2νECEC, the thesis aims to consider all s-wave electrons available for capture,
extending beyond the K and L1 orbitals typically included in earlier studies. The
DHFS self-consistent method will be employed to describe the bound states of
the captured electrons, offering a more realistic treatment of atomic screening and
more accurate binding energies compared to prior investigations. Moreover, special
attention will be given to the 2νECEC process in 124Xe, the only isotope for which a
half-life has been experimentally measured.

4. The angular correlation between the electrons emitted in 2νββ-decay and
0νββ-decay

The current experimental constraints on various strength parameters associated with
the BSM models are obtained by analyzing the shape of the summed electron energy
distribution of 2νββ-decay. However, the most striking signatures in many BSM
scenarios are expected in the angular correlation distributions between the emitted
electrons. A notable example is the direction flip in the emission of electrons when
right-handed currents are included in 2νββ-decay. Fortunately, the concept of tracking
individual electrons [108] is also actively pursued in next-generation experiments
such as SuperNEMO [109] and NEXT-100 [110].

We aim to investigate if the phase shifts of the wave functions for the emitted
electrons in 2νββ-decay and 0νββ-decay have any influence in the calculation of
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the angular correlation factors or angular correlation distributions. Additionally, for
2νββ-decay, we aim to develop the angular correlations expressions in the Taylor
expansion formalism.

5. A semi-empirical formula for two-neutrino DBD

A novel semi-empirical framework will be introduced to describe the 2νββ NMEs
derived from experimental half-lives. This framework will incorporate key nuclear
properties, including the number of protons and neutrons, pairing effects, isospin, and
nuclear deformation degrees of freedom. A detailed comparison will be conducted with
systematic 2νββ NME calculations performed using nuclear models. Additionally, the
framework will provide predictions for the observation of new 2νββ-decay transitions,
offering valuable guidance for future experimental investigations.
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3 Re-examining the atomic exchange correction

in β-decay

In this Chapter, we revisit the calculation of the atomic exchange correction for β−-
decay. Recently, this correction has been computed for the nuclear β-decay of 45Ca, 63Ni,
85Kr, 212Pb, 214Pb, and 241Pu [143, 144, 8, 145]. Despite the growing interest in this field,
it appears that the recent exchange correction calculations exhibits a markedly different
behavior compared to the earlier calculations [150, 151] and can not explain the recent
experimental measurements in the low-energy region of the β-decay spectrum.

We demonstrate that the discrepancy in recent calculations arises from the omission of
orthogonality between continuum and bound electron states within the potential of the
final atom. By imposing this orthogonality condition using a modified DHFS self-consistent
method, we observed significant differences in both the magnitude and energy dependence
of the correction compared to previous results. Our findings suggest that this approach
can resolve the mismatch between theoretical predictions and experimental measurements
in the low-energy region of the electron spectrum. Furthermore, we provide an analytical
expression for the atomic exchange correction applicable to a wide range of β emitters,
spanning Z values from 1 to 102. The results for the β-decay of 151Sm are discussed in
detail, along with recent experimental validations of our model.

3.1 Introduction

The main atomic effects influencing the β spectrum stem from the screening of the β
particle’s wave function by the atomic electron cloud, the exchange between emitted and
bound electrons, and the sudden change in nuclear charge. The latter effect can result in
internal ionization (shake-off) or atomic excitations (shake-up), though its overall impact
is typically limited to less than 0.1%. In contrast, the screening and exchange corrections
can have a pronounced effect on the β spectrum shape and decay rate, particularly for
low-energy transitions, such as those with low Q-values. The exchange correction arises
when a β electron is created in a bound orbital of the final atom, corresponding to one
that was occupied in the initial atom, while an atomic electron transitions from a bound
orbital to a continuum orbital in the final atom.

The study of the exchange correction began in 1962 with Bahcall’s seminal work [152],
which focused exclusively on the exchange of emitted electrons from an allowed β-decay
with bound electrons in the 1s orbital. This approximation resulted in a reduced emission
probability at low energies. Two decades later, Haxton demonstrated that the exchange
correction for tritium β-decay instead enhances the emission probability at low energies
[153], a conclusion consistent with experimental observations. This enhancement at low
energy was further corroborated by Harston and Pyper [150, 151] in their studies of various
nuclear β-decays, including the allowed β transitions of 14C, 35S, and 106Ru, as well as the
non-unique first forbidden β transition of 241Pu. It is noteworthy that certain non-unique
first forbidden β-decays, such as that of 241Pu, can be approximated as allowed transitions
when 2ξ = αZ/2R≫ E0 [154]. Here, ξ is a parameter defined by the final nucleus’s radius
R, nuclear charge Z, the fine structure constant α, and the transition’s maximum energy
E0.

The exchange correction has recently been revisited for the non-unique first forbidden
β-decay of 241Pu [143]. While the wave functions for the emitted and bound electrons were
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derived as analytical solutions of the Dirac equation under the hydrogenic approximation,
as provided by Rose [155], it became evident that incorporating the exchange correction
yielded an electron spectrum in better agreement with experimental data. These results
for 241Pu were later refined using more sophisticated wave functions in [144], which also
included a study of the allowed β transition of 63Ni. Further investigations into exchange
corrections for β-decays, including those of 45Ca and 241Pu, are detailed in a comprehensive
review of analytical corrections for allowed β-decays [8]. Beyond improving agreement with
experimental spectra, the exchange effect plays a crucial role in excluding background β
events in sensitive experimental setups such as LUX-ZEPLIN [82], XENONnT [81], and
XENON1T [156]. In this context, atomic exchange corrections have been examined for the
unique first forbidden transition of 85Kr and the non-unique first forbidden transitions of
212Pb and 214Pb [145]. Despite growing interest in theoretical advancements, a mismatch
with the experimental electron spectrum in the low-energy region persists.

Given the growing interest in the field and the enhanced experimental capabilities for
measuring the low-energy region of β spectra, such as those enabled by metallic magnetic
calorimeters (MMCs) [157, 158, 159], we revisit the calculation of the exchange effect. For
the electron wave functions, we adopt a modified Dirac-Hartree-Fock-Slater self-consistent
method, ensuring orthogonality between the continuum and bound electron states in the
potential of the final atom. We found that the lack of orthogonality between these states
in the final atom introduces errors in the overlaps with the initial atom’s bound states,
resulting in an underestimation of the total exchange correction.

We provide detailed calculations for the β-decays of 14C, 45Ca, 63Ni, and 241Pu, as
well as for a broad range of β emitters with atomic numbers Z = 1 to 102. Except in the
low-energy region, the total exchange correction increases progressively with the nuclear
charge. However, even for Z = 100, the total exchange effect remains below 1% at a kinetic
energy of 200 keV, rendering the correction negligible beyond this point depending on the
desired accuracy. Additionally, we examine the partial contributions from orbitals beyond
the 2s1/2 orbital and their impact on the total exchange correction. These contributions are
especially significant for heavier atoms but diminish with increasing electron energy. Lastly,
we provide an analytical expression for the total exchange correction as a function of the
atomic number, facilitating straightforward implementation in experimental analyses.

3.2 Formalism for allowed β-decay

The electron spectrum for a nuclear β-decay is proportional with [4]

dΓ

dEe
∝ peEe(E0 − Ee)

2F0(Z
′, Ee)C(Ee), (3.1)

where the term peEe(E0 −Ee)
2 is related to the statistical phase space factor that reflects

the momentum distribution between the neutrino and the electron, F0(Z
′, Ee) is the so-

called Fermi function and the shape factor, C(Ee), contains the nuclear matrix elements
and all the possible remaining terms dependent on lepton energy. Here Ee is the total
energy of the electron, pe =

√
E2

e −m2
e is the momentum of the electron, E0 = Q+me is

its maximum energy and Z ′ is the atomic number of the final nucleus.

The Fermi function, which encodes the electrostatic interaction between the electron
and the final atom, can be expressed in terms of the large- and small-component radial
functions, g′κ(Ee, r) and f

′
κ(Ee, r) of the emitted electron,

F0(Z
′, Ee) = g′

2
−1(Ee, R) + f ′

2
+1(Ee, R), (3.2)
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evaluated on the nuclear surface of the final nucleus. The radial components of the continuum
states and their normalization are discussed in Section A.3. A widely used approximation
for the Fermi function is obtained by keeping the lowest power of the expansion in r of the
radial wave functions corresponding to a uniformly charged sphere potential [63]

Fk−1(Z
′, Ee) =

[
Γ(2k + 1)

Γ(k)Γ(2γk + 1)

]2
(2pR)2(γk−k)eπη |Γ(γk + iη)|2 , (3.3)

with k = 1 for allowed β transitions. The remaining quantities are detailed in in Section A.3.
It is important to note that the phase shifts of the electron wave functions do not influence
the calculation of the exchange correction. Therefore, we can write the expressions only
with the real parts of the radial components.

For allowed transitions, the shape factor is not energy dependent, so their spectra are
proportional with

dΓ

dEe
∝ peEe(E0 − Ee)

2F0(Z
′, Ee). (3.4)

The modification of the allowed spectrum due to the exchange correction is given by
the following transformation [150, 151]

dΓ

dEe
⇒ dΓ

dEe
×
[
1 + ηT (Ee)

]
(3.5)

where

ηT (Ee) = fs(2Ts + T 2
s ) + (1− fs)(2Tp̄ + T 2

p̄ )

= ηs(Ee) + ηp̄(Ee)
(3.6)

Here,

fs =
g′2−1(Ee, R)

g′2−1(Ee, R) + f ′2+1(Ee, R)
, (3.7)

and the quantities Ts and Tp̄ depend respectively on the overlaps between the bound s1/2
(κ = −1) and p̄ ≡ p1/2 (κ = 1) orbitals wave functions in the initial state atom and the
continuum states wave functions in the final state atom,

Ts =
∑

(ns)′

Tns = −
∑

(ns)′

〈
ψ′
Ees

∣∣ψns

〉

⟨ψ′
ns|ψns⟩

g′n,−1(R)

g′−1(Ee, R)
(3.8)

and

Tp̄ =
∑

(np̄)′

Tnp̄ = −
∑

(np̄)′

〈
ψ′
Eep̄

∣∣∣ψnp̄

〉

〈
ψ′
np̄

∣∣ψnp̄

〉 f ′n,+1(R)

f ′+1(Ee, R)
. (3.9)

The summations extend over all occupied orbitals of the final atom, which correspond to the
parent electronic configuration under the sudden approximation. The radial components of
the bound states, gn,κ(r) and fn,κ(r), are detailed in Section A.2. All primed wave functions
pertain to the final atom.
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According to the definition of the quantities Ts and Tp̄, we can write

ηs(Ee) =
∑

n

ηns + fs
∑

n,m
n̸=m

TnsTms (3.10)

and

ηp̄(Ee) =
∑

n

ηnp̄ + (1− fs)
∑

n,m
n̸=m

Tnp̄Tmp̄ (3.11)

Here we defined the partial exchange correction of nth s orbital and nth p̄ orbital as,

ηns = fs(2Tns + T 2
ns) (3.12)

and

ηnp̄ = (1− fs)(2Tnp̄ + T 2
np̄), (3.13)

respectively.
While the contribution from the exchange with p1/2 orbitals, ηp̄(Ee), is relatively small,

it should not be overlooked when striving for high precision [8]. Depending on the specific
context, the p1/2 contribution has either been excluded [150, 143, 144] or included [8, 145].
Additionally, the mixed sum in Eq. (3.10) was disregarded in [150] on the grounds that its
impact on ηs(Ee) is minimal. While this approximation is justified for high energies, the
mixed sum can contribute approximately 1− 3% for kinetic energies below 1 keV [143].

The critical elements in calculating the exchange correction are the overlaps between the
bound orbital electron wave functions in the initial atom and the continuum state electron
wave function, with energy Ee, in the final atom,

〈
ψ′
Ees

∣∣ψns

〉
. Numerical calculations face

three key challenges. The first two stem from the oscillatory nature of the continuum
state wave function: accurate knowledge of the wave function over a wide spatial range is
essential, and careful attention must be given to the integration method. The third and
most significant challenge is ensuring that the final-state electron continuum wave function
is orthogonal to the bound orbital wave functions of the final state, i.e.,

〈
ψ′
Ees

∣∣ψ′
ns

〉
= 0.

This orthogonality condition must hold because these wave functions are eigenfunctions of
the same Hamiltonian [150].

If the overlap integral
〈
ψ′
Ees

∣∣ψ′
ns

〉
is not zero, or at least much smaller than

〈
ψ′
Ees

∣∣ψns

〉
,

then the calculation of
〈
ψ′
Ees

∣∣ψns

〉
may contain significant errors [150]. This issue has also

been investigated in nucleon removal reactions such as (γ, p) and (e, e′p), where substantial
effects on the polarization of outgoing protons and photon asymmetry were observed for
the (γ, p) reaction [160]. Additionally, orthogonalization has been applied to shake-off
contributions during electron capture in 163Ho using the Gram-Schmidt procedure [161].

To verify the orthogonality, we define the following dimensionless quantities,

T ref
ns = −

〈
ψ′
Ees

∣∣ψ′
ns

〉

⟨ψ′
ns|ψns⟩

g′n,−1(R)

g′−1(Ee, R)
, (3.14)

and

T ref
np̄ = −

〈
ψ′
Eep̄

∣∣∣ψ′
np̄

〉

〈
ψ′
np̄

∣∣ψnp̄

〉 f ′n,+1(R)

f ′+1(Ee, R)
, (3.15)

which should be zero for any energy of the emitted electron.

20



Table 3.1: The relevant nuclear data for the isotopes considered in this work. For each
ground state to ground state β transition we present the endpoint (second column) and
the initial and final spin-parity states, Jπ

i and Jπ
f (third column). The Q-values of each

β-decay are from [162]

Isotope Q-value (keV) Jπ
i , J

π
f

10C 156.476(4) 0+, 1+
45Ca 259.7(7) 7/2−, 7/2−
63Ni 66.977(15) 1/2−, 3/2−
241Pu 20.78 (17) 5/2+, 5/2−

3.3 Exchange effect for the β-decay of 14C, 45Ca, 63Ni and
241Pu

To investigate the steps involved in the exchange correction calculation, we focus on four
low Q-value β transitions that were recently studied—namely, 14C [163, 164], 45Ca [8], 63Ni
[144], and 241Pu [143, 144]. The relevant nuclear data for these isotopes are summarized
in Table 3.1. Based on the differences in the nuclear spin-parity states, the first three
β transitions are classified as allowed transitions, while the last one is categorized as a
non-unique first forbidden transition. However, the latter can be approximated as allowed
using the ξ approximation [154]. We compute the exchange correction over an energy range
starting from 200 eV up to the Q-value kinetic energy of the continuum electron for each
transition (see the second column of Table 3.1).

Figure 3.1: The dimensionless quantities Tns (solid black) and T ref
ns (dashed blue) defined in

Eqs. (3.8) and (3.14), respectively, necessary to perform the exchange correction calculation
for the β-decay of 45Ca. The results are presented for s1/2 orbitals with n = 1 (a), n = 2 (b),
n = 3 (c), and n = 4 (d). The bound electron wave functions for both initial and final
atoms are computed with the true DHFS method, and the continuum states of the final
nucleus just with the electric and nuclear components of the potential. The figure is taken
from [165].
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Figure 3.2: The dimensionless quantities Tns (solid black) and T ref
ns (dashed blue) defined in

Eq. 3.8 and 3.14, respectively, necessary to perform the exchange correction calculation for
the β-decay of 45Ca. The results are presented for s1/2 orbitals with n = 1 (a), n = 2 (b),
n = 3 (c), and n = 4 (d). The bound and continuum electron wave functions are computed
with the modified DHFS self-consistent method. The zero value of the quantity T ref

ns

indicates a perfect orthogonality between the continuum states of the emitted electron and
the bound states of the atomic electrons of the final nucleus. The figure is taken from [165].

To examine the impact of orthogonality on the exchange correction, we adopt two
different approaches for computing the electron wave functions. In the first approach, the
bound wave functions for both the initial neutral atom and the final positive ion are derived
using a standard DHFS self-consistent method. The continuum states for the emitted
electron are then obtained by solving Eq. (A.54) with the nuclear and electronic potential
of the final positive ion, i.e., V (r) = Vnuc(r) + Vel(r). In the second approach, we employ
the modified DHFS self-consistent method described in Section A.3.5. Here, the bound and
continuum electron states of the final positive ion are calculated using the same potential
defined in Eq. (A.73), as illustrated in the lower panel of Fig. A.1.

The non-orthogonal bound and continuum states from the first approach lead to non-
zero values of the dimensionless quantities T ref

ns , as can be seen in Fig. 3.1, where we present
all the contributions from the occupied s1/2 orbitals in the case of 45Ca β-decay. In the
second approach, where the orthogonality is imposed as descried above, one can see in
Fig. 3.2, that T ref

ns are constant and zero for any energy of the continuum state. Thus, the
dimensionless quantities Tns, entering the total exchange effect calculation, are strongly
influenced by whether the orthogonality is imposed or not. We can say that as long as the
overlaps

〈
ψ′
Ees

∣∣ψ′
ns

〉
are not zero then the overlaps

〈
ψ′
Ees

∣∣ψns

〉
, and implicitly the quantities

Tns, are in error.

The non-orthogonal bound and continuum states derived from the first approach result
in non-zero values of the dimensionless quantities T ref

ns . This is illustrated in Fig. 3.1, where
we display the contributions from all occupied s1/2 orbitals for the β-decay of 45Ca. In
contrast, the second approach, where orthogonality is enforced as described earlier, yields
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Figure 3.3: The total exchange correction and the partial contributions from all occupied
s1/2 orbitals as functions of the kinetic energy of the electron emitted in the β-decay of
45Ca. The top figure is obtained with non-orthogonal continuum and bound states of the
final atom (see text). In the bottom part the orthogonality is ensured by the modified
DHFS self-consistent method. The figure is taken from [165].

constant and zero values for T ref
ns at any continuum state energy, as shown in Fig. 3.2. These

findings highlight that the dimensionless quantities Tns, which are integral to calculating
the total exchange effect, are highly sensitive to whether orthogonality is properly imposed.
We conclude that when the overlaps

〈
ψ′
Ees

∣∣ψ′
ns

〉
are non-zero, the overlaps

〈
ψ′
Ees

∣∣ψns

〉
, and

consequently the quantities Tns, are significantly impacted and potentially erroneous.

For the β-decay of 45Ca, Fig. 3.3 illustrates the total exchange effect, ηT , along with the
partial contributions, ηns. The results obtained using non-orthogonal states are displayed
in the top panel, while those using orthogonal states are shown in the bottom panel.

The comparison reveals not only a completely different energy dependence of the
exchange effect but also a strong influence of wave function orthogonality on its magnitude.
Similar discrepancies in magnitude and energy dependence were noted in [166], though no
concrete explanation was provided.

In the first approach, the exchange effect peaks at approximately 8% around 1 keV
and then rapidly decreases for lower continuum state energies. A comparable exchange
correction was reported in [8] (see Fig. 6, pg. 30) for the β-decay of 45Ca. Conversely,
when orthogonal states are employed, the exchange effect rises sharply with decreasing
continuum state energy, reaching approximately 35% at 200 eV.
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Figure 3.4: The total exchange correction, ηT , and each partial contributions, ηns, coming
from the exchange with s1/2 occupied orbitals as functions of the kinetic energy of the
emitted electron, Ee −me. The results are presented for the β-decay of 14C, 45Ca, 63Ni
and 241Pu. The total exchange correction also includes the partial contributions coming
from the exchange with the p1/2 occupied orbitals, which are too small to be included in
the plot. The figure is taken from [165].

The downturn observed in the non-orthogonal case is directly linked to the erroneous
behavior of the Tns quantities. Our investigation suggests that this downturn can even
reverse the sign of the exchange effect at very low continuum state energies, resulting
in a suppression of events in the low-energy region of the β spectrum. Therefore, any
calculation of the exchange correction for ultra-low Q-value β transitions must rigorously
enforce orthogonality between the continuum and bound wave functions in the final atom.

We also included contributions from exchanges with p1/2 orbitals in the total exchange
effect calculation for 45Ca. However, these contributions are three orders of magnitude
smaller than those from s1/2 orbitals and are thus not visible in Fig. 3.3. In the non-
orthogonal case, the p1/2 contributions similarly exhibit a downturn, further contributing
to the total exchange effect’s suppression at low energies.

In the following, we present results for the ground-state-to-ground-state β transitions
of 14C, 45Ca, 63Ni, and 241Pu, employing the modified DHFS self-consistent method and
enforcing orthogonality between the continuum and bound states. Figure 3.4 illustrates the
total exchange correction for each transition, along with the contributions from exchanges
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with all occupied s1/2 orbitals. The p1/2 contributions are also included in the calculations.
These contributions exhibit a behavior similar to that of the s1/2 contributions but are
approximately three orders of magnitude smaller. At the lowest energy considered for the
continuum state, i.e., 200 eV, the exchange corrections are approximately 37%, 35%, 32%,
and 27% for the β-decays of 14C, 45Ca, 63Ni, and 241Pu, respectively.

At first glance, the magnitude of the exchange effect appears to decrease with increasing
nuclear charge, at least at 200 eV. However, as will be discussed in the following subsection,
the dependence of the exchange correction on the atomic number is more intricate. This
complexity arises from a combined effect involving the spatial extent of the atomic potential,
the spatial distribution of the bound wave functions for different n values, and the closure
of s1/2 and p1/2 orbitals.

Figure 3.5: The normalized electron spectra for the β transitions of 14C, 45Ca, 63Ni and
241Pu, with the exchange effect included (solid black line) and without the exchange
correction (dashed blue line). All spectra are normalized to unity over the full energy range.
In the bottom panel of each β emitter, we present the ratio between normalized spectrum
with exchange correction and the normalized spectrum without the exchange correction.
The figure is taken from [165].

From this investigation, covering one light nucleus, two light-medium nuclei, and one
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heavy nucleus, we also observe that heavier nuclei exhibit exchange corrections that persist
at higher energies. This trend and its implications will be further analyzed in the next
subsection.

Figure 3.5 presents the normalized electron spectra for the decays of the four isotopes
under consideration. For each transition, the spectra with and without the exchange
correction are shown as solid and dashed lines, respectively.

It is important to emphasize that, due to our choice of atomic potential, the spectra
without the exchange effect already incorporate finite nuclear size, diffuse nuclear surface,
and atomic screening corrections. These effects are encoded in the continuum wave functions
for the emitted electrons, which are used in the Fermi functions defined in Eq. (3.2).
Radiative corrections, which represent non-static Coulomb effects, were not included in the
calculations, as they are negligible for low Q-value β transitions [144, 167]. The inclusion of
the exchange effect leads to a significant increase in the number of events in the low-energy
region of the spectra and alters the overall spectral shape.

In cases where non-orthogonal bound and continuum states are used for the final atom,
the spectrum with the exchange effect exhibits a downturn at low energies. This results in
a mismatch between the predicted and measured spectra, as reported in [144, 164, 159]. A
detailed investigation of the residuals between the measured spectra and the theoretical
predictions presented here will be provided in a future study.

Figure 3.6: The normalized antineutrino spectra corresponding to the β transitions of 14C,
45Ca, 63Ni and 241Pu, with the exchange effect included (solid black line) and without the
exchange correction (dashed blue line). The figure is taken from [165].
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Figure 3.7: The energy dependence of the total exchange correction for β-decay of different
initial nuclei with atomic numbers Z = 20, 30, 50, 70, 100. The quantities are computed
using Eq. 3.6, which includes exchange with all occupied s1/2 and p1/2 orbitals. The figure
is taken from [165].

For completeness, we also present the corresponding antineutrino spectra for each
transition in Fig. 3.6. The antineutrino spectrum is derived by replacing Ee → E0 −Ee in
the electron spectrum defined in Eq. (3.1). Since the inversion process is symmetric, the
exchange effect produces the same modifications in the shape of the antineutrino spectra as
observed in the electron spectra. However, for larger Q-value β transitions, where radiative
corrections cannot be ignored, the inversion symmetry no longer holds. This asymmetry
arises from the distinct forms of radiative corrections for electrons and antineutrinos.

Notably, the exchange correction has a pronounced influence on the endpoint regions
of the antineutrino spectra. This raises an important question regarding the potential
impact of the exchange effect on the cumulative antineutrino spectrum emitted by nuclear
reactors. We leave the discussion on this topic open and note that further investigations
are currently underway to explore these effects in more detail.

3.4 Analytical parametrization

To estimate the impact of exchange effects on a β-decay spectrum more broadly, we
conducted exchange correction calculations across a wide range of atomic numbers for the
initial nucleus, spanning from 1 to 102. The emitted electrons in the β-decay process were
analyzed for kinetic energies ranging between 50 eV and 200 keV.

We illustrate in Fig. 3.7 the energy dependence of the total exchange correction for β
transitions of various initial isotopes with Z = 20, 30, 50, 70, 100. The calculations include
contributions from the exchange with all occupied s1/2 and p1/2 orbitals. The observed
decrease in the exchange effect with increasing energy of the emitted electron is neither new
nor unexpected [150]. However, compared to the unscreened hydrogenic approximation
employed in earlier studies [150], the DHFS self-consistent method used here yields a larger
overall magnitude for the exchange correction, particularly in the very low-energy region.

Another factor contributing to this difference is that the previous calculations in
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Figure 3.8: The exchange correction as function of the atomic number of the β emitter,
from Z = 1 to Z = 102. The dependence is presented at four different kinetic energies of
the β electron. We depict the total exchange correction, ηT , with filled black circles and
the partial contributions, η1s and η2s, with filled orange squares and filled blue triangles,
respectively. The empty black circles represent the sum of the partial contributions coming
from the exchange with 1s1/2 and 2s1/2, i.e., η1s+η2s. We also indicate with thin dashed
lines the atomic numbers where the s1/2 orbitals are fully filled with bound electrons. The
figure is taken from [165].

[150] included only the exchange contributions from occupied s1/2 orbitals up to and
including the 3s1/2 orbital, while completely neglecting the p1/2 orbitals. Apart from the
low-energy region, the total exchange correction progressively increases with nuclear charge.
Nevertheless, even for Z = 100, the total exchange effect remains below 1% at 200 keV
kinetic energy of the emitted electron, implying that its contribution can be safely ignored
beyond this threshold, depending on the required level of accuracy.

In Fig. 3.8, we illustrate the exchange correction as a function of the atomic number of
the β emitter, ranging from Z = 1 to Z = 102. The dependence is analyzed at four distinct
kinetic energies of the β electron: 50 eV, 3 keV, 10.5 keV, and 62 keV. The total exchange
correction, ηT , is represented by filled black circles, while the partial contributions, η1s and
η2s, are depicted with filled orange squares and filled blue triangles, respectively. The sum
of the partial contributions from the 1s1/2 and 2s1/2 orbitals, i.e., η1s + η2s, is indicated
by empty black circles. This approach highlights the significance of contributions from the
remaining occupied s1/2 and p1/2 orbitals, particularly at lower energies where their impact
becomes more pronounced. It also emphasizes the need to account for these additional
contributions to achieve a high-precision description of the exchange correction across
different atomic numbers.
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Table 3.2: The fit parameters for the total exchange correction are tabulated individually
for each atomic number of the initial nucleus (see Eq.3.16).

Z a b c d e Z a b c d e

1 40.878 41.395 1.0627 9.6525 0.2310 52 1.1568 0.6395 0.6250 2.3902 0.2457
2 11.440 13.268 1.2686 7.3986 0.2962 53 1.1788 0.6679 0.6207 2.4189 0.2429
3 5.5124 0.1003 0.2022 5.2566 0.3183 54 1.1859 0.6723 0.6192 2.4260 0.2415
4 2.8551 0.4427 1.7697 4.1501 0.3819 55 2.6675 3.8795 0.5667 3.6830 0.1882
5 2.4633 0.1412 1.7544 3.5635 0.3688 56 2.4590 3.1784 0.5810 3.5353 0.1935
6 2.1398 0.0317 1.9398 3.1399 0.3583 57 2.0825 2.2149 0.5909 3.2648 0.2026
7 1.9035 0.0043 2.2619 2.8400 0.3482 58 1.9646 2.0665 0.5747 3.2011 0.2025
8 1.8035 -0.1029 0.6761 2.6039 0.3244 59 1.8991 2.0272 0.5593 3.1752 0.2013
9 4.4452 29.653 0.6901 5.5130 0.2581 60 5.7069 -4.4807 0.0445 2.0158 0.0958
10 5.1785 39.584 0.7405 5.7240 0.2470 61 4.7160 -3.6434 0.0472 1.8830 0.1018
11 4.3112 19.394 0.6981 5.0458 0.2539 62 1.9100 2.4129 0.5209 3.2733 0.1927
12 3.8227 14.001 0.6797 4.7287 0.2549 63 1.9756 2.7329 0.5116 3.3596 0.1886
13 3.8809 13.420 0.6866 4.6739 0.2506 64 2.0675 3.1615 0.5048 3.4651 0.1843
14 3.4108 9.6263 0.6827 4.3715 0.2550 65 2.1927 3.7411 0.5007 3.5924 0.1797
15 2.8742 6.3302 0.6779 4.0086 0.2626 66 2.3524 4.4939 0.4989 3.7361 0.1751
16 2.4395 4.2232 0.6750 3.6740 0.2707 67 2.5481 5.4568 0.4998 3.8932 0.1706
17 2.1242 2.9843 0.6725 3.3994 0.2773 68 2.7706 6.6084 0.5026 4.0523 0.1665
18 1.8963 2.2428 0.6691 3.1818 0.2821 69 3.0281 8.0113 0.5070 4.2161 0.1626
19 2.5709 4.0673 0.7067 3.6467 0.2615 70 3.5968 12.385 0.5171 4.5873 0.1551
20 2.1091 2.4885 0.7326 3.2774 0.2764 71 3.3291 9.9229 0.5153 4.4002 0.1584
21 1.8382 1.8290 0.7168 3.0469 0.2815 72 2.9497 7.5192 0.5117 4.1643 0.1631
22 1.6569 1.4564 0.7006 2.8800 0.2842 73 2.5073 5.3125 0.5071 3.8723 0.1695
23 1.5267 1.2281 0.6830 2.7557 0.2850 74 2.1592 3.8373 0.5040 3.6063 0.1760
24 1.2780 0.8165 0.6507 2.4783 0.2927 75 1.9041 2.8882 0.5026 3.3813 0.1819
25 1.3602 1.0057 0.6422 2.6026 0.2823 76 2.1691 3.8474 0.5010 3.6090 0.1746
26 1.3086 0.9690 0.6203 2.5654 0.2792 77 0.0297 0.2031 -0.2002 0.3543 0.3930
27 1.2748 0.9753 0.5974 2.5548 0.2748 78 1.2728 1.1235 0.5013 2.6830 0.2041
28 1.2568 1.0258 0.5753 2.5714 0.2693 79 -0.1392 0.3445 -0.1388 0.2235 0.3614
29 1.1136 0.8685 0.5282 2.4317 0.2695 80 -0.1217 0.3229 -0.1476 0.2014 0.3780
30 1.2723 1.2967 0.5380 2.6960 0.2552 81 -0.0768 0.2711 -0.1728 0.1647 0.4341
31 1.5426 2.0748 0.5547 3.0430 0.2393 82 -0.0763 0.2694 -0.1750 0.1562 0.4366
32 1.7034 2.5015 0.5692 3.1979 0.2324 83 -0.0702 0.2624 -0.1798 0.1488 0.4456
33 1.7962 2.6806 0.5814 3.2649 0.2292 84 -0.0712 0.2625 -0.1809 0.1414 0.4469
34 1.7945 2.5440 0.5913 3.2375 0.2295 85 -0.0732 0.2638 -0.1811 0.1359 0.4454
35 1.7239 2.2223 0.5996 3.1466 0.2323 86 1.4297 1.2203 0.5313 2.7644 0.2004
36 1.6218 1.8588 0.6071 3.0246 0.2364 87 52.470 -39.955 0.0481 4.3172 0.0384
37 3.2275 6.6088 0.6445 4.0640 0.2018 88 3.4173 5.9999 0.5508 4.0237 0.1635
38 2.5377 3.9319 0.6563 3.6498 0.2150 89 0.1538 0.1231 -0.3077 0.4941 0.3504
39 2.0575 2.5016 0.6589 3.3026 0.2263 90 0.0872 0.1567 -0.2640 0.3621 0.3864
40 1.7775 1.7946 0.6630 3.0608 0.2347 91 0.0184 0.1954 -0.2298 0.2262 0.4372
41 1.5791 1.3588 0.6678 2.8673 0.2420 92 -0.0480 0.2417 -0.2002 0.1214 0.4769
42 1.4287 1.0662 0.6727 2.7055 0.2482 93 -0.0719 0.2662 -0.1847 0.1198 0.4457
43 1.2091 0.7074 0.6834 2.4424 0.2605 94 5.5119 -4.1559 0.0482 2.0596 0.0783
44 1.1287 0.5908 0.6884 2.3352 0.2651 95 4.6253 -3.5213 0.0463 1.8487 0.0863
45 1.0633 0.5044 0.6915 2.2439 0.2689 96 -0.1264 0.3340 -0.1500 0.1698 0.3550
46 1.0102 0.4394 0.6921 2.1667 0.2717 97 3.3772 -2.4923 0.0509 1.6164 0.0989
47 0.9644 0.3887 0.6921 2.0988 0.2741 98 3.0700 -2.2689 0.0504 1.5107 0.1049
48 0.9834 0.4124 0.6813 2.1319 0.2699 99 2.7323 -1.9692 0.0543 1.4570 0.1093
49 1.0483 0.4948 0.6587 2.2341 0.2607 100 1.2245 0.8824 0.4761 2.4648 0.2000
50 1.0811 0.5367 0.6463 2.2829 0.2555 101 1.2193 0.8939 0.4675 2.4613 0.1988
51 1.1207 0.5906 0.6343 2.3406 0.2502 102 1.2219 0.9252 0.4585 2.4717 0.1971
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At 5 eV energy, the total exchange effect exhibits noticeable discontinuities. This
behavior can be understood from the expression of ηs in Eq. 3.10. As the atomic number
increases, new s1/2 orbitals become occupied, introducing additional partial contributions
to the exchange correction. These contributions, added after a shell closure, are nonzero in
the low-energy region, explaining the discontinuities observed in the total exchange effect.
To highlight this behavior, we use thin dashed lines to indicate the atomic numbers where
s1/2 orbitals are filled with bound electrons. A clear correlation is observed between shell
closures and the jumps in the total exchange correction. While the closure of p1/2 orbitals
also contributes to this effect, its impact is more subtle. As the energy increases, these
discontinuities gradually smooth out. For instance, at 3 keV, the partial contributions start
from zero, resulting in a smooth dependence of the total exchange effect on the atomic
number. This smooth behavior persists as the energy of the emitted electron continues to
increase.

Regarding the partial contributions, η1s and η2s, we observe a completely different
dependence on Z compared to the results reported in [8] at 3 keV. We attribute the
differences in both Z dependence and magnitude to the fact that, in our study, the bound
and continuum states of the final atom are orthogonal. In our calculations, η2s shows
a smooth dependence on the atomic number at 3 keV. In contrast, the results from [8]
exhibit abrupt changes, including negative values for specific nuclear charges, leading to
a downturn in the total exchange effect. Analyzing the sum of η1s and η2s, it becomes
evident that, at very low energies, the contributions from higher orbitals are crucial for an
accurate calculation of the total exchange correction. However, their significance diminishes
as the energy of the continuum state increases.

The complex interplay between the spatial extension of the atomic potential, the spatial
distribution of bound wave functions for different n, and the shell closures of s1/2 and p1/2
orbitals complicates the formulation of an analytical parametrization for the total exchange
correction across the full range of Ee −me and Z. To address this challenge, we propose
the following analytical fit for the total exchange correction:

ηT (x) = (a+ bxc) exp(−dxe), (3.16)

as a function of the kinetic energy of the emitted electron, i.e., x = Ee −me in keV. The
jumps in the Z dependence for low energies forced us to tabulate the required fit parameters
for each Z individually. The five fitting parameters are provided in Table 3.2. Due to
the orthogonality constraint implemented in our study, the proposed fit is more compact
compared to the one in [8], which required nine fitting parameters. The discrepancy between
these analytical fit models arises because the downturn in the exchange correction observed
in [8] cannot be captured with a simple model. In our case, the deviation between the
fitted and calculated exchange corrections never exceeds 10−3 across the entire tested
energy range, from 5 eV to 200 keV. Furthermore, for the full Ee −me and Z range, the
average residuals remain below 10−4, achieving a level of accuracy comparable to that of
[8]. Importantly, we emphasize that our fit is also suitable for extrapolation beyond 200
keV kinetic energy of the emitted electron.

3.5 General conclusions

The investigation of β-spectrum shapes serves as a powerful tool for addressing open
questions in physics beyond the SM and neutrino physics. With advancements in experi-
mental techniques enabling measurements in the low-energy region, particularly within the
first few keV, and the availability of higher statistics, it is imperative to provide accurate
theoretical predictions for β-spectra. However, accurately describing these spectra poses
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significant challenges due to the multitude of effects that become relevant at low energies.
For allowed transitions, the dominant atomic effects arise from the screening of the emitted
electron’s wave function by the atomic electron cloud and the exchange interactions between
continuum and bound electrons. The latter effect is referred to as the exchange correction.

We investigated the exchange correction for allowed β transitions, accounting for
contributions from all occupied s1/2 and p1/2 orbitals. The electron wave functions were
calculated using a modified DHFS self-consistent method. To ensure orthogonality between
the continuum and bound electron states in the potential of the final atom, we modified the
final iteration of the self-consistent procedure. Our findings demonstrate that orthogonality
plays a crucial role in accurately computing the exchange correction. Failure to enforce
orthogonality between the continuum and bound states in the final atom introduces errors in
the overlaps between the initial atom’s bound states and the final atom’s continuum states,
resulting in a downturn in the total exchange correction. After enforcing orthogonality,
we observed significant differences in both magnitude and energy dependence compared
to prior studies. We argue that our approach resolves the mismatch between other recent
theoretical predictions and experimental data in the low-energy region.

To develop an analytical parametrization for the exchange correction, we extended
our calculations to a broad range of β emitters, with atomic numbers spanning from
Z = 1 to Z = 102. Apart from the low-energy region, the total exchange correction
exhibits a progressive increase with nuclear charge. At ultra-low energies, such as 5 eV,
the Z dependence of the total exchange effect is influenced by the closure of s1/2 and p1/2
orbitals. At higher energies, however, the exchange correction shows a smooth dependence
on nuclear charge—a behavior that differs markedly from earlier studies. We attribute this
discrepancy to the enforcement of orthogonality between the continuum and bound states
in our approach. Additionally, we demonstrated that contributions from orbitals beyond
the 2s1/2 orbital are crucial for accurately determining the total effect, especially at low
energies. Finally, we provided an analytical expression for the total exchange correction for
each atomic number, for a straightforward implementation in experimental analyses.

3.6 Addressing the discrepancy between experimental and
theoretical spectra of 151Sm β-decay

This Section highlights that the main source of deviation between the observed and
theoretical β spectrum of 151Sm primarily stems from the lack of orthogonality between
continuum and bound electron states within the potential of the final atom, 151Eu, when
calculating the exchange correction. The calculations presented in this work build upon
the results from the previous sections, published in [168].

The β-decay of 151Sm follows two branches: a dominant one (99.31%) from the ground
state to the ground state of 151Eu, and a weaker branch (0.61%) from the ground state
to the 21.541 keV excited state of 151Eu [159]. Both transitions are classified as first
non-unique β transitions. Our calculations focus on the dominant channel. Despite the
demonstration that treating the transition as allowed (i.e., using the ξ approximation with
C(Ee) = 1 in Eq. (3.1)) is only accurate within a 5% precision level, as determined by
nuclear Shell Model calculations with the conserved vector current (CVC) hypothesis [159],
we continue to consider the spectrum as if it were an allowed transition. Moreover, we
include the exchange correction as for an allowed transition as presented in Eq. 3.6, so
we neglect the possible exchange with bound electrons from p3/2 (κ = −2) and d̄ ≡ d3/2
(κ = 2) orbitals.

Our rough estimation of the electron spectrum for the ground-state-to-ground-state
β transition of 151Sm is shown in Figure 3.9, alongside the results from [159]. Since no

31



Figure 3.9: The measured and theoretical spectra for the β transitions of 151Sm. Our
prediction (solid black) is overlaid on Figure 9 from [159], maintaining the same aspect
ratio and using the same Q-value, specifically Q = 76.430 keV. For further details on the
original figure, including regions of interest, calibration signals, and the transition to the
excited state beginning at 21.541 keV, we direct the reader to [159]. A black and white
mode has been applied to the original figure.

experimental data is available (solid gray), we overlaid our prediction (solid black) on
Figure 9 from [159], preserving the original aspect ratio and adopting the same Q-value,
specifically Q = 76.430 keV. For further details on the original figure, such as calibration
signals, regions of interest, and the transition to the excited state starting at 21.541 keV,
we refer readers to [159].

Despite the simplifications from our approach compared to the more elaborate calcula-
tions in [159], our model exhibits better agreement with the experimental data, particularly
in the low-energy region of the spectrum (below 10 keV). In our earlier work [168], we
demonstrated that neglecting orthogonality between the continuum and bound wave func-
tions in the final state leads to a downturn in the exchange correction at low energies. A
similar behavior was observed for the β-decay of 214Pb, as noted in [166], although no
detailed explanation was provided.

We can conclude that the mismatch between the measured and theoretical β spectrum
of 151Sm can largely be addressed by incorporating an orthogonality condition into the
atomic exchange correction calculation.

3.7 Additional experimental confirmation

Further validation of our findings from previous sections is supported by spectral
measurements of the β-decay of 63Ni [144] and 210Pb [169]. In the absence of actual
experimental data, Figures 3.10 and 3.11, corresponding to the β-decay of 63Ni and 210Pb,
respectively, should be interpreted with caution. Nevertheless, it is noteworthy that both
transitions exhibit an increase in the number of events in the low-energy region of the
spectra, aligning with our theoretical predictions. Interestingly, a similar enhancement
in the number of events in the low-energy region was recently observed in the β-decay
spectrum of 99Tc, as reported in [170].
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Figure 3.10: The measured and theoretical spectra for the β transitions of 63Ni are presented.
Our predictions in the left panel (blue-with exchange correction; red-without exchange
correction) are overlaid on the experimental histogram from [144], preserving the same
aspect ratio and using the same Q-value. The vertical line indicates a matching point, and
the inset provides a zoom-in of the low-energy region of the spectrum. The theoretical
predictions discussed in [144] are displayed in the right panel. The original figure is
reproduced from [171].

Figure 3.11: The measured and theoretical spectra for the β transitions of 210Pb under
four different experimental conditions are shown (see [169] for more details). The green
histograms correspond to the experimental spectra, while the blue curves represent the
theoretical predictions obtained using our model. The figure is reproduced from [169].
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4 Accurate energy distributions in the β-decay of
187Re for neutrino mass measurement

4.1 Introduction

In this Chapter, we investigate the β-decay of 187Re, incorporating all relevant correc-
tions to its spectrum. We begin with the same relativistic wave functions for the emitted
electrons as used in our previous study [128]. Next, we enhance the precision of the theo-
retical rhenium decay spectrum by including finite nuclear size, diffuse nuclear surface, and
screening corrections. The latter is calculated using the self-consistent Dirac-Hartree-Fock-
Slater description of the atomic bound electrons surrounding the electron emitted during
rhenium decay. We have observed significant differences in the decay rates for both emission
channels compared to our previous work, but negligible modifications to the spectral shape
resulting from the aforementioned corrections. We note that the results from this chapter
have been published in [172] as an Editor’s Suggestion, as shown in Fig. 4.1.

Figure 4.1: A print-screen from the Physical Review C website, Highlights section.

The central focus is the incorporation of the so-called exchange correction, which
accounts for the possible interchange between emitted electrons and atomic bound elec-
trons. This correction was discussed in detail for allowed transitions in Chapter 3. This
correction not only modifies the decay rates for the p3/2- and s1/2-state channels but also
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Figure 4.2: The electrostatic potential for 187Os+ as function of r, where the emitted
electron is located, in four different approximation schemes: (A → Subsection A.3.1) The
final nucleus as an uniform charged sphere. (B → Subsection A.3.2) A point-like final
nucleus. (C → Subsection A.3.3) The final nucleus as a charged sphere filled with protons
following a Fermi distribution. (D → Subsection A.3.4) The same as the preceding case
but the DHFS atomic electron screening is taken into account. The figure was taken from
[173].

significantly influences the spectral shapes of these channels. While the most prominent
shape modification occurs in the low-energy region of the total spectrum, the exchange
correction remains non-negligible near the endpoint, potentially affecting analyses related
to neutrino mass scale determination from rhenium β-decay.

When examining deviations of the rhenium spectrum from an allowed one, we find
that the exchange correction transforms the shape factor dramatically—shifting it from an
increasing linear behavior to a decreasing quadratic one. We provide the best-fit parameters
for both cases. To maintain the linearity of the Kurie plot in the context of zero effective
neutrino mass, we demonstrate that it is necessary to revise its definition to explicitly
incorporate the exchange correction. Furthermore, we illustrate how variations in effective
neutrino masses influence the Kurie plots near the endpoint of the β-decay of 187Re..

We note that although the final nucleus, 187Os, is predicted to exhibit an axially
symmetric deformation with β2 = 0.209 [174], deformation effects on the electron spectrum
shape and the β-decay rate of 187Re have not been considered in this Chapter. Previous
studies on allowed β transitions [8] have demonstrated that deformation corrections exhibit
very weak energy dependence for electrons with small momenta. Moreover, the overall
impact of deformation on the decay rate has been found to be negligible, at the level of 10−4.
Another correction that has not been addressed in this work is the radiative correction,
which arises from the exchange of virtual photons and the emission of real photons during
the β-decay process. Based on the leading-order radiative correction estimates [175, 176],
we evaluate this effect to be on the order of 10−5 for the low-energy electrons emitted in
the β-decay of 187Re.

For the wave functions of the emitted electrons from β-decay of 187Re, we employed four
distinct approximation schemes. In Fig. 4.2, we present the quantities rV (r) as functions
of r for each approximation scheme applied to the final positive ion, 187Os+.
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Figure 4.3: The radial wave functions for an electron emitted from the β-decay of 187Re,
evaluated on the nuclear surface of the final nucleus R, as functions of the electron kinetic
energy Ee −me. In the top panels (a) and (b) , the components of on electron emitted in
s1/2 state, g−1(Ee, r) and f+1(Ee, r), and in the bottom panels (c) and (d), the components
associated with the emission in p3/2 state, g−2(Ee, r) and f+2(Ee, r). We consider four
different approximation schemes in the evaluation of the radial wave functions (see text for
details). The figure was taken from [173].

In the simplest case, corresponding to a point-like nucleus (scheme B → Subsec-
tion A.3.2), we observe that rV (r) = −76α yields a straight line. In contrast, the most
complex scenario (scheme D → Subsection A.3.4), which incorporates finite nuclear size,
diffuse nuclear surface, and atomic screening corrections, approaches V (r) = −α/r asymp-
totically for large values of r. This behavior is expected, as the potential describes the
interaction of the emitted electron with a positive ion of charge +1. When transitioning
from a uniformly charged sphere (scheme A → Subsection A.3.1) to a distribution of
protons following a Fermi distribution (scheme C → Subsection A.3.3), the differences
between the potentials are minimal and only slightly visible. However, the electron wave
functions A are approximated by retaining only the lowest-order terms in the expansion of
r. By numerically solving the radial Dirac equation for the potentials in schemes A and C,
we confirm that the diffuse nuclear surface correction does not introduce any significant
deviations in the wave functions. Hence, any discrepancies between the electron wave
functions A and C arise primarily from the omission of higher-order terms in the expansion.

In Fig. 4.3, we display the radial wave functions of an electron in the s1/2 wave state,
g−1(Ee, r) and f+1(Ee, r) (panels (a) and (b)), and in the p3/2 wave state, g−2(Ee, r) and
f+2(Ee, r) (panels (c) and (d)). These wave functions are evaluated on the nuclear surface
of the final nucleus, r = R, and plotted as functions of the electron kinetic energy, Ee−me.
The results correspond to the β emitter 187Re and include all approximation schemes
considered in this study.
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For the large component radial wave functions, g−1(Ee, r) and g−2(Ee, r), no shape
deviations are observed between the approximation schemes. However, their amplitudes
systematically decrease from scheme A to scheme D. In contrast, the small component radial
wave functions, f+1(Ee, r) and f+2(Ee, r), exhibit significant sensitivity to the missing terms
in the expansion in r in scheme A. Instead of aligning with the wave functions computed
in scheme C, the small component wave functions in scheme A are nearly constant and
close to zero across the entire range of electron kinetic energies. A noteworthy observation
is the substantial impact of atomic screening on electrons emitted in the p3/2 wave state,
as evidenced by the results from scheme D. Since the emission of electrons in the p3/2
wave state is dominant in the β-decay of 187Re, we anticipate a significant deviation in the
spectrum when the screening correction is incorporated.

4.2 The first unique forbidden β-decay of 187Re

The β transition from the ground state 5/2+ of 187Re to the ground state 1/2− of 187Os
is classified as a first unique forbidden β transition. Given the angular momentum and
parity change, ∆Jπ = 2−, the electron and neutrino are emitted in p3/2 and s1/2 states,
or vice versa. An intriguing feature of the first unique forbidden β-decay of 187Re is that,
owing to its low transition energy, Q = 2.4709 keV [130], the emission of electrons in the
p3/2 state is favored by approximately four orders of magnitude compared to the emission
of electrons in the s1/2 state [128]. The theoretical differential decay rate is expressed as a
sum of two contributions, each corresponding to the emission of electrons in the s1/2 and
p3/2 states:

dΓ

dEe
=
dΓp3/2

dEe
+
dΓs1/2

dEe

=
3∑

k=1

|Uek|2
G2

FV
2
ud

2π3
peEe(E0 − Ee) [B

p3/2(Ee, pν) +Bs1/2(Ee, pν) ]

×
√

(E0 − Ee)2 −m2
k θ(E0 − Ee −mk)

(4.1)
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and
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1

2
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(4.3)
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Here, GF represents the Fermi constant, and Vud is the relevant element of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. The parameter E0 denotes the maximum endpoint
energy of the electron, assuming a zero neutrino mass. The neutrino momentum is given

by pν =
√
(E0 − Ee)2 −m2

k, where mk represents the neutrino mass eigenstates, and θ(x)

denotes the Heaviside theta (step) function. The axial-vector coupling constant is denoted
by gA. The initial and final nuclear states, |i⟩ and |f⟩, correspond to 187Re with Jπ = 5/2+

and 187Os with Jπ = 1/2−, respectively. The quantity rn refers to the coordinate of the
n-th nucleon, where r = |r| denotes the radial distance and r̂ = r/r represents the unit
vector in the radial direction.

The differential decay rate in Eq. (4.1) depends on four distinct squared matrix elements,
which are incorporated into the Bs1/2 and Bp1/2 terms. To separate the decay rate in the
squared nuclear matrix element and the phase-space factor, the large- and small-component
electron radial functions are approximated as follows [128]:

g−1(Ee, r) ≃
g−1(Ee, R)

j0(peR)
j0(per) ≃ g−1(Ee, R),

f+1(Ee, r) ≃
f+1(Ee, R)

j0(peR)
j0(per) ≃ f+1(Ee, R),

g−2(Ee, r) ≃
g−2(Ee, R)

j1(peR)
j1(per) ≃

r

R
g−2(Ee, R),

f+2(Ee, r) ≃
f+2(Ee, R)

j1(peR)
j1(per) ≃

r

R
f+2(Ee, R),

(4.4)

where R is a nuclear radius. For bound states, required in the atomic exchange correction (see
Sec. 4.3), the same approximation holds leading to gn,−1(r) ≃ gn,−1(R), fn,1(r) ≃ fn,1(R),
gn,−2(r) ≃ (r/R)gn,−2(R) and fn,2(r) ≃ (r/R)fn,2(R). For continuum states, only the
leading terms in the expansion of spherical Bessel functions j0(per) and j1(per) were
considered. In this manner, the energy distribution is ultimately expressed as a function of
a single squared matrix element [128]:

dΓ

dEe
=
dΓp3/2

dEe
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dΓs1/2

dEe

=
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k=1

|Uek|2
G2

FV
2
ud

2π3
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kθ(E0 − Ee −mk),

(4.5)

with

B =
g2A
6R2 |⟨f∥

∑
n τ

+
n {σn ⊗ rn}2∥i⟩|2, (4.6)

and

F0(Z,Ee) =
g−1(Ee)g−1(Ee) + f1(Ee)f1(Ee)

j0(peR) j0(peR)
,

F1(Z,Ee) =
g−2(Ee)g−2(Ee) + f2(Ee)f2(Ee)

j1(peR) j1(peR)
.

(4.7)
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Here, gκ(Ee) ≡ gκ(Ee, R) and fκ(Ee) ≡ fκ(Ee, R). In the case where the Coulomb in-
teraction is neglected, the Fermi functions simplify to F0(Z,Ee) = 1 and F1(Z,Ee) = 1.
Different approximation schemes for the electron wave functions are denoted in the Fermi
functions as F I

k−1(Z,Ee), where I = A,B,C, or D.

4.3 Exchange correction for unique first forbidden β transi-
tions

We have generalized the exchange effect formalism, originally developed for allowed
β transitions in [150, 151], to address unique first forbidden β transitions. Our findings
indicate that two distinct components of the exchange correction independently influence
the spectra corresponding to the emission of electrons in the s1/2 and p3/2 states,

dΓ s1/2

dEe
⇒ dΓ s1/2

dEe
×
[
1 + ηT1 (Ee)

]

dΓ p3/2

dEe
⇒ dΓ p3/2

dEe
×
[
1 + ηT2 (Ee)

] (4.8)

The result aligns with the findings reported in [145] and, more recently, in [177], for
the unique first forbidden β-decay of 85Kr. The total exchange correction for each partial
spectrum is expressed as:

ηTk (Ee) = fk(2T−k + T 2
−k) + (1− fk)(2T+k + T 2

+k)

= η−k(Ee) + η+k(Ee) (4.9)

where k = |κ| can take the values 1 or 2. Here,

fk =
g′2−k(Ee, R)

g′2−k(Ee, R) + f ′2+k(Ee, R)
, (4.10)

and the dimensionless quantities Tκ depend on the overlaps between the bound states of
the initial atom and the continuum states of the final atom with energy Ee,

Tκ =
∑

(nκ)′

Tnκ = −
∑

(nκ)′

〈
ψ′
Eeκ

∣∣ψnκ

〉

⟨ψ′
nκ|ψnκ⟩

g′n,κ(R)

g′κ(Ee, R)
, (4.11)

for electrons in s1/2 (κ = −1) and p3/2 (κ = −2) states, and

Tκ =
∑

(nκ)′

Tnκ = −
∑

(nκ)′

〈
ψ′
Eeκ

∣∣ψnκ

〉

⟨ψ′
nκ|ψnκ⟩

f ′n,κ(R)

f ′κ(Ee, R)
, (4.12)

for electrons in p1/2 (κ = +1) and d3/2 (κ = +2) states. All primed continuum and
bound states are associated with the final atom. The summations extend over all occupied
orbitals in the final atom, which, under the sudden approximation, retain the electronic
configuration of the parent atom.

Taking into account the sums inside the Tκ quantities, we can write
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Figure 4.4: All partial exchange corrections for the decay of 187Re, i.e., Eqs. (4.15) and
(4.16). The results are presented for atomic electrons in s1/2 (κ = −1), p3/2 (κ = −2), p1/2
(κ = +1) and d3/2 (κ = +2) states. The figure was taken from [173].

ηκ(Ee) =
∑

n

ηnκ + f|κ|
∑

n,m
n̸=m

TnκTmκ (4.13)

for negative values of κ, and

ηκ(Ee) =
∑

n

ηnκ + (1− fκ)
∑

n,m
n̸=m

TnκTmκ (4.14)

for positive values of κ. In this way, we can define the partial exchange correction contribu-
tions, ηnκ, given by

ηnκ = f|κ|(2Tnκ + T 2
nκ) (4.15)

for negative values of κ, and

ηnκ = (1− fκ)(2Tnκ + T 2
nκ), (4.16)

for positive values of κ.

A key aspect in evaluating the exchange correction involves calculating the overlaps
between the electron wave function in the continuum state, with energy Ee, in the final atom
and the electron wave functions in the bound orbitals of the initial atom, i.e.,

〈
ψ′
Ees

∣∣ψns

〉
.

The explicit expression for this overlap is provided by
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Figure 4.5: The total exchange correction for electrons emitted in s1/2 wave state, ηT1 (Ee)

(solid black line), and for electrons emitted in p3/2 wave state, ηT2 (Ee) (dashed blue line).
The figure was taken from [173].

〈
ψ′
Eeκ

∣∣ψnκ

〉
=

∫ ∞

0
r2

[
g′κ(Ee, r)gn,κ(r) + f ′κ(Ee, r)fn,κ(r)

]
dr. (4.17)

and its numerical calculation requires good knowledge of the continuum wave function over
a wide region of space, from the nuclear center to where the bound wave function for the
initial atom ends.

As outlined in Chapter 3, a critical requirement for computing the exchange correction
is ensuring that the electron continuum wave function in the final state is orthogonal to
the wave functions of the bound orbitals in the final state, i.e.,

〈
ψ′
Eeκ

∣∣ψ′
nκ

〉
= 0. Since these

wave functions are eigenfunctions of the same Hamiltonian, they must inherently satisfy
orthogonality. Any deviation from this condition, such as a non-zero value of

〈
ψ′
Eeκ

∣∣ψ′
nκ

〉
,

can introduce significant errors into the overlap
〈
ψ′
Eeκ

∣∣ψnκ

〉
[150]. The consequences of

using non-orthogonal continuum and bound wave functions for the final state on the
exchange correction have been analyzed in detail in [168]. In our approach, we employ a
modified DHFS self-consistent method for bound states along with the potential described
in Section A.3.5 for continuum states. This framework inherently enforces the orthogonality
condition,

〈
ψ′
Eeκ

∣∣ψ′
nκ

〉
= 0, eliminating the need for additional computationally expensive

orthogonalization procedures.

In the case of 187Re, there are numerous possibilities for exchanges between the β-
emitted electrons and the bound electrons in the atomic cloud. For the emission of s1/2-state

electrons, ten orbitals contribute to ηT1 , while for the dominant emission in p3/2-state

electrons, seven orbitals contribute to ηT2 . In Fig. 4.4, we illustrate all partial exchange
corrections for the β-decay of 187Re, as expressed in Eqs.(4.15) and (4.16), plotted against
the kinetic energy of the emitted electrons, Ee −me. We observe that the contributions
from p1/2 (top right panel) and d3/2 (bottom right panel) states are significantly smaller
than those from s1/2 (top left panel) and p3/2 (bottom left panel) states. This behavior
arises because the former are linked to the small components of the Fermi functions, f ′1(Ee)
and f ′2(Ee), respectively, as described in Eq. (4.7). Despite their smaller magnitudes, these
contributions cannot be ignored in precise calculations.
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Table 4.1: The partial decay rates for 187Re, excluding the squared matrix element,
associated with the emission of electrons in s1/2 wave state (second colum) and p3/2 wave
state (forth column). The approximation scheme for the electron wave functions is indicated
in the first column. In the last line, the addition of the exchange correction over the scheme
D is indicated as D + ex. In the third and fifth column, we present the decay rate percent
deviation between the scheme A and the other schemes, δs1/2 = 100(Γ

s1/2
A − Γ

s1/2
X )/Γ

s1/2
X ,

and δp3/2 = 100(Γ
p3/2
A − Γ

p3/2
X )/Γ

p3/2
X , respectively, where X can be B, C, D or D + ex. The

last column presents the experimental squared matrix elements.

w. f. 1041

B × Γs1/2 δs1/2 1037

B × Γp3/2 δp3/2 B × 104

[MeV] % [MeV] %

A 9.30 - 9.19 - 3.63
B 8.33 -10.41 8.92 -2.95 3.74
C 7.88 -15.23 8.88 -3.35 3.76
D 7.58 -18.48 6.98 -24.02 4.78

D+ex 9.46 1.75 7.92 -13.84 4.22

The total exchange correction for the s1/2 (p3/2) electron spectrum in the β-decay of
rhenium is shown as a solid (dashed) line in Fig. 4.5, plotted against the kinetic energy of
the emitted electron. It is evident that the exchange corrections decrease as the kinetic
energy of the emitted electron increases, starting at approximately 73% for s1/2 electrons
and 37% for p3/2 electrons at 2 eV. Even in the Q-value region, the exchange correction
remains notable, around 12% for s1/2 electrons and 5.5% for p3/2 electrons. Given the
substantial magnitude and distinctive shape of the exchange correction, we anticipate that
it will lead to significant alterations in both the decay rate and the spectrum shape of
rhenium β-decay. These modifications are explored in what follows.

4.4 Results and discussions

In Table 4.1, we summarize the partial decay rates, Γs1/2 (second column) and Γp3/2

(fourth column), excluding the squared matrix element, B. These partial decay rates,
expressed in MeV, are obtained by integrating Eq. (4.5) over the full energy range. The
final row corresponds to approximation scheme D, which incorporates the atomic exchange
correction discussed in Section4.3. This combined approach is denoted as D + ex. We
take approximation scheme A, previously used in our earlier study, as the reference for
calculating percentage deviations in the other schemes. These deviations are listed in the
third (fifth) column for the partial decay rates Γs1/2 (Γp3/2). Finally, using the experimental
half-life of 4.33×1010 years [178], we present our predictions for the squared matrix elements
in the last column of Table 4.1.

Across all approximation schemes, the ratios between the p3/2-state and s1/2-state
electron emission channels consistently remain around 104, indicating that different correc-
tions do not alter this fundamental characteristic of rhenium decay. However, significant
variations in the decay rates arise when incorporating screening and exchange corrections.
In particular, the screening correction alone (scheme D) results in a 24% reduction in the
partial decay rate Γp3/2 and an 18.5% decrease in Γs1/2 compared to scheme A. When
the exchange correction is further included (scheme D + ex), the partial decay rate Γs1/2

increases slightly, reaching a value only 1.7% higher than that from scheme A. Conversely,
Γp3/2 remains significantly lower, showing a 13.8% decrease relative to scheme A.

The most notable impact of the exchange correction is its influence on the spectrum
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Figure 4.6: The single electron differential decay rate normalized to the particular decay
rate (Γs1/2 and Γp3/2) for the emission of s1/2 and p3/2 electrons as functions of the electron
kinetic energy Ee−me for β-decay of 187Re. We indicate with D the approximation scheme
D and with ex the atomic exchange correction. The lower portion of the figure gives the
difference between the spectra with and without the exchange correction for s1/2 wave
state electrons with a dashed line and p3/2 wave state electrons with a solid line. Spectra
are normalized over the full energy range. The figure was taken from [173].

shape of rhenium decay. In Fig. 4.6, we display the normalized single-electron spectra for
both s1/2- and p3/2-state emissions, calculated using approximation schemes D and D+ ex.
Notably, there are no significant shape differences among approximation schemes A, B, C,
and D. In the lower panel of Fig. 4.6, the residuals between the spectra are also shown.
While the dominant p3/2 spectrum is less affected by the exchange correction compared to
the s1/2 spectrum, the alteration is substantial enough to modify the overall shape of the
total decay spectrum.

We present the total spectrum of rhenium β-decay in Fig. 4.7, following the same
conventions as in Fig. 4.6. Here, however, the electron kinetic energy spans from 700
keV up to the Q-value, and the residuals are expressed as percentages. The spectra are
normalized to unity over the full kinetic energy range. It is evident that the inclusion of the
exchange correction results in a distinct modification of the total electron spectrum shape for
rhenium decay. The significant alteration in the spectrum caused by the exchange correction
underscores the necessity of incorporating this effect in analyses related to neutrino mass
determination from rhenium decay. More broadly, it highlights the importance of considering
such corrections in other low Q-value β transitions.

To evaluate the deviation from an allowed spectrum, we write the β spectrum of 187Re
as,
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Figure 4.7: The differential decay rate normalized to the total decay rate (Γ) as function
of the electron kinetic energy Ee − me for β-decay of 187Re. We indicate with D the
approximation scheme D and with ex the atomic exchange correction. The lower portion
of the figure gives the percentage residuals between the spectrum with and without the
exchange correction. Spectra are normalized over the full energy range. The figure was
taken from [173].

dΓ

dEe
=
G2

FV
2
ud

2π3
BpeEeF

I
0(Z,Ee)(E0 − Ee)

2AI
F (4.18)

where, for the moment, the neutrino masses are neglected and I = A, B, C, or D. The
shape factor AI

F = 1 for the allowed transitions, but for unique first forbidden,

AI
F =

R2

3

[
pe
F I
1(Z,Ee)

F I
0(Z,Ee)

+ (E0 − Ee)
2

]
, (4.19)

where we did not include the exchange with bound electrons. If we want to take into
account this effect, the shape factor becomes,

AD+ex
F =

R2

3

{
pe
FD
1 (Z,Ee)

FD
0 (Z,Ee)

[
1 + ηT2 (Ee)

]
+ (E0 − Ee)

2
[
1 + ηT1 (Ee)

]}
. (4.20)

As shown in Fig. 4.8, all AI
F exhibit a linear increase with energy within the experi-

mentally accessible range, spanning from 700 eV to the Q-value. The behavior of AI
F is

accurately reproduced by employing the following model fit:

AI
F = aI

(
1 + b1Te + b2T

2
e

)
(4.21)
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Figure 4.8: The shape factor AI
F , i.e. Eq. (4.19), for different approximation schemes, I

= A, B, C and D, and the shape factor AD+ex
F , i.e. Eq. (4.20). The figure was taken from

[173].

with Te = Ee − me in eV. The optimal fit parameters are b1 = 1.50 × 10−5 eV−1 and
b2 = 4.82× 10−11 eV−2. The coefficients aI merely act as scaling factors across different
approximations of the Fermi functions (e.g., aA = 1.44× 10−5). However, they do not alter
the linear increasing trend observed in AI

F .

In contrast, AD+ex
F exhibits a decreasing trend with energy, and its shape becomes more

intricate due to the inclusion of the exchange correction. The optimal fit within the energy
range from 700 eV to the Q-value is achieved by adopting the following assumption,

AD+ex
F = aD+ex

(
b−1

Te
+ 1 + b1Te + b2T

2
e

)
, (4.22)

where we found the best fit parameters b−1 = 19.95 eV, b1 = −6.80 × 10−6 eV−1 and
b2 = 3.05 × 10−9 eV−2 with aD+ex = 1.46 × 10−5. It is important to highlight the sign
change of b1 when the exchange correction is incorporated. The selection of a fit model
that includes terms proportional to T−1

e is motivated by experimental shape factors, which
have been shown to involve similar terms [167].

The most recent and stringent upper limit on the effective neutrino mass, mβ ⩽
0.8 eV, was reported by the KATRIN experiment [124]. This constraint applies within
the degenerate neutrino mass region, where m1 ≃ m2 ≃ m3 ≃ mβ =

∑3
k=1 |Uek|2mk.

Consequently, we substitute all individual neutrino masses, mk (k = 1, 2, 3), with the
effective neutrino mass, mβ . For the following analysis, we adopt approximation scheme D
for the electron wave functions and incorporate the atomic exchange correction.

The Kurie functions for the unique first forbidden transitions is given by
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Figure 4.9: The Kurie plots in arbitrary units (a.u.) for the β-decay of 187Re with different
values of the effective neutrino mass: mβ = 0.0, 0.2, 0.4, 0.6, and 0.8 eV. The Q-value
considered is 2470.9 eV [130]. The figure was taken from [173].
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The Kurie functions for the β-decay of 187Re are shown in Fig. 4.9 for different values
of the effective neutrino mass. For the case of mβ = 0, the Kurie plot, which represents
K(Ee,mβ) versus Ee, maintains linearity by incorporating the exchange correction for
p3/2 wave state electrons in the denominator of its definition. The only term capable of
altering this linear behavior is the last term in the squared brackets. However, its deviation
from unity is minimal–remaining below 6× 10−5 for kinetic energies above 1000 eV. In the
region of interest, ranging from 2300 eV to the Q-value, the deviation further reduces to
less than 10−6.

4.5 Conclusions

The distortion observed in endpoint measurements of low Q-value β-decay spectra
serves as a direct method for probing neutrino masses. Current experiments primarily
focus on ground-state-to-ground-state β transitions, while next-generation investigations
may consider ultra-low Q-value (below 1 keV) ground-state-to-excited-state β transitions
as promising candidates. With the growing interest in extracting neutrino masses from
β-decays, providing precise theoretical predictions for the β-spectrum has become essential.
However, these predictions pose challenges due to the classification of β transitions and
the multitude of atomic effects influencing the low-energy region.
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In this study, we investigated the ground-state-to-ground-state unique first forbidden
β transition from 187Re(5/2+) to 187Os(1/2−), incorporating all relevant corrections to
both the spectrum and decay rate. Building upon our earlier work, we included additional
corrections for finite nuclear size, diffuse nuclear surface, screening, and exchange effects in
the rhenium β-decay model. The latter two effects were calculated using a self-consistent
Dirac-Hartree-Fock-Slater description for the atomic bound electrons of the final atom.
Given that rhenium β emission involves a mixture of s1/2-state and p3/2-state electrons, our
exchange correction accounts for all possible contributions from exchanges with s1/2, p3/2,
p1/2, and d3/2 bound orbitals. Our results reveal significant modifications to the partial
decay rates of both s1/2- and p3/2-state emission channels due to screening and exchange
effects, while preserving the experimentally established dominance of p3/2-state emission.

A key outcome of this work is that, beyond altering the partial decay rates, the exchange
correction induces substantial modifications in the shape of the total electron spectrum
for rhenium β-decay. By analyzing deviations from an allowed spectrum, we show that
calculations with and without the exchange effect produce entirely different shape factors,
changing from an increasing linear behavior to a decreasing quadratic one. We provided
best-fit parameters for both cases.

The impact of this shape modification is significant enough to incorporate the exchange
correction into the definition of the Kurie plot to preserve its linearity in scenarios with
zero effective neutrino mass. Furthermore, we showed how varying effective neutrino masses
influence the Kurie plots near the endpoint of 187Re β-decay.

In conclusion, our findings highlight the critical role of atomic effects, particularly the
exchange correction, in current and future investigations of the neutrino mass scale using
β-decay.
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5 Improved formalism for 2νββ-decay

5.1 Introduction

The accuracy of observables such as the single and summed energy distributions, as
well as the angular correlation between emitted electrons, plays a pivotal role in testing
hypotheses related to 2νββ-decay [75, 76] and in probing the underlying mechanisms
responsible for 0νββ-decay [77, 73, 78, 79, 80]. Furthermore, the current experimental
constraints on various strength parameters associated with beyond the Standard Model
(BSM) scenarios are derived by analyzing the shape of the summed electron energy
distribution in 2νββ-decay [86].

Standard Model predictions for 2νββ-decay are also crucial in searches for weakly
interacting massive particles (WIMPs) and coherent elastic neutrino-nucleus scattering
(CEνNS). In particular, for liquid Xenon experiments, the 2νββ-decay of 136Xe serves
as an unavoidable source of background. Consequently, precise theoretical descriptions
of 2νββ-decay are essential for upcoming experiments targeting WIMPs and CEνNS
[81, 82, 83, 84].

In this Chapter, we enhance the precision of theoretical predictions for observables in
2νββ-decay by incorporating radiative and atomic exchange corrections for the emitted
electrons. Our primary analysis focuses on the 2νββ-decay of 100Mo, but the results
are expected to be broadly applicable to other nuclei undergoing 2νββ-decay. These
corrections build upon our earlier work [78, 179], where we improved the 2νββ-decay
description using a Taylor expansion formalism that accounts for the lepton energies within
the NMEs denominators. This approach allows for a decomposition of observables into
partial components governed by the parameters ξ31 and ξ51. The formalism also establishes
connections with the single state dominance (SSD) and higher state dominance (HSD)
hypotheses.

The radiative correction accounts for processes involving the exchange of a virtual
photon or the emission of a real photon during 2νββ-decay. For the atomic exchange
correction, we consider scenarios where an electron emitted during the decay can exchange
places with an atomic bound electron, while the bound electron transitions into a continuum
state of the final atom. The required bound and continuum states for the atomic exchange
calculation are modeled using the Dirac-Hartree-Fock-Slater self-consistent framework. Our
results indicate a roughly 5% increase in the 2νββ-decay rate of 100Mo, predominantly due
to radiative correction. Additionally, we observe the following effects: (i) A sharp increase in
low-energy single-electron events caused by the exchange correction, consistent with prior
β-decay studies [150, 151, 168, 172]; (ii) A 10 keV leftward shift in the maximum of the
summed electron spectrum, driven by the combined influence of both corrections. Finally,
we present the fully corrected single and summed electron spectra for the 2νββ-decay of
100Mo, evaluated for three sets of ξ2ν31 and ξ2ν51 parameters. These include predictions under
the HSD hypothesis, the SSD hypothesis, and values based on experimental measurements.

In the final part of this Chapter, we present the Taylor expansion formalism applied
to 2νββ-decay for 0+ → 2+ transitions. Measurements of various transitions in 150Nd
and 148Nd to different excited states were carried out over 5.845 years using a four-
crystal low-background HPGe γ spectrometry system at the STELLA underground low-
background laboratory of LNGS-INFN. Although the specifics of the experimental setup
and methodology are not included here, the experimentally determined half-life values
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and limits provide a practical benchmark for evaluating the accuracy of our theoretical
predictions. We demonstrate that our model, which incorporates the Taylor expansion
formalism, radiative and exchange corrections, and QRPA calculations for the NMEs,
achieves excellent agreement with the experimental half-lives and limits for the 2νββ-decay
of 150Nd and 148Nd to various excited states.

5.2 The standard 2νββ-decay formalism for 0+ → 0+ transi-
tions

The inverse half-life of the 2νββ-decay, 0+ → 0+ nuclear transition, is defined as

[
T 2ν
1/2

]−1
=

Γ2ν

ln (2)
, (5.1)

where Γ2ν is the decay rate.
The differential decay rate for a 0+ → 0+ nuclear transition with respect to the angle

0 ≤ θ ≤ π between the emitted electrons can be written as [87]

dΓ2ν

d (cos θ)
=

Γ2ν

2

(
1 +K2ν cos θ

)
, (5.2)

where

K2ν = −Λ2ν

Γ2ν
, (5.3)

is the angular correlation coefficient. The decay rates are given by
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(geffA )4

1

m11
e

∫ Ei−Ef−me

me

pe1Ee1

∫ Ei−Ef−Ee1

me

pe2Ee2

×
∫ Ei−Ef−Ee1−Ee2

0
E2

ν1E
2
ν2

{
A2νFss(Ee1)Fss(Ee2)
B2νEss(Ee1)Ess(Ee2)

}
dEν1dEe2dEe1

(5.4)

where Gβ = GF cos θC (GF is the Fermi constant and θC is the Cabbibo angle [180]) and

me is the mass of electron. Ei, Ef , Eei (Eei =
√
p2ei +m2

e, i = 1, 2) and Eνi are the energies

of initial and final nuclei, electrons and antineutrinos, respectively. The energy of the second
antineutrino can be obtained from the energy conservation, Eν2 = Ei−Ef−Ee1−Ee2−Eν1 .
The difference Ei − Ef represents the energy difference between the initial and final 0+

nuclear states, which can be determined by relating it to the Q-value of the 2νββ-decay,
given as Q = Ei − Ef − 2me.

The functions Fss and Ess are given by

Fss(Ee) = |g̃−1(Ee, R)|2 +
∣∣∣f̃1(Ee, R)

∣∣∣
2
,

Ess(Ee) =2Re{g̃−1(Ee, R)f̃
∗
1 (Ee, R)}.

(5.5)

where the electron radial wave functions, g̃κ(Ee, r) and f̃κ(Ee, r), discussed in Section A.3,

are evaluated on the nuclear surface R = 1.2A1/3. Note that the functions f
(0)
11 and f

(1)
11 de-

fined in [181] are equivalent in our notation with Fss(Ee1)Fss(Ee2) and −Ess(Ee1)Ess(Ee2),
respectively. A2ν and B2ν consist of products of the Fermi (F) and Gamow-Teller (GT)
nuclear matrix elements, which depend on lepton energies,
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where gV = 1 and geffA are the vector and the effective axial-vector coupling constants,
respectively. The latter is usually model-dependent and remains an open question in nuclear
weak interaction processes [182]. The Fermi and Gamow-Teller nuclear matrix elements
(NMEs) are given by,

MK,L
F = me

∑

n

MF (n)
En(0

+)− (Ei − Ef )/2

[En(0+)− (Ei + Ef )/2]
2 − ε2K,L

,

MK,L
GT = me

∑

n

MGT (n)
En(1

+)− (Ei − Ef )/2

[En(1+)− (Ei + Ef )/2]
2 − ε2K,L

,

(5.8)

with

MF (n) = ⟨0+f ∥
∑

j

τ+j ∥0+n ⟩⟨0+n ∥
∑

k

τ+k ∥0+i ⟩,

MGT (n) = ⟨0+f ∥
∑

j

τ+j σj∥1+n ⟩⟨1+n ∥
∑

k

τ+k σk∥0+i ⟩.
(5.9)

Here, |0+i ⟩, |0+f ⟩ are the 0+ ground states of the initial and final even-even nuclei, respectively,

and |1+n ⟩ (|0+n ⟩) are all possible states of the intermediate nucleus with angular momentum
and parity Jπ = 1+ (Jπ = 0+) and energy En(1

+) (En(0
+)). The summations run over all

states the intermediate odd-odd nucleus and over all j, k nucleons inside the nucleus. The
operator σj,k is the nucleon spin operator, and τ+j,k represents the isospin-ladder operator
transforming a neutron into a proton. The lepton energies enter in the factors

εK = (Ee2 + Eν2 − Ee1 − Eν1) /2,

εL = (Ee1 + Eν2 − Ee2 − Eν1) /2.
(5.10)

The maximal value of |εK | and |εL| is the of Q-value of the process (εK,L ∈ (−Q/2, Q/2)).
For 2νββ-decay with energetically forbidden transition to intermediate nucleus (En−Ei >
−me) the quantity En− (Ei +Ef )/2 = Q/2+me + (En−Ei) is always larger than half of
the Q-value.

The Fermi (Gamow-Teller) operator, which determines the matrix elements MF (n)
(MGT (n)) as defined in Eq. (5.9), acts as a generator of an isospin SU(2) (spin-isospin
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SU(4)) multiplet symmetry. If both isospin and spin-isospin symmetries were exact in
nuclei, the 2νββ-decay would be strictly forbidden because the ground states of the initial
and final nuclei would belong to different multiplets. Typically, it is assumed that the
Fermi matrix elements contribute negligibly to the 2νββ-decay amplitude, as isospin is
considered a reasonably accurate symmetry in nuclei. The primary contribution instead
arises from the Gamow-Teller matrix elements. This assumption is partially supported by
nuclear structure studies, though these results are model-dependent. An open question
remains as to whether it is possible to experimentally demonstrate the dominance of the
Gamow-Teller contribution over the Fermi contribution in the 2νββ-decay process.

Commonly, the calculation of the 2νββ-decay distributions and decay rate is simplified
by neglecting εK,L in energy denominators of the NMEs from which

M2ν
F (GT ) ≡MK

F (GT ) =ML
F (GT ) (5.11)

and

A2ν = B2ν =

∣∣∣∣∣
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geffA
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GT

∣∣∣∣∣

2

, (5.12)

where Fermi and Gamow-Teller matrix elements are given by
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(5.13)

We note that this approximation of neglecting εK,L in Eq. is justified under the assumption
that higher-lying states (0+n , 1

+
n ) of the intermediate nucleus dominate the contribution

to the 2νββ-decay rate. This theoretical assumption is referred to as the higher state
dominance (HSD) hypothesis. Experimental observations reveal that the Fermi strength
distribution from the initial to the intermediate nucleus is primarily concentrated in the
region of the Isobaric Analog State, at excitation energies above 10 MeV. This behavior
reflects the preservation of isospin symmetry, which prevents significant fragmentation of the
Fermi transition. In contrast, the Gamow-Teller strength distribution is fragmented across
numerous states of the intermediate nucleus, spanning both the region of the Gamow-Teller
resonance and the region of low-lying states. Consequently, while the HSD assumption is
well-justified for the Fermi matrix elements MK,L

F , it remains an open question whether

the dominant contribution to MK,L
GT arises from transitions through low-lying 1+ states,

higher-lying states in the Gamow-Teller resonance region, or a mutual cancellation of these
contributions.

Another popular assumption, proposed in [183, 184], is that the 2νββ-decay is governed
only by the transition through the first 1+ state of the intermediate nucleus with energy
E1. This assumption is known as the single state dominance (SSD) hypothesis. Under this
assumption, the NMEs are given by,

MK,L
GT = me

MGT (1) [E1 − (Ei + Ef )/2]

[E1 − (Ei + Ef )/2]
2 − ε2K,L

, (5.14)

and MK,L
F = 0. In this case, the 2νββ-decay observables are independent of MGT (1), but

are influenced by the lepton energies incorporated in εK,L which can not be longer neglected
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[75, 76]. Experimental studies of energy distributions conducted for the 2νββ-decay of 82Se
[185] and 100Mo [108] have shown a clear preference for the SSD hypothesis over the HSD
hypothesis. However, a more accurate interpretation of the experimental data requires an
improved theoretical description of the 2νββ-decay process.

5.3 Taylor expansion 2νββ-decay formalism for 0+ → 0+ tran-
sitions

The refined expressions for the 2νββ differential decay rates can be derived by applying
a Taylor expansion of the denominators in the NMEs over the parameters εK,L in Eq. (5.9).
The expansion is explicitly given by

MK,L
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∑

n

MF,GT (n)
En − (Ei + Ef )/2

[En − (Ei + Ef )/2]
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)2
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(
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)4

+ . . .

}
(5.15)

Note that the series was firstly proposed in [78], where only the GT component of
the NME was considered and the angular correlation part of the decay rate was omitted.
For this part of the thesis, our assumptions are as follows: i) The Fermi nuclear matrix
element MK,L

F is predominantly determined by transitions through the isobaric analog
state, located at an energy exceeding 10 MeV. Consequently, the impact of lepton energies
in the energy denominators is negligible, implying MK,L

F ≃ MF ; ii) The Gamow-Teller

nuclear matrix element MK,L
GT exhibits a non-negligible dependence on lepton energies.

By limiting the expansion to the fourth power in εK,L, the separation of the decay rates
is possible in the following form,
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(5.16)
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and
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The phase-space factors (PSFs) are defined as
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for N = {0, 2, 22, 4} and with
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The products of nuclear matrix elements are given by
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]2

M2 =−
[(

gV

geffA

)2

M2ν
F−1 −M2ν

GT−1

]
M2ν

GT−3

M22 =
1

3

(
M2ν

GT−3

)2

M4 =
1

3

(
M2ν

GT−3

)2 −
[(

gV

geffA

)2

M2ν
F−1 −M2ν

GT−1

]
M2ν

GT−5

(5.21)

and

N0 =

[(
gV

geffA

)2

M2ν
F−1 −M2ν

GT−1

]2

N2 =−
[(

gV

geffA

)2

M2ν
F−1 −M2ν

GT−1

]
M2ν

GT−3

N22 =
5

9

(
M2ν

GT−3

)2

N4 =
2

9

(
M2ν

GT−3

)2 −
[(

gV

geffA

)2

M2ν
F−1 −M2ν

GT−1

]
M2ν

GT−5

(5.22)

where nuclear matrix elements take the forms

M2ν
GT−1 ≡M2ν

GT

M2ν
F−1 ≡M2ν

F

M2ν
GT−3 =

∑

n

MGT (n)
4 m3

e

(En(1+)− (Ei + Ef )/2)
3 ,

M2ν
GT−5 =

∑

n

MGT (n)
16 m5

e

(En(1+)− (Ei + Ef )/2)
5 ,

(5.23)
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By introducing following ratios of NMEs,

ξ31 =
M2ν

GT−3

M2ν
GT −

(
gV
geffA

)2
M2ν

F

, ξ51 =
M2ν

GT−5

M2ν
GT −

(
gV
geffA

)2
M2ν

F

, (5.24)

one can write the 2νββ-decay rate as a function of those ratios,

[
T 2ν
1/2

]−1
=

Γ2ν

ln (2)
=
(
geffA

)4
∣∣∣∣∣

(
gV

geffA

)2

M2ν
F −M2ν

GT

∣∣∣∣∣

2

×
[
G2ν

0 + ξ31G
2ν
2 +

1

3
ξ231G

2ν
22 +

(
1

3
ξ231 + ξ51

)
G2ν

4

]
.

(5.25)

The observables associated with 2νββ-decay, such as the half-life and the single and
summed electron distributions, are influenced by the parameters ξ31 and ξ51. Implicitly,
the angular correlation distributions also depend on ξ31 and ξ51, as detailed in Chapter 6.
Theoretically, these parameters can be predicted by calculating the NMEs within various
nuclear models, such as the pn-QRPA with partial isospin restoration [78] or the NSM and
pn-QRPA calculations presented in [186].

Experimentally, ξ31 and ξ51 can be treated as free parameters that control the observables
of 2νββ-decay. The first experimental constraint on ξ31 was established by the KamLAND-
Zen collaboration through the analysis of the 2νββ-decay of 136Xe [186]. More recently, the
parameters ξ31 and ξ51 have been explored by the CUPID-Mo experiment [55]. Combining
these experimental results with theoretical predictions could provide insights into the
effective axial-vector coupling constant geffA and into the interplay between contributions
from various intermediate states on the NMEs [78].

5.3.1 Analytical integration over the antineutrino energy

Motivated to obtain a simplified expression for the PSFs from Eq. (5.19), we performed
the integration over the neutrino energy analytically. In what follows, we denote the
integrals with,

IN =

∫ Ei−Ef−Ee1−Ee2

0
E2

ν1E
2
ν2A2ν

N dEν1 , (5.26)

where N = {0, 2, 22, 4}, A2ν
N functions are defined in Eq. (5.20) and Eν2 = Ei−Ef −Ee1 −

Ee2 − Eν1 . We used the following standard integrals,

∫
x2(rx+ s)ndx =

1

r2

(
(rx+ s)n+3

n+ 3
+ 2s

(rx+ s)n+2

n+ 2
+ s

(rx+ s)n+1

n+ 1

)
, (5.27)

with n ̸= −1,−2, and

∫
xm(rx+ s)ndx =

1

r(m+ n+ 1)

(
xm(rx+ s)n+1 −ms

∫
xm−1(rx+ s)ndx

)

=
1

m+ n+ 1

(
xm+1(rx+ s)n − ns

∫
xm(rx+ s)n−1dx

)
,

(5.28)

with m > 0 and m+ n+ 1 ̸= 0.
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The results can be expressed in the following compact form

I0 =
1

30
a5,

I2 =
1

420
a5

1

(2me)2
(a2 + 7b2),

I22 =
1

10080
a5

1

(2me)4
(a4 − 6a2b2 + 21b4),

I4 =
1

5040
a5

1

(2me)4
(a4 + 18a2b2 + 21b4),

(5.29)

where

a = Ei − Ef − Ee1 − Ee2 ,

b = Ee1 − Ee2 .
(5.30)

5.4 Exchange and radiative corrections for 2νββ-decay

As in Chapters 3 and 4, we consider the scenario where one electron produced in the
2νββ-decay is created in a bound orbital of the final atom, corresponding to an occupied
orbital in the initial atom. Simultaneously, an atomic electron from that bound orbital
transitions to a continuum state of the final atom. This process, known as the atomic
exchange correction, has been extensively investigated in β-decay [152, 153, 150, 151, 143,
144, 8, 166, 145, 168, 172]. Here, we extend, for the first time, the study of the exchange
correction to the 2νββ-decay, accounting for the exchange effect for both emitted electrons.
Furthermore, we include the first-order radiative correction due to the exchange of a virtual
photon or the emission of a real photon during the 2νββ-decay process.

The leading order radiative correction is given by [8],

R(Ee, E
max
e ) = 1 +

α

2π
g(Ee, E

max
e ) (5.31)

where the function g(Ee, E
max
e ) is given by [175, 176]

g(Ee, E
max
e ) = 3 ln(mp)−

3

4
− 4

β
Li2

(
2β

1 + β

)

+
tanh−1 β

β

[
2
(
1 + β2

)
+

(Emax
e − Ee)

2

6E2
e

− 4 tanh−1 β

]

+ 4

(
tanh−1 β

β
− 1

)[
Emax

e − Ee

3Ee
− 3

2
+ ln [2 (Emax

e − Ee)]

]
,

(5.32)

Here, β = pe/Ee, E
max
e is the maximum total energy of the electron, mp is the proton mass

and Li2(x) is the dilogarithm function.

Since only s1/2-wave state electron emissions are considered in 2νββ-decay, the exchange
correction is calculated similarly to the allowed β-decay [150, 151]:

ηT (Ee) = fs(2Ts + T 2
s ) + (1− fs)(2Tp̄ + T 2

p̄ )

= ηs(Ee) + ηp̄(Ee) (5.33)
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Here,

fs =
g′2−1(Ee, R)

g′2−1(Ee, R) + f ′2+1(Ee, R)
, (5.34)

where g′κ(Ee, r) and f
′
κ(Ee, r) are the real large- and small-component radial wave functions,

respectively, for electrons emitted in the continuum states corresponding to the final atom.
All primed quantities pertain to the final atomic system. As in the case of β-decay, since
we work with the modulus of the radial components, the phase shifts can be omitted. The
quantities Ts and Tp̄ depend respectively on the overlaps between the bound s1/2 (κ = −1)
and p̄ ≡ p1/2 (κ = 1) orbitals wave functions in the initial state atom and the continuum
states wave functions in the final state atom,

Ts =
∑

(ns)′

Tns = −
∑

(ns)′

⟨ψ′
Ees
|ψns⟩

⟨ψ′
ns|ψns⟩

g′n,−1(R)

g′−1(Ee, R)
(5.35)

and

Tp̄ =
∑

(np̄)′

Tnp̄ = −
∑

(np̄)′

⟨ψ′
Eep̄
|ψnp̄⟩

⟨ψ′
np̄|ψnp̄⟩

f ′n,+1(R)

f ′+1(Ee, R)
. (5.36)

where gn,κ(r) and fn,κ(r) are the large- and small-component radial wave functions, respec-
tively, for bound electrons. The summations in Ts and Tp̄ are performed over all occupied
orbitals of the final atom, which, under the sudden approximation, correspond to the
electronic configuration of the initial atom.

As discussed in Chapter 3, the correct calculation of the exchange correction requires
maintaining orthogonality between the continuum and bound wave functions of the electron
in the final atomic system, i.e., ⟨ψ′

Eeκ
|ψ′

nκ⟩ = 0 [150, 151]. We have shown that non-
orthogonal states significantly influence the overall behavior of the exchange correction
as a function of the emitted electron’s kinetic energy. Consequently, we adopt the same
approach as outlined in [168, 172], employing a modified self-consistent DHFS framework
to compute the electron wave functions.

We emphasize that the exchange correction in 2νββ-decay differs from that in β-decay
due to the distinct charge changes occurring in the two processes. In 2νββ-decay, the initial
nucleus undergoes a charge change of two units, whereas in β-decay, the charge change is
only by one unit. Consequently, although we use the same notation (with single primes for
the final states) as in [168], the overlaps described in Eqs. (5.35) and (5.36) involve wave
functions corresponding to atomic systems with a charge change of two units.

In Fig. 5.1, we present the total exchange correction for one electron emitted during
the 2νββ-decay (solid line) and β-decay (dashed line) of molybdenum isotopes. The figure
shows that the exchange effect is consistently larger for 2νββ-decay than for β-decay across
the entire energy spectrum. For β-decay, the analytical parametrization introduced in [168]
was used to determine ηT . It is noteworthy that 100Mo does not undergo β-decay. However,
the exchange correction exhibits only minor variation with respect to the molybdenum
isotopic mass number. Thus, the corrections depicted in Fig. 5.1 are applicable to all
molybdenum isotopes.
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Figure 5.1: The total atomic exchange correction for β-decay (dashed blue) and 2νββ-decay
(solid black) of molybdenum. The figure is taken from [187].

5.5 The 2νββ-decay of 100Mo, 0+ → 0+ transition

We investigate the influence of the exchange and radiative corrections in the 2νββ-decay
of 100Mo to the ground state of 100Ru. The corrections are introduced on top of the Taylor
expansion formalism, but for simplicity we have omitted the Fermi component of the NMEs.
Under these assumptions the parameters ξ31 and ξ51 from Eq. (5.24) are simplified to

ξ31 =
M2ν

GT−3

M2ν
GT−1

, ξ51 =
M2ν

GT−5

M2ν
GT−1

, (5.37)

Taking advantage of the analytical integration over the antineutrino energy preformed
in [179] (see Eq. (5.29)), the PSFs, in the Taylor expansion formalism, are given by,

G2ν
N =

(GF |Vud|)4
8π7m2

e ln 2

∫ Ei−Ef−me

me

∫ Ei−Ef−Ee1

me

× pe1Ee1

[
1 + ηT (Ee1)

]
R(Ee1 , Ei − Ef −me)

× pe2Ee2

[
1 + ηT (Ee2)

]
R(Ee2 , Ei − Ef − Ee1)

× Fss(Ee1)Fss(Ee2)INdEe2dEe1

(5.38)

with N = {0, 2, 22, 4}. Recall that the quantity Ei − Ef represents the energy difference
between the initial and final 0+ nuclear states, and can be determined by relating it to the
Q-value of the 2νββ-decay, given as Q = Ei−Ef −2me. For our study, we used Q = 3.0344
MeV [188]. The functions

[
1 + ηT (Ee)

]
and R(Ee, E

max
e ) account for the exchange and

radiative corrections discussed in Section 5.4.

5.5.1 The SSD hypothesis

The inverse half-life for the 2νββ-decay under the SSD hypothesis, for a 0+ → 0+

transition, can be written in the following form,
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[
T 2ν
1/2

]−1
=

(
geffA

)4 ∣∣M2ν
GT (1)

∣∣2G2ν
SSD, (5.39)

where the square of the single state Gamow-Teller NME is given by

∣∣M2ν
GT (1)

∣∣2 =
∣∣∣Mf

1 (0
+)M i

1(0
+)

∣∣∣
2
, (5.40)

where we have used the notation from [75, 76],

Mf
n (0

+) ≡ ⟨0+f ∥
∑

j

τ+j σj∥1+n ⟩, M i
n(0

+) ≡ ⟨1+n ∥
∑

k

τ+k σk∥0+i ⟩. (5.41)

Under the SSD hypothesis, the PSF is given by (derived in [187])

G2ν
SSD =

(GF |Vud|)4
8π7m2

e ln(2)

∫ Ei−Ef−me

me

∫ Ei−Ef−Ee1

me

∫ Ei−Ef−Ee1−Ee2

0
pe1Ee1pe2Ee2

×
[
1 + ηT (Ee1)

]
R(Ee1 , Ei − Ef −me)

×
[
1 + ηT (Ee2)

]
R(Ee2 , Ei − Ef − Ee1)

× Fss(Ee1)Fss(Ee2)E
2
ν1E

2
ν2

K2 + L2 +KL

3
dEν1dEe2dEe1 .

(5.42)

where the dimensionless quantities K and L are given by,

K =
me [E1 − (Ei + Ef )/2]

[E1 − (Ei + Ef )/2]
2 − ε2K

, L =
me [E1 − (Ei + Ef )/2]

[E1 − (Ei + Ef )/2]
2 − ε2L

. (5.43)

An advantage of the SSD hypothesis is that M2ν
GT (1) can be directly related to the

electron capture (EC) and β−-decay processes of the first 1+ state in the intermediate
nucleus. For the 2νββ-decay of 100Mo, this 1+ state corresponds to the ground state of
the intermediate nucleus, 100Tc. Taking into account the recent experimental half-life for
2νββ-decay of 100Mo, T 2ν−exp

1/2 = (7.07± 0.11)× 1018 yr [55], and our calculation for the

PSF, G2ν
SSD = 4.008× 10−19 yr−1, one can obtain,

(
geffA

)2 ∣∣M2ν
GT (1)

∣∣ = 1√
T 2ν−exp
1/2 G2ν

SSD

= 0.594± 0.005 (5.44)

On the other hand, Mf
1 (0

+) and M i
1(0

+) can be deduced from the log(ft) values of the
EC and β−-decay of the ground state of 100Tc,

Mf
1 (0

+) =
1

geffA

√
3D

(ft)β−
, M i

1(0
+) =

1

geffA

√
3D

(ft)EC
, (5.45)

where D =
[
2π3 ln(2)

]
/
[
(GF |Vud|)2m5

e

]
. Taking into account that log(ft)EC = 4.3± 0.1

and log(ft)β− = 4.598± 0.004 [189], one can obtain,

(
geffA

)2 ∣∣M2ν
GT (1)

∣∣ = 3D√
(ft)β−(ft)EC

= 0.671+0.085
−0.076, (5.46)

where the large variation interval is mainly due to the significant uncertainty in log(ft)EC,
highlighting the need for more precise measurements. The observed disagreement between
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Figure 5.2: The single (left panel) and summed (right panel) electron spectra for 2νββ-
decay of 100Mo from: (solid) the exact SSD formalism, (dashed) Taylor expansion with
contributions up to next-to-next to leading order, i.e., Γ2ν = Γ2ν

0 +Γ2ν
2 +Γ2ν

22 +Γ2ν
4 , (dotted)

Taylor expansion with contributions up to next to leading order, i.e., Γ2ν = Γ2ν
0 + Γ2ν

2 . All
spectra are normalized to unity and they include radiative and exchange corrections. The
lower panels display the residuals. The figure is taken from [187].

the experimental NME and the value derived from the log(ft) suggests that the SSD
hypothesis alone does not fully explain the 2νββ transition of 100Mo. Contributions from
higher 1+ states in 100Tc are likely necessary for an accurate NME calculation. This
discrepancy could potentially be clarified by considering the cancellation effects that arise
from the interplay between low-lying and higher-lying states.

Under the SSD hypothesis, the expressions for ξ31 and ξ51 from Eq. (5.37) are simplified,
as only one term contributes in the summations in the NMEs, i.e.,

ξSSD31 =
4 m2

e

[E1 − (Ei + Ef )/2]
2 , ξSSD51 =

16 m4
e

[E1 − (Ei + Ef )/2]
4 . (5.47)

In the particular case of the 2νββ-decay of 100Mo, using the nuclear states energy differences
E1− (Ei +Ef )/2 = (E1−Ei)+ (Ei−Ef )/2 = 1.685 MeV [189], one can find ξSSD31 = 0.368
and ξSSD51 = 0.135.

Although the SSD hypothesis is an assumption for 2νββ-decay, it has a theoretical
advantage in that the inverse half-life separation from Eq. (5.39) does not neglect the
leptonic energy dependence in the decay rate. This makes SSD observables useful for
verifying those derived from the Taylor expansion formalism with fixed ξSSD31 = 0.368 and
ξSSD51 = 0.135.

The results are shown in Fig. 5.2, displaying the single (left panel) and summed
(right panel) electron spectra for the 2νββ-decay of 100Mo. Spectra labeled ”exact SSD”
are calculated using Eq. (5.42). For the Taylor expansion formalism, two scenarios are
considered: (i) up to next-to-next-to-leading-order contributions are included, i.e., Γ2ν =
Γ2ν
0 + Γ2ν

2 + Γ2ν
22 + Γ2ν

4 (dashed curves); (ii) up to next-to-leading-order contributions
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are included, i.e., Γ2ν = Γ2ν
0 + Γ2ν

2 (dotted curves). All spectra are normalized to unity,
incorporate radiative and exchange corrections, and use DHFS electron wave functions. As
expected, adding more terms in the Taylor expansion improves agreement with the exact
SSD for both single and summed electron spectra, as shown by the residuals in the bottom
panels of Fig. 5.2.

A similar verification of the Taylor expansion formalism was previously performed in
[179] for the single-electron spectra of 2νββ-decay of 82Se, 100Mo, and 150Nd. The same
verification is presented in Chapter 6. However, additional corrections applied in this study
were not included in that earlier work. Overall, we observe good agreement between the
spectra, indicating that including up to next-to-next-to-leading-order terms in the decay
rate provides a sufficiently precise description of the 2νββ-decay of 100Mo. For experiments
with higher statistics, higher-order terms could also be incorporated.

5.5.2 The HSD hypothesis

In contrast to the SSD hypothesis, the HSD hypothesis assumes that the transition
is primarily governed by the Gamow-Teller resonance (GTR) states, which are typically
located approximately 10−12 MeV above the ground state of the initial nucleus. This allows
for a clear separation between the nuclear structure contributions and the phase-space
integration,

[
T 2ν
1/2

]−1
=

(
geffA

)4 ∣∣M2ν
GT

∣∣2G2ν
0 . (5.48)

Because no experimental information is available for the EC and β− decay of the GTR
state of the intermediate nucleus, one can approximate,

(
geffA

)2 ∣∣M2ν
GT

∣∣ = 1√
T 2ν−exp
1/2 G2ν

0

= 0.202± 0.002, (5.49)

where the G2ν
0 calculated in this work (see Table 5.1) is the leading order PSF from the

Taylor expansion formalism.
Assuming that only one state from the GTR region, with energy EGTR, dominates the

transition, the ratios of the NMEs from the Taylor expansion formalism can be estimated
from,

ξHSD
31 =

4 m2
e

[EGTR − (Ei + Ef )/2]
2 , ξHSD

51 =
16 m4

e

[EGTR − (Ei + Ef )/2]
4 , (5.50)

For EGTR > 10 MeV, and consequently (EGTR − Ei) + (Ei − Ef )/2 > 11.685 MeV, it
becomes clear that the ratios are negligible. Specifically, for the 2νββ-decay of 100Mo, we
find ξHSD

31 < 7.6× 10−3 and ξHSD
51 < 5.9× 10−5. While a more precise determination of the

GTR energy can be obtained from [190], the conclusion remains unchanged. Additionally,
it is worth mentioning that a toy model was proposed in [191] to represent the 2νββ-decay
NME as a combination of contributions from the first state and a single GTR state of the
intermediate nucleus.

5.5.3 The corrected spectra for the 2νββ-decay of 100Mo

We begin by investigating the impact of radiative and exchange corrections on the
single-electron spectra in the 2νββ-decay of 100Mo. Our focus is on the first two terms
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Figure 5.3: The first two contributions to the single electron spectrum of 2νββ-decay of
100Mo, i.e., dΓ0/dEe and dΓ2/dEe with (solid curve) and without (dashed curve) radiative
and exchange corrections. Only the uncorrected spectra are normalized to unity and the
lower panels present the residuals. The figure is taken from [187].

of the Taylor expansion formalism, dΓ0/dEe and dΓ2/dEe. The combined effect of these
corrections is depicted in Fig. 5.3. The uncorrected spectra (dashed lines) are normalized
to unity, while the corrected spectra (solid lines) are normalized to the total decay rate of
the uncorrected distribution.

A significant modification is observed in the low-energy region (0–100 keV), where the
atomic exchange correction leads to a steep increase. This finding aligns with previous
results from β-decay studies [150, 151, 168, 172]. Unlike the exchange correction, the
radiative correction has little effect on the shape of the spectra, as evidenced by the
residuals (lower panels), which closely follow the spectral distributions. These results
indicate that atomic exchange corrections significantly affect the low-energy spectrum
shape, while radiative corrections primarily alter the overall decay rate.

The influence of radiative and exchange corrections on the total decay rate of the

Table 5.1: The phase space factors G2ν
N with N = {0, 2, 22, 4} for the 2νββ-decay of

100Mo. The results are obtained from Ref. [179] (first row) and within the DHFS framework
without additional corrections (second row). The third row corresponds to the results with
the exchange correction, the fourth includes the radiative correction, and the fifth presents
the calculations with both corrections. The last row displays the percentage deviations
from the uncorrected DHFS results due to the radiative and exchange corrections. All
values are given in units of yr−1.

Correction(s) G2ν
0 G2ν

2 G2ν
22 G2ν

4

Ref. [179] 3.279× 10−18 1.498× 10−18 1.972× 10−19 8.576× 10−19

DHFS 3.307× 10−18 1.511× 10−18 1.989× 10−19 8.652× 10−19

Exchange 3.343× 10−18 1.536× 10−18 2.031× 10−19 8.835× 10−19

Radiative 3.432× 10−18 1.568× 10−18 2.066× 10−19 8.974× 10−19

Radiative and Exchange 3.470× 10−18 1.593× 10−18 2.109× 10−19 9.164× 10−19

δ 4.91% 5.42% 5.97% 5.92%
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Figure 5.4: The uncorrected (dashed curve) and corrected (solid curve) summed electron
spectra for 2νββ-decay of 100Mo. In the corrected spectra both radiative and exchange
corrections are included. All spectra are normalized to unity, and the lower panels display
the residuals. The insets provide a closer view of the maxima of the spectra, with vertical
lines intersecting at those points. The figure is taken from [187].
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2νββ-decay in 100Mo is evaluated by examining the PSFs summarized in Table 5.1. For
comparison, we include results from [179] (first row), where atomic screening corrections
were calculated using the Thomas-Fermi equation, consistent with previous studies [192,
193, 194, 72, 78, 195]. In contrast, the second row presents results derived from the self-
consistent DHFS framework, which provides a more refined treatment of atomic screening
corrections and a more accurate description of the atomic structure in the final system.
The deviations observed between the first and second rows are attributed to this increased
precision of the model.

The subsequent rows in Table 5.1 incorporate radiative corrections, exchange corrections,
and both corrections combined. The final row quantifies the percentage change between
the corrected and uncorrected PSFs using the DHFS framework. From this analysis, it is
evident that the radiative and exchange corrections collectively modify each contribution
to the decay rate by approximately 5% for the 2νββ-decay of 100Mo. Among these, the
radiative correction is the dominant factor driving the increase in the decay rate.
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Figure 5.5: The corrected total single (left panel) and total summed (right panel) electron
spectra for 2νββ-decay of 100Mo, for different values of the ratios of NMEs: ξ31 = 0 and
ξ51 = 0 which correspond to the HSD hypothesis (dotted line); ξ31 = 0.368 and ξ51 = 0.135
which correspond to the SSD hypothesis (dashed line); ξ31 = 0.450 and ξ51 = 0.165 from
the experimental (EXP) measurement [55] (solid line). All spectra are normalized to
unity, and the lower panels display the residuals between the spectra corresponding to the
experimental and HSD values (solid line) and between the spectra corresponding to the
SSD and HSD values (dashed line). The figure is taken from [187].

The impact of radiative and exchange corrections on the shape of the summed energy
electron spectra for the 2νββ-decay of 100Mo was analyzed by considering the first four
contributions to the summed electron spectrum, as shown in Fig. 5.4. When both corrections
are included, the spectra consistently exhibit a leftward shift, indicating an increase in
events in the lower-energy region. This shift is a combined effect of both corrections, as
they both influence the spectral maxima in the same direction, resulting in no observable
cancellations between their contributions.

The insets in Fig. 5.4 provide a detailed view of the shifts in the spectral maxima,
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highlighted by intersecting vertical lines. While these shifts are relatively small—around 10
keV—they are potentially significant given the precision of current and future experimental
data. Such shifts may play a crucial role in constraining strength parameters associated
with new physics scenarios, as deviations from the SM predictions often manifest as shifts
in the spectral maxima.

Finally, we analyze the effect of varying the values of ξ31 and ξ51 on the total corrected
single and summed electron spectra, derived from Eq. (5.25) and considering the PSFs
defined in Eq. (5.38). We consider three distinct assumptions: (i) the HSD hypothesis,
in which ξHSD

31 = 0 and ξHSD
51 = 0, (ii) the SSD hypothesis, in which ξSSD31 = 0.368 and

ξSSD51 = 0.135, and (iii) the experimental measurements of CUPID-Mo collaboration for
ξEXP
31 = 0.450 and ξEXP

51 = 0.165 [55]. The results are shown in Fig. 5.5, with the single
electron spectrum displayed in the left panel and the summed electron spectrum in the
right panel. Both type of distributions are normalized to unity and include the effects of
radiative and exchange corrections.

The single electron spectrum demonstrates significant sensitivity to the values of ξ31
and ξ51. The differences among the scenarios are most pronounced in the low-energy
region, although these low-energy events are challenging to detect experimentally. This
sensitivity is further illustrated in the bottom panel, which shows the residuals between the
different assumptions. For the summed electron spectrum, variations in ξ31 and ξ51 are most
noticeable near the peak of the spectrum, around 1.1 MeV for the 2νββ-decay of 100Mo, as
highlighted by the residuals in the bottom panel. Additionally, the summed spectrum also
exhibits non-negligible variations in the regions near 0.3 MeV and 2 MeV. These regions
are experimentally accessible and do not require a tracking system for individual electrons,
unlike the single electron spectrum.

5.5.4 Conclusions

In this Section, we investigated the 2νββ-decay of 100Mo by incorporating radiative and
atomic exchange corrections. As these corrections are introduced on top of our previous
Taylor expansion formalism, we presented a connection between this approach and the
SSD and HSD hypotheses. Additionally, we demonstrated that while the SSD hypothesis is
an approximation for separating the decay rate, it remains useful in testing the truncation
order of the Taylor series. To calculate the atomic exchange correction we employed a
modified DHFS self-consistent framework that ensures orthogonality between continuum
and bound states. We found that the exchange effect for one electron emitted in ββ-decay
is larger than in β-decay, as the atomic system’s charge changes by two units in the former
case.

We found a steep increase in the number of event in the low-energy region of the single
electron distribution due to the atomic exchange correction, which is in accordance with the
previous studies on β-decay. Although the radiative correction leave the shape of the single
electron spectrum unchanged, it is responsible for an overall increase in the decay rate of
about 5%. We also found that the both correction contribute constructively to a leftward
shift of the maximum in the summed electron spectrum, amounting to about 10 keV for
the 2νββ-decay of 100Mo. Since similar shifts are predicted by new physics scenarios in
2νββ-decay, our finding might influence the experimental constrains of the BSM parameters.
Additionally, this corrections might affect the future ξ31 and ξ51 measurements. Finally, we
provided the corrected single and summed electron spectra for the 2νββ-decay of 100Mo
under the assumptions of the SSD and HSD hypotheses, as well as for experimentally
measured values of the ξ31 and ξ51 parameters.
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5.6 Taylor expansion 2νββ-decay formalism for 0+ → 2+ tran-
sitions

In this Section, we provide the key formulas for the Taylor expansion formalism of
2νββ-decay, specifically for 0+ → 2+ nuclear transitions. While the expressions for 0+ → 0+

transitions are covered in Section 5.3, the following formulas are presented for both 0+ and
2+ final states of the nucleus, for comparison and symmetry purposes.

The inverse half-life of the 2νββ-decay transition to both 0+ and 2+ states of the final
nucleus takes the form
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with
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The partial transition matrix elements take the form

Mn(0
+) =⟨0+f ∥

∑

j

τ+j σj∥1+n ⟩⟨1+n ∥
∑

k

τ+k σk∥0+i ⟩

Mn(2
+) =

1√
3
⟨2+f ∥

∑

j

τ+j σj∥1+n ⟩⟨1+n ∥
∑

k

τ+k σk∥0+i ⟩.
(5.54)

Here, |0+i ⟩ and |J+
f ⟩ (Jπ = 0+, 2+) are the initial (ground) and final (ground or excited)

states with angular momentum and parity 0+ and Jπ, respectively. Additionally, |1+n ⟩
denote all possible states of the intermediate nucleus with angular momentum and parity
1+ and energy En(1

+).

The dependence of the GT nuclear matrix elementMK,L
GT (Jπ) on lepton energies is taken

into account by performing a Taylor expansion over the ratio εK,L/ [En − (Ei + Ef )/2] in
the denominator of Eq. (5.53). By limiting our consideration to the fourth (sixth) power in
εK,L for Jπ = 0+ (Jπ = 2+) we get:
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The products of the NMEs for 2νββ-decay, transitions to 0+ states, are given by (see
also Eq. (5.21))
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and for transitions to 2+ states,
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The explicit expressions for the NMEs are the following:
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(5.59)

The PSFs for 2νββ-decay for transitions to 0+ and 2+ states are given by
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with N = {0, 2, 22, 4} and N ′ = {22, 6}. It should be noted that we have included the
radiative and exchange corrections as in Section 5.4. In the phase space expressions the
functions A2ν

N (0+) are equivalent with the ones from Eq. (5.20) and

A2ν
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,
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(5.61)

5.7 The 2νββ-decay of 150Nd and 148Nd, 0+ → 0+ and 0+ → 2+

transitions

The Taylor expansion formalism is tested for the 2νββ-decay of 150Nd and 148Nd. Mea-
surements of various transitions of these isotopes to different excited states were conducted
over a period of 5.845 years using a four-crystal low-background HPGe γ spectrometry
system at the STELLA underground low-background laboratory of LNGS-INFN. While the
experimental setup and procedures are not detailed here, the experimentally determined
half-life values and limits serve as a practical benchmark for assessing the accuracy of the
theoretical predictions. The decay schemes of 150Nd and 148Nd are shown in Fig. 5.6 and
Fig. 5.7, respectively.

For the computation of the NMEs from Eqs. (5.58-5.59), we utilize the spherical proton-
neutron QRPA method with isospin symmetry restoration [199]. The pairing and residual
interactions, along with the two-nucleon short-range correlations, are derived from the
same modern, realistic nucleon-nucleon potentials—specifically, the charge-dependent Bonn
potential [200]. Pairing correlations between like nucleons are treated consistently in both
cases using the Bardeen–Cooper–Schrieffer (BCS) approximation with fixed gap parameters
for protons and neutrons (see Table 5.2).

The intermediate nuclear states are constructed using pn-QRPA phonons, while the
ground states of the initial and final nuclei are represented as BCS states. As shown in
[201], deformation primarily affects the overlap factors of these BCS states. Consequently,
in this study, deformation effects are incorporated via BCS overlap factors derived from
deformed BCS calculations [202], yielding values of 0.52 for the 150Nd system and 0.73 for
the 148Nd system.

The wave functions for the 2+ states are constructed using spherical QRPA methods,
with the detailed expressions for decay transitions from the intermediate states to these final
2+ states provided in [203, 204]. For the first excited 0+1 state, the so-called Boson Expansion
Method (BEM) is employed. This method represents the 0+1 state as a polynomial of 2+
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Figure 5.6: A simplified decay scheme of 150Nd [196]. The energies of the excited levels and
of the emitted γ quanta are given in keV (the relative intensities of the γ quanta are given
in parentheses). The Q-value for double-β-decay energy of 150Nd is taken from [197].

QRPA phonons. The detailed expression for the transitions from intermediate states to
this 0+1 state is outlined in [205].

In the calculation of NMEs, it is essential to determine the key parameters for pn-QRPA,
namely gpp, the particle-particle interaction strength. Following the methodology outlined
in [199], for the decay of 150Nd to the ground state, gT=1

pp for the iso-vector channel is set

by ensuring M2ν
F vanishes. The iso-scalar channel parameter gT=0

pp is then determined by

reproducing the experimental half-life of 150Nd using Eq. (5.55) for a specified geffA . For
148Nd, in the absence of a measured half-life, gT=0

pp is fixed by imposing the condition

M2ν
GT−cl = 0 [206]. In the case of like-nucleon QRPA calculations, gT=1

pp is set equal to the
value obtained from the pn-QRPA calculation with isospin symmetry restoration.

For the decay of 150Nd to 2+ states, our results suggest that the NMEs are not as
sensitive to the gT=0

pp value as the ones for the decay to the ground states. Therefore, the

half-lives are then solely determined by the geffA values used. For the decay to first 0+1
excited states, MGT−1(0

+) is slightly sensitive to gT=0
pp but the other two NMEs are not

sensitive to the gT=0
pp values we choose.

For 148Nd, the NMEs for decay to the ground state are significantly larger than those
for 150Nd. This is primarily attributed to the greater overlap factor derived within the BCS
framework for nuclei and the notably larger proton pairing gap, ∆p. As the half-life for the
2νββ-decay of 148Nd has not yet been measured, pseudo spin-isospin SU(4) symmetry is
applied as a guiding assumption [206]. Future experimental data could provide insights
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Table 5.2: Pairing gaps for protons (∆p) and neutrons (∆n) determined phenomenologically
from the odd-even mass differences through a symmetric five-term formula involving
the experimental binding energies. β2 is the deformation parameter extracted from the
measured E2 probability.

Isotope ∆p [MeV] ∆n [MeV] β2
150Nd 1.193 1.045 0.285
150Sm 1.444 1.195 0.193

148Nd 1.387 1.121 0.201
148Sm 1.347 1.057 0.142
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into the validity of this assumption. For decays to 2+ states, the NMEs are also larger
compared to those of 150Nd. However, for decays to 0+ states, the NMEs are relatively
suppressed. It is worth noting that NMEs associated with decays to excited states are
generally less sensitive to the model parameters, such as gpp.

The calculation of the PSFs with exchange and radiative corrections, as given by
Eq. (5.60), requires good knowledge of both the bound and continuum states for electrons
within the potential of the final positively charged ion, as well as the bound states for
electrons within the potential of the initial neutral atom. In this study, we employ the
modified self-consistent Dirac-Hartree-Fock-Slater (DHFS) framework to determine the
electron wave functions. Detailed descriptions of the nuclear, electronic, and exchange
components of the DHFS potential, as well as the convergence of the method, are provided
in Appendix A. Our calculations are based on the RADIAL subroutine package [207].
Notably, the modified self-consistent DHFS framework offers not only realistic screening for
the continuum wave functions but also ensures orthogonality between the continuum and
bound wave functions of the electrons in the final atomic system, i.e., ⟨ψ′

Eeκ
|ψ′

nκ⟩ = 0. It
has been shown that non-orthogonal states significantly affect the behavior of the exchange
correction with respect to the kinetic energy of the emitted electron [168].

The results for G2ν
N (0+) with N = {0, 2, 22, 4} and G2ν

N ′(2+) with N ′ = {22, 6} are
presented in Table 5.3 for the 2νββ-decay of 148,150Nd to various 0+ and 2+ states of
148,150Sm. For transitions to 0+ states, the trend of the PSFs from different orders of the
Taylor expansion aligns with our previous results [78, 179]. We note that for the 2νββ-decay
of 150Nd to the ground state of 150Sm, increasing the precision for the screening correction
and adding the radiative and exchange corrections, leads to a 6% increase in the decay rate
when compared to the result from [179]. A detailed investigation regarding the interplay
between these corrections is discussed in Section 5.5.

The NMEs for the 2νββ-decay of 150Nd and 148Nd to both ground and excited states
are summarized in Table 5.4, alongside their corresponding theoretical and experimental
half-life values (or limits). For the decays of 150Nd, two sets of results are provided: one
assuming the unquenched gA value, i.e., geffA = 1.276 [209], and the other using a moderately
quenched gA, i.e., g

eff
A = 0.75 × 1.276. Notably, the predicted half-life for the decay of

150Nd to the first 0+1 state using the moderately quenched gA lies within the experimental
uncertainty limits, whereas the prediction with unquenched gA is about two times shorter.
For this reason, results for the decay of 148Nd are presented only with geffA = 0.75× 1.276.
Overall, the theoretical predictions for all transitions show a good agreement with the
experimental limits.

Besides the half-lives presented in Table 5.4 for 150Nd, we also investigated the 2νββ
transitions to higher excited states of 150Sm, namely the second 2+ state (1046.1 keV),
the third 2+ state (1193.8 keV), and the second 0+ state (1255.5 keV). This analysis was
performed to determine whether the first 2+ excited state at 334 keV is predominantly
populated directly through the 2νββ-decay or if a significant populating probability
exists via γ transitions originating from these higher excited 2+ and 0+ states, which are
themselves populated by 2νββ transitions (see Fig. 5.6). To estimate the half-lives for
2νββ transitions to the second and third 2+ states, the NMEs were assumed to be the
same as those for the 2νββ transition to the first 2+ state. Similarly, for the 2νββ-decay
to the 0+ state at 1255.5 keV, the NMEs for the ground-state-to-ground-state transition
were considered. However, this assumption overestimates the NMEs, as the 0+ excited
state at 1255.5 keV appears to correspond to a triple-phonon state, and the associated
NMEs are expected to be significantly suppressed. Using geffA = 1.276 and the phase-space
factors (PSFs) provided in Table 5.3, the following theoretical half-lives were determined:
T 2ν−th
1/2 (2+2 ) = 4.408× 1021 yr, T 2ν−th

1/2 (2+3 ) = 1.025× 1022 yr and T 2ν−th
1/2 (0+2 ) = 5.820× 1020
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yr. The 2νββ transitions to the second 2+, third 2+, and second 0+ excited states are
suppressed relative to the transition to the first 2+ state by factors of 0.030, 0.013, and
0.227, respectively. Based on these results, it can be concluded that the 2+ state at 334
keV is only weakly fed via 2νββ transitions to higher excited states.

In Table 5.5, we compare our NMEs and half-life predictions with those reported in
[210, 211, 212] for the 2νββ-decay of 150Nd to the ground state and to the first 2+1 state
of 150Sm. The NMEs reported in the papers [210, 211, 212] have been properly scaled, as
detailed in Table 5.5’s caption, to ensure consistency with our definitions of the NMEs,
namely Eqs. (5.58) and (5.59). The last column presents the half-lives obtained as,

[
T 2ν
1/2(0

+)
]−1

=
(
geffA

)4 ∣∣M2ν
GT−1(0

+)
∣∣2G2ν

0 (0+), (5.62)

for the transition to ground state and

[
T 2ν
1/2(2

+)
]−1

=
(
geffA

)4 ∣∣M2ν
GT−3(2

+)
∣∣2G2ν

22(2
+) (5.63)

for the transition to first 2+1 state. These can be obtained from Eq. (5.55) by keeping
only the first term from the Taylor expansion of the decay rates. The comparison between
these half-lives and the published ones [210, 211, 212] in Table 5.5 highlights two main
aspects: (i) for our work, it underscores the importance of the additional terms arising
from the Taylor expansion of the decay rate, and (ii) for the previous papers, it reveals the
differences between our first order PSF and the ones used in those studies.

Table 5.5: The comparison between the NMEs and half-lives predictions from this work and
the ones reported in [210, 211, 212] for the 2νββ-decay of 150Nd to the ground state (top
part) and to the first 2+1 state (bottom part) of 150Sm. For the 0+ → 0+ transition, the
NMEs reported in [211, 212] have been scaled by a factor me. For the 0+ → 2+1 transition,
the NMEs reported in [210] have been scaled by a factor 4, and the NMEs reported in
[211, 212] have been scaled by a factor 4m3

e. The g
eff
A used in the calculations is presented

in the fourth column. The fifth column shows the published half-lives in each paper. The
last column presents the half-lives obtained with the revised PSFs (see Table 5.3) using
only the first term from the Taylor expansion of the decay rates, i.e., Eqs. (5.62) and (5.63).

T 2ν−th
1/2 (0+)[yr]

Nucl. Trans. Paper
∣∣M2ν

GT−1(0
+)

∣∣ geffA Published Revised PSF
0+ → 0+ This work 2.55× 10−2 1.276 – 1.50× 1019

This work 4.91× 10−2 0.957 – 1.28× 1019

Ref. [210] 5.49× 10−2 1.000 6.73× 1018 8.61× 1018

Ref. [210] 5.50× 10−2 1.000 6.68× 1018 8.58× 1018

Ref. [211] 2.79× 10−1 1.254 – 1.35× 1017

Ref. [212] 3.80× 10−1 1.254 7.89× 1016 7.26× 1016

T 2ν−th
1/2 (2+)[yr]

Nucl. Trans. Paper
∣∣M2ν

GT−3(2
+)

∣∣ geffA Published Revised PSF

0+ → 2+1 This work 2.70× 10−2 1.276 – 2.29× 1020

This work 2.70× 10−2 0.957 – 7.25× 1020

Ref. [210] 2.15× 10−4 1.000 7.21× 1024 9.57× 1024

Ref. [210] 1.65× 10−4 1.000 1.23× 1025 1.63× 1025

Ref. [211] 1.42× 10−3 1.254 1.50× 1023 8.84× 1022

Ref. [212] 1.69× 10−3 1.254 4.61× 1020 6.26× 1022
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For the 2νββ transition to the ground state, the NMEs from [210] are of the same order
of magnitude as ours, while those from [211, 212] are approximately one order of magnitude
larger. As a consequence, the NMEs from [211, 212] predict smaller half-lives than the ones
obtained in this work. For the 2νββ transition to the first 2+1 state, the NMEs from [210]
are two orders of magnitude smaller than ours, while those from [211, 212] are one order
of magnitude smaller. One would expect half-lives two to four orders of magnitude larger
than ours in these studies. However, in [212], a half-life of 4.61× 1020 yr is reported, quite
close to our prediction for the moderately quenched gA. The comparison between the last
two columns of Table 5.5 reveals that our calculated PSFs are approximately 30% smaller
compared to those reported in [210], which are based on calculations from [63], for both
transitions to the ground state and to the first 2+ state. This validates the computation of
G2ν

0 (0+) and G2ν
22(2

+) from this work, as we have previously demonstrated a 30% decrease
in the 2νββ-decay rate of 150Nd due to a more precise description for the emitted electrons
[179]. However, the PSF value for the 2νββ transition to the first 2+1 state extracted from
[212] contradicts those reported in [63, 65] and the value listed in Table 5.3 by a factor of
102. For other nuclei, the PSFs from [63, 65] and those derived from [212] generally agree
within one order of magnitude. Therefore, the predicted half-life for the 2νββ-decay of
150Nd to the first 2+1 state of 150Sm reported in [212] likely contains a misprint.
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6 The angular correlation between the electrons

emitted in 2νββ-decay and 0νββ-decay

6.1 Introduction

The increasing statistical precision of 2νββ-decay experiments has opened the door to
testing new physics beyond the Standard Model (BSM). Current BSM models extending
2νββ-decay involve three main approaches [86]: (i) non-standard interactions, (ii) violation
of fundamental symmetries, and (iii) emission of new bosons or fermions emitted in the
decay. Examples include right-handed neutrino interactions [87], neutrino self-interactions
[88], violations of the Pauli exclusion principle [89], Lorentz invariance violation [90, 91,
92, 93], sterile neutrinos within the Q-value range [94, 95], Majoron-emitting 0νββ decays
[96, 97, 98], and even quadruple-β-decay [107].

While current constraints on BSM parameters rely heavily on analyzing the summed
electron energy distribution [86], several BSM scenarios predict their most prominent
signatures in the angular correlation distributions between emitted electrons [87, 88, 92, 93].
For instance, right-handed currents in 2νββ-decay are expected to produce a direction
flip in electron emissions [87]. Next-generation experiments, such as SuperNEMO [109]
and NEXT-100 [110], aim to measure individual electron tracks. This capability will
provide crucial insights into the mechanism underlying 0νββ-decay [77, 73, 72, 79, 80] and
significantly enhance sensitivity to BSM scenarios in 2νββ-decay.

In this Chapter, we revisit the angular correlation distributions of emitted electrons in
both 2νββ-decay and 0νββ-decay. In the first part, we deliberately exclude the electronic
phase shifts from the calculations to examine how different approximation schemes for the
electrostatic potential of the final atom affect angular correlations. We analyze the angular
correlations for the eleven most promising 2νββ-decay nuclei and propose a novel approach
for determining the effective axial-vector coupling constant.

In the second part, we focus specifically on the angular correlation between the emitted
electrons in the double beta decay (DBD) of 100Mo, paying particular attention to the
impact of phase shifts in electronic wave functions. To model the electron wave functions
and phase shifts, we employ a modified self-consistent Dirac-Hartree-Fock-Slater potential
for the final positive ion 100Ru. This framework provides a realistic description of the
nuclear environment, incorporating finite size, diffuse surface effects, and atomic screening.

Our findings demonstrate that phase shifts in electron wave functions have a measurable
impact on emission patterns in both 2νββ-decay and 0νββ-decay: (i) For 2νββ-decay,
angular correlation coefficients increase by approximately 7% when phase shifts are included.
Additionally, we observe a notable energy-dependent feature where electrons are preferen-
tially emitted in the same direction below a specific energy threshold; (ii) For 0νββ-decay,
the angular correlation factor exhibits only a 2% change when phase shifts are included.
However, the directional preference remains, potentially influencing the interpretation of
mechanisms beyond the light neutrino exchange studied here.

These results suggest that electron phase shifts could influence emission patterns
associated with various BSM scenarios in 2νββ-decay. Moreover, incorporating phase shifts
into calculations may refine theoretical tools needed to probe the mechanisms driving
0νββ-decay. Further investigations in this direction, particularly for alternative decay
mechanisms, are left for future studies.
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6.2 Formalism

The differential DBD rate for a 0+ → 0+ nuclear transition with respect to the angle
0 ≤ θ ≤ π between the emitted electrons can be written as [87]

dΓ

d (cos θ)
=

Γ

2
(1 +K cos θ) , (6.1)

where

K = −Λ

Γ
, (6.2)

is the angular correlation coefficient. The above expressions are valid for both 2νββ-decay
and 0νββ-decay.

6.2.1 The 2νββ-decay

We have shown in Section 5.3 that the 2νββ-decay rates are given by [78, 179],

{
Γ2ν

Λ2ν

}
=(geffA )4

∣∣M2ν
GT

∣∣2 ln (2)
{
G2ν

0 + ξ31G
2ν
2 + 1

3ξ
2
31G

2ν
22 +

(
1
3ξ

2
31 + ξ51

)
G2ν

4

H2ν
0 + ξ31H

2ν
2 + 5

9ξ
2
31H

2ν
22 +

(
2
9ξ

2
31 + ξ51

)
H2ν

4

}
(6.3)

where PSFs are given by,

{
G2ν

N

H2ν
N

}
=
me(GF |Vud|m2

e)
4

8π7 ln (2)

1

m11
e

∫ Ei−Ef−me

me

pe1Ee1

×
∫ Ei−Ef−Ee1

me

pe2Ee2IN
{
Fss(Ee1)Fss(Ee2)
Ess(Ee1)Ess(Ee2)

}
dEe2dEe1

(6.4)

with N = {0, 2, 22, 4} and IN are given in Eq. (5.29). Using the same analytical integration
over the antineutrino energy write the normalized total double electron distribution as

1

Γ2ν

dΓ2ν

dEe1dEe2

=
c2ν

G2ν
0 + ξ31G2ν

2 + 1
3ξ

2
31G

2ν
22 +

(
1
3ξ

2
31 + ξ51

)
G2ν

4

pe1Ee1pe2Ee2

× Fss(Ee1)Fss(Ee2)

[
I0 + ξ31I2 +

1

3
ξ231I22 +

(
1

3
ξ231 + ξ51

)
I4
]
,

(6.5)

and the total single electron distribution,

1

Γ2ν

dΓ2ν

dEe1

=
c2ν

G2ν
0 + ξ31G2ν

2 + 1
3ξ

2
31G

2ν
22 +

(
1
3ξ

2
31 + ξ51

)
G2ν

4

× pe1Ee1Fss(Ee1)

∫ Ei−Ef−Ee1

me

pe2Ee2Fss(Ee2)

×
[
I0 + ξ31I2 +

1

3
ξ231I22 +

(
1

3
ξ231 + ξ51

)
I4
]
dEe2 ,

(6.6)

where

c2ν =
me(Gβm

2
e)

4

8π7 ln 2

1

m11
e

. (6.7)
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We can also define the partial double distributions normalized to the corresponding partial
decay rate as

1

Γ2ν
N

dΓ2ν
N

dEe1dEe2

=
c2ν

G2ν
N

pe1Ee1pe2Ee2Fss(Ee1)Fss(Ee2)IN . (6.8)

The angular correlation coefficient is given by,

K2ν(ξ2ν31 , ξ
2ν
51 ) = −

H2ν
0 + ξ31H

2ν
2 + 5

9ξ
2
31H

2ν
22 +

(
2
9ξ

2
31 + ξ51

)
H2ν

4

G2ν
0 + ξ31G2ν

2 + 1
3ξ

2
31G

2ν
22 +

(
1
3ξ

2
31 + ξ51

)
G2ν

4

. (6.9)

One can also define the energy-dependent angular correlation distributions [192, 87],

α2ν(Ee) = −
dΛ2ν/dEe

dΓ2ν/dEe
, κ2ν(Ee1 , Ee2) = −

d2Λ2ν/ (dEe1dEe2)

d2Γ2ν/ (dEe1dEe2)
(6.10)

which offer information about the direction of electron emission for given energies. The
latter can be written in the following compact form,

κ(Ee1 , Ee2 , ξ31) = −
Ess(Ee1)Ess(Ee2)

Fss(Ee1)Fss(Ee2)

[
1 + ξ31Ĩ2 + 5

9ξ
2
31Ĩ22 +

(
2
9ξ

2
31 + ξ51

)
Ĩ4
]

[
1 + ξ31Ĩ2 + 1

3ξ
2
31Ĩ22 +

(
1
3ξ

2
31 + ξ51

)
Ĩ4
] , (6.11)

where the dimensionless quantities are

Ĩ2 =
1

14

1

(2me)2
(a2 + 7b2)

Ĩ22 =
1

336

1

(2me)4
(a4 − 6a2b2 + 21b4)

Ĩ4 =
1

168

1

(2me)4
(a4 + 18a2b2 + 21b4)

(6.12)

where recall that a and b is given by Eq. (5.30).

6.2.2 The 0νββ-decay

Assuming only the light-neutrino exchange produced by left-handed currents as the
dominant mechanism, the 0νββ-decay rates are given by [181, 72]

{
Γ0ν

Λ0ν

}
=
(GF |Vud|)4m2

e

32π5R2
(gA)

4
∣∣M0ν

∣∣2 |mββ |2
m2

e

×
∫ Ei−Ef−me

me

pe1Ee1pe2Ee2

{
Fss(Ee1)Fss(Ee2)
Ess(Ee1)Ess(Ee2)

}
dEe1

=(gA)
4
∣∣M0ν

∣∣2 |mββ |2
m2

e

ln (2)

{
G0ν

H0ν

}
,

(6.13)

where Ee2 = Ei − Ef − Ee1 , from the energy conservation, and the effective Majorana
neutrino mass is given by

mββ =
3∑

k=1

U2
ekmk. (6.14)
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Here, Uek and mk, with k = 1, 2, 3, are elements of the PMNS neutrino mixing matrix
and the values of neutrino masses, respectively. A recent and comprehensive review on the
calculation of the 0νββ-decay NME, M0ν , can be found in [213]. In this case, one angular
correlation distribution can be defined, i.e.,

α0ν(Ee) = −
dΛ0ν/dEe

dΓ0ν/dEe
. (6.15)

6.3 The 2νββ-decay angular correlations without electron
phase shift

6.3.1 Results and discussion

In this section, we examine the observables of 2νββ-decay without accounting for
the electron phase shift in the wave functions of the emitted electrons. As elaborated in
Section A.3, the functions g̃κ and f̃κ are [63, 181]

{
g̃κ(Ee, r)

f̃κ(Ee, r)

}
= exp

(
−i∆̄κ

){gκ(Ee, r)
fκ(Ee, r)

}
(6.16)

where ∆̄κ is the overall phase shift. We deliberately disregard the phase shift by employing
the following expressions:

Fss(Ee) =g
2
−1(Ee, R) + f21 (Ee, R),

Ess(Ee) ≃2g−1(Ee, R)f1(Ee, R),
(6.17)

in place of Eq. (5.5).
In our calculations, we adopt three distinct approximation schemes for the emitted

electron wave functions—scheme A (see Section A.3.1), scheme B (see Section A.3.2), and
scheme C (see Section A.3.4). These schemes differ in their treatment of the Coulomb
potential of the final nucleus and the accuracy of the electronic wave functions. Scheme A
incorporates the finite nuclear size correction but approximates the radial wave functions
for the s1/2 state by retaining only the leading-order term in the expansion of r. Scheme B
improves upon this by employing exact radial wave functions, although it models the final
nucleus as a point-like charge, thereby neglecting finite size corrections. Scheme C offers
the most precise approach, using exact radial wave functions while accounting for both
finite nuclear size corrections and the screening effect of atomic electrons.

In Figure 6.1, we present the radial wave functions of an electron in the s1/2 spherical
wave state emitted from the double-β emitter 136Xe. These wave functions are plotted
as functions of the electron’s kinetic energy, Ee − me, and evaluated at the surface of
the daughter nucleus. The results demonstrate that approximation scheme A, which
incorporates the leading finite-size Coulomb correction, agrees well with the other two
schemes for g−1(Ee, R). However, it exhibits significant deviations for f+1(Ee, R), especially
at low electron energies. Notably, approximation schemes B and C yield consistent results
across the entire range of representation intervals.

In Table 6.1, we provide the phase-space factors contributing to the decay rate, as
defined in Eq. (6.4), for the 2νββ-decay of 100Mo, 136Xe, and 150Nd. These calculations
employ approximation schemes A, B, and C. Consistent with prior findings in [78], the
GN phase-space factors calculated with exact relativistic electron wave functions (scheme
C) are smaller compared to those obtained using approximation scheme A. The results
from scheme B fall between the values produced by schemes A and C. For the angular

80



Table 6.1: Phase space factors G2ν
N and H2ν

N with N = {0, 2, 22, 4} for 2νββ-decay of 100Mo,
136Xe and 150Nd. The results are obtained using different approximations for the radial
wave functions g−1(Ee) and f1(Ee) of the electron: (A) The standard approximation of
Doi et al. [63] (see Section A.3.1). (B) The analytical solution of the Dirac equation for a
point-like nucleus [214] (see Section A.3.2). (C) The exact solution of the Dirac equation
for an uniform charge distribution of the nucleus screened by the atomic electronic cloud
(see Section A.3.4). The results are presented in yr−1. For each nucleus and each phase
space factor we present the percent deviation between approximation schemes A and B,
δAB = 100(XA −XB)/XB, and the percent deviation between approximation schemes A
and C, δAB = 100(XA −XC)/XC , with X = G2ν

N or X = H2ν
N .

Nucleus Elec. w. f. G2ν
0 G2ν

2 G2ν
22 G2ν

4
100Mo A 3.820× 10−18 1.748× 10−18 2.302× 10−19 1.001× 10−18

B 3.490× 10−18 1.597× 10−18 2.105× 10−19 9.145× 10−19

C 3.279× 10−18 1.498× 10−18 1.972× 10−19 8.576× 10−19

δAB 9.44% 9.49% 9.38% 9.52%
δAC 16.49% 16.67% 16.76% 16.80%

136Xe A 1.794× 10−18 5.519× 10−19 4.998× 10−20 2.112× 10−19

B 1.566× 10−18 4.815× 10−19 4.367× 10−20 1.842× 10−19

C 1.406× 10−18 4.318× 10−19 3.908× 10−20 1.651× 10−19

δAB 14.57% 14.63% 14.45% 14.67%
δAC 27.62% 27.81% 27.87% 27.95%

150Nd A 4.820× 10−17 2.733× 10−17 4.483× 10−18 1.938× 10−17

B 4.043× 10−17 2.291× 10−17 3.765× 10−18 1.624× 10−17

C 3.604× 10−17 2.038× 10−17 3.343× 10−18 1.443× 10−17

δAB 19.21% 19.29% 19.04% 19.36%
δAC 33.76% 34.08% 34.10% 34.30%

Nucleus Elec.w.f. H2ν
0 H2ν

2 H2ν
22 H2ν

4
100Mo A 2.466× 10−18 1.034× 10−18 1.239× 10−19 5.491× 10−19

B 2.406× 10−18 1.030× 10−18 1.260× 10−19 5.582× 10−19

C 2.244× 10−18 9.566× 10−19 1.165× 10−19 5.163× 10−19

δAB 2.49% 0.37% −1.71% −1.64%
δAC 9.86% 8.08% 6.34% 6.35%

136Xe A 1.025× 10−18 2.872× 10−19 2.329× 10−20 1.015× 10−19

B 1.026× 10−18 2.982× 10−19 2.512× 10−20 1.090× 10−19

C 9.103× 10−19 2.630× 10−19 2.201× 10−20 9.566× 10−20

δAB −0.12% −3.69% −7.28% −6.89%
δAC 12.63% 9.20% 5.78% 6.06%

150Nd A 3.201× 10−17 1.668× 10−17 2.497× 10−18 1.099× 10−17

B 3.005× 10−17 1.618× 10−17 2.507× 10−18 1.100× 10−17

C 2.658× 10−17 1.424× 10−17 2.194× 10−18 9.637× 10−18

δAB 6.50% 3.07% −0.42% −0.08%
δAC 20.43% 17.14% 13.81% 14.07%
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Figure 6.1: Electron radial wave functions in s1/2 spherical wave state for an electron
emitted in the double-β-decay of 136Xe, as functions of the kinetic energy Ee−me evaluated
on the surface of the final nucleus R = 6.17 fm. The original figure can be found in [179].

Table 6.2: Phase space factors G2ν
N and H2ν

N with N = {0, 2, 22, 4}, in yr−1, obtained using
the screened exact finite-size Coulomb wave functions for s1/2 electron state. The Q values
are taken from the experiments with the smallest uncertainty when available, or from
tables of recommended value [197].

Nucleus Q [MeV] G2ν
0 G2ν

2 G2ν
22 G2ν

4
48Ca 4.268121 [215] 1.517× 10−17 1.290× 10−17 3.094× 10−18 1.392× 10−17

76Ge 2.039061 [216] 4.779× 10−20 1.007× 10−20 6.236× 10−22 2.644× 10−21

82Se 2.9979 [217] 1.596× 10−18 7.069× 10−19 8.986× 10−20 3.928× 10−19

96Zr 3.356097 [218] 6.837× 10−18 3.780× 10−18 5.979× 10−19 2.624× 10−18

100Mo 3.0344 [188] 3.279× 10−18 1.498× 10−18 1.972× 10−19 8.576× 10−19

110Pd 2.01785 [219] 1.357× 10−19 2.835× 10−20 1.760× 10−21 7.350× 10−21

116Cd 2.8135 [220] 2.728× 10−18 1.083× 10−18 1.250× 10−19 5.374× 10−19

124Sn 2.2927 [197] 5.609× 10−19 1.503× 10−19 1.190× 10−20 5.010× 10−20

130Te 2.527518 [221] 1.498× 10−18 4.851× 10−19 4.612× 10−20 1.957× 10−19

136Xe 2.45783 [222] 1.406× 10−18 4.318× 10−19 3.908× 10−20 1.651× 10−19

150Nd 3.37138 [223] 3.604× 10−17 2.038× 10−17 3.343× 10−18 1.443× 10−17

Nucleus Q [MeV] H2ν
0 H2ν

2 H2ν
22 H2ν

4
48Ca 4.268121 [215] 1.165× 10−17 9.277× 10−18 2.083× 10−18 9.428× 10−18

76Ge 2.039061 [216] 2.678× 10−20 5.197× 10−21 2.906× 10−22 1.274× 10−21

82Se 2.9979 [217] 1.076× 10−18 4.423× 10−19 5.181× 10−20 2.306× 10−19

96Zr 3.356097 [218] 4.852× 10−18 2.504× 10−18 3.679× 10−19 1.639× 10−18

100Mo 3.0344 [188] 2.244× 10−18 9.567× 10−19 1.165× 10−19 5.163× 10−19

110Pd 2.01785 [219] 7.845× 10−20 1.529× 10−20 8.659× 10−22 3.750× 10−21

116Cd 2.8135 [220] 1.833× 10−18 6.815× 10−19 7.277× 10−20 3.201× 10−19

124Sn 2.2927 [197] 3.482× 10−19 8.744× 10−20 6.362× 10−21 2.764× 10−20

130Te 2.527518 [221] 9.745× 10−19 2.963× 10−19 2.604× 10−20 1.135× 10−19

136Xe 2.45783 [222] 9.103× 10−19 2.630× 10−19 2.201× 10−20 9.566× 10−20

150Nd 3.37138 [223] 2.658× 10−17 1.424× 10−17 2.194× 10−18 9.637× 10−18
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Table 6.3: The values of the angular correlation coefficient for different values of ξ31. We
assume the approximation scheme A and C for the relativistic wave function of the emitted
electrons. For each nuclei, we display the energy difference E(1+)−Ei in MeV, necessary
to calculate ξ51 via Eq. (5.47).

A C
Nucleus E(1+)− Ei ξ2ν51 ξ2ν31 K2ν K2ν

82Se -0.338 0.139 -0.2 -0.649 -0.675
0.0 -0.645 -0.671
0.2 -0.641 -0.667
0.4 -0.636 -0.662
0.6 -0.630 -0.657

96Zr 0.021 0.046 -0.2 -0.681 -0.713
0.0 -0.676 -0.708
0.2 -0.669 -0.703
0.4 -0.663 -0.697
0.6 -0.656 -0.690

100Mo -0.343 0.135 -0.2 -0.646 -0.685
0.0 -0.642 -0.682
0.2 -0.637 -0.677
0.4 -0.632 -0.673
0.6 -0.627 -0.668

116Cd -0.043 0.088 -0.2 -0.620 -0.674
0.0 -0.616 -0.671
0.2 -0.612 -0.667
0.4 -0.607 -0.663
0.6 -0.603 -0.659

150Nd -0.315 0.087 -0.2 -0.666 -0.738
0.0 -0.661 -0.735
0.2 -0.655 -0.731
0.4 -0.648 -0.725
0.6 -0.641 -0.719

phase-space factors HN , schemes A and B exhibit good agreement, whereas scheme C again
predicts smaller values. This disparity in the behavior of GN and HN across the same
approximation schemes underscores the sensitivity of angular correlations to the treatment
of the Coulomb interaction experienced by the emitted electrons.

In Table 6.2, we present updated phase-space factor values computed using approxi-
mation scheme C for eleven experimentally relevant nuclei. The Q-values for each nucleus
were sourced from experiments reporting the smallest uncertainties or, where unavailable,
from recommended value tables [197], as exemplified by the 2νββ-decay of 124Sn. These
selected Q-values were subsequently employed to determine the maximum sum of the
kinetic energies of the emitted electrons.

In Table 6.3, we present the angular correlation coefficient K2ν , as defined in Eq. (6.9),
for several nuclei of interest, considering ξ31 values of −0.2, 0, 0.2, 0.4, and 0.6. For each
nucleus, the ξ51 parameter was determined based on the SSD hypothesis, along with the
energy difference between the lowest 1+ state of the intermediate nucleus and the ground
state of the initial nucleus, as specified in Eq. (5.47). Columns 5 and 6 of Table 6.3 provide
the K2ν results obtained using electronic wave functions derived from approximation
schemes A and C, respectively. While scheme C consistently produces smaller K2ν values
compared to scheme A, it is clear that the dependence of K2ν on ξ31 is inherently nonlinear.

To illustrate the dependence on the ratio of nuclear matrix elements, Figure 6.2 shows
the angular correlation coefficient K2ν as a function of ξ31, covering the range from
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Figure 6.2: The angular correlation coefficient between the electrons emitted in 2νββ-decay
of 82Se, 96Zr, 100Mo, 116Cd, and 150Nd, as functions of ξ2ν31 . The filled blue circles indicate
the values of K2ν for the ratio of the nuclear matrix elements fixed by the SSD assumption,(
ξ2ν31

)
SSD

. In the case of 82Se and 116Cd, the right filled circle correspond to 82Se and the
left one to 116Cd. We used the approximation scheme C for the relativistic wave function
of the emitted electrons. The original figure can be found in [179].

ξ31 = −0.8 to ξ31 = 0.8 for all nuclei considered. The figure demonstrates that K2ν exhibits
a quadratic dependence on ξ31 across the entire representation interval for all nuclei. Under
the SSD assumption for the 2νββ process, the parameter ξ31 is uniquely determined and
fixed to the value ξSSD31 (see Eq. (5.47)). These specific values of the angular correlation
coefficient, evaluated at ξSSD31 , are highlighted with filled blue circles in Figure 6.2.

From the analytical expressions of the partial double distributions in Eq. (6.8), it is
evident that they exhibit distinctly different behaviors as functions of the electron energies,
Ee1 and Ee2 . This observation is illustrated in Figure 6.3, where we show the contour plots
of the partial double electron distribution for the 2νββ-decay of 100Mo. These distributions
are normalized to the corresponding partial decay rate. The normalization procedure
ensures that the normalized partial distributions are independent of the nuclear matrix
element ratios ξ31 and ξ51.

The angular correlation distribution κ, expressed as a function of the electron energies
and the ratios of the nuclear matrix elements, is provided in Eq.(6.11). Figure 6.4 illustrates
the contour plots of the angular distributions for the 2νββ-decay of 100Mo, considering
different values of ξ31. The left, middle, and right panels correspond to ξ31 = −1, 0, and
1, respectively. Notably, the middle panel represents the standard approximation angular
distribution.

We compared the enhanced formalism introduced in this work with the exact SSD
formalism for 2νββ-decay, as outlined in [75, 76]. Under the SSD assumption, the ratios ξ31
and ξ51 are fixed. Figure 6.5 presents the single-electron differential decay rates, normalized
to the full width, for 82Se, 100Mo, and 150Nd. The solid black line represents the normalized
single-electron spectra obtained using the exact SSD formalism [75, 76], while the blue
dashed line corresponds to the spectra described by Eq. (6.6). The legends in the plots
indicate the values of ξ31 fixed by the SSD assumption. The lower panels display the
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Figure 6.3: Normalized to unity partial double energy distributions
(1/ΓN )(dΓN/(dEe1dEe2)), as functions of the kinetic energies of the electrons, for
N = 0 (top left), N = 2 (bottom left), N = 22 (top right) and N = 4 (bottom right). All
distributions are in units of MeV−2 for electrons emitted in double β-decay of 100Mo. The
distributions are obtained using the screened exact finite-size Coulomb wave functions for
s1/2 electron state. The original figure can be found in [179].
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Figure 6.4: The angular correlation κ2ν as function of electron energies emitted in the 2νββ-
decay of 100Mo. The distributions are obtained using ξ2ν31 = −1, 0 and 1. The distributions
were calculated by using the screened exact finite-size Coulomb wave functions for s1/2
electron state. The original figure can be found in [179].
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Figure 6.5: Normalized single electron spectra for 82Se, 100Mo and 150Nd assuming the
single state dominance. We compare the exact SSD [75, 76] with the Taylor expansion
with ratio of the nuclear matrix elements fixed by SSD. The original figure can be found in
[179].

residuals between the exact and improved formalisms. Overall, the spectra demonstrate
good agreement, with only slight deviations appearing at low electron energies, a region
that is typically inaccessible in double-beta decay experiments due to high background
events.

To compare the angular correlation distributions obtained from the exact SSD formalism
and the improved formalism, we present in Figure 6.6 the distribution reproduced using
the exact SSD approach. Notably, this distribution shows no significant deviations from
the one corresponding to a positive ξ31 in Figure 6.4. Based on the comparisons of both the
single-electron spectra and angular distributions, we conclude that the improved formalism
introduced in this work, with ξ31 fixed by the SSD assumption, demonstrates excellent
agreement with the exact SSD formalism.

6.3.2 Towards to detection of effective axial-vector coupling geffA

As noted earlier in [78], the calculation of M2ν
GT−3 is generally more reliable than that

of M2ν
GT−1, as M

2ν
GT−3 is predominantly saturated by contributions from the lowest-energy

states of the intermediate nucleus. The half-life of 2νββ-decay can be expressed in terms
of M2ν

GT−3, ξ31, and ξ51 as follows:

[
T 2νββ
1/2

]−1
≃

(
geffA

)4 ∣∣M2ν
GT−3

∣∣2 1

|ξ31|2

×
[
G2ν

0 + ξ31G
2ν
2 +

1

3
(ξ31)

2G2ν
22 +

(
1

3
(ξ31)

2 + ξ51

)
G2ν

4

]
,

(6.18)

i.e., without explicit dependence on nuclear structure factor (M2ν
GT − (gV /g

eff
A )2M2ν

F ). The
nuclear structure parameter ξ31 can be deduced from the energy distribution of the emitted
electrons or from the angular correlation factor K2ν as solution

ξ31 =
−B ±

√
B2 − 4AC

2A
(6.19)
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Figure 6.6: The angular correlation κ2ν as function of energies of electrons emitted in
2νββ-decay of 100Mo. The distribution is obtained using the exact SSD formalism presented
in [75, 76] and the screened exact finite-size Coulomb wave functions for s1/2 electron state.
The original figure can be found in [179].

of a quadratic equation with coefficients A, B and C, which are functions of the measured
angular correlation factor:

A =
1

9

(
5H2ν

22 + 2H2ν
4 + 3K2νG2ν

22 + 3K2νG2ν
4

)

B = H2ν
2 +K2νG2ν

2

C = H2ν
0 + ξ2ν51H

2ν
4 +K2νG2ν

0 + ξ2ν51K
2νG2ν

4

(6.20)

The existence of two possible values for ξ31 corresponding to a measured angular
correlation coefficient is also evident from Figure 6.2. Resolving this ambiguity requires a
cross-check with the determination of ξ31 based on the energy distribution.

If M2ν
GT−3 is reliably calculated and ξ31 is accurately extracted from both angular and

energy measurements, the effective axial-vector coupling constant, geffA , can be determined
from the measured 2νββ-decay half-life using Eq. (6.18). Any discrepancy between the
values of ξ31 obtained from energy and angular distributions may point to the presence of
new physics effects manifesting in the 2νββ-decay data analysis.

6.4 The impact of electron phase shifts on ββ-decay kine-
matics

6.4.1 Electron wave function and phase shift

For electrons emitted in DBD, we consider the modified DHFS potential (see more
details in Section A.2.1),

V (r) = Vnuc(r) + Vel(r) + V Slater
ex (r), (6.21)
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whose components have been detailed in [168, 172], based on the RADIAL subroutine
package [207], that we employ in the actual calculations. The electron charge density
required to construct the electronic and exchange components of the potential is obtained
through a self-consistent DHFS atomic structure calculation of the final positive ion with
the electronic configuration of the initial neutral atom, known as sudden approximation.
This approximation is avoided in [224, 225, 226, 227], where more complex models that
account for overlap correction, and shake-up and shake-off effects have been considered. In
particular, while the last two effects might influence the potential V (r), the conclusions
presented below remain valid. Nevertheless, the potential used in our model respects the
correct asymptotic condition, i.e., lim

r→∞
rV (r) = αZ∞. The charge Z∞ = ZeZf can be

obtained in DBD from the electron charge Ze = −1 and the charge of the final positive
ion, i.e., Zf = 2.

In the potential from Eq. (6.21), the functions g̃κ and f̃κ must following asymptotic
behavior,

{
g̃κ(Ee, r)

f̃κ(Ee, r)

}
−−−→
r→∞

exp
(
−i∆̄κ

)

per





√
Ee+me
2Ee

sin
(
per − ℓκ π

2 + η ln(2per) + ∆̄κ

)
√

Ee−me
2Ee

cos
(
per − ℓκ π

2 + η ln(2per) + ∆̄κ

)



 , (6.22)

where ∆̄κ = ∆κ + δκ is the overall phase shift. Here, δκ is the inner phase shift induced
by the finite-range component of final system potential, i.e., Vf.r.(r) = V (r)− αZ∞/r, and
η = −αZ∞Ee/pe is the Sommerfeld parameter. The effect of the pure Coulomb potential,
i.e., Vc(r) = αZ∞/r, is accounted for by the logarithmic phase, η ln(2per), and the Coulomb
phase shift [207],

∆κ = ν − (γκ − ℓκ − 1)
π

2
+ arg Γ(γκ − iη)− SZ∞,κπ (6.23)

with

ν = arg [αZ∞(Ee +me)− i(κ+ γκ)pe] , (6.24)

γκ =

√
κ2 − (αZ∞)2, (6.25)

and

ℓκ =

{
|κ| − 1 if κ < 0

κ if κ > 0
, SZ∞,κ =

{
1 if κ < 0, Z∞ < 0

0 otherwise
. (6.26)

The phase shifts for electrons emitted in the DBD of 100Mo were calculated by solving
Eq. (A.54) within the potential generated by the final ion, 100Ru. The numerical inner
phase shift for electrons with κ = −1 is shown in the top-left panel of Figure 6.7 as a
function of kinetic energy.

Due to the attractive nature of the finite-range component of the DHFS potential
generated by the final positive ion 100Ru, the absolute phase shift must be positive. However,
the numerical inner phase shift appears negative because the RADIAL subroutine package
[207] confines its calculation to the interval (−π/2, π/2). The relationship between the
absolute and numerical inner phase shifts was established using the graphical method.
Unfortunately, since lim

r→0
rVf.r.(r) ̸= 0, the high-energy limit of δκ(Ee) cannot be determined

by integrating the finite-range potential, as proposed in [228].

Three points from distinct regions of δκ(Ee) are highlighted in the top-left panel of
Figure 6.7. For each fixed energy, the radial dependence of the function rg−1(Ee, r) is
shown in the remaining panels of Figure 6.7, comparing results obtained using the modified
DHFS potential (solid line) and the pure Coulomb potential (dashed line).
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Figure 6.7: (Top-left panel): The numerical inner phase shifts for electrons emitted in DBD
of 100Mo with energy Ee and κ = −1. Inner phase shifts labeled 1, 2, and 3 are highlighted
for three distinct electron energies, chosen from different branches of the numerical inner
phase shift, which are separated by discontinuities. For each energy, the radial dependence
of the real functions rg−1(Ee, r) is shown for both (A) the modified DHFS potential and
(B) the pure Coulomb potential. The absolute inner phase shifts for these chosen energies
are represented by arrows connecting the nodes of the functions where they reach their
asymptotic behavior. The figure is taken from [229].

The radial ranges are carefully selected to ensure that all functions exhibit their
asymptotic behavior. By examining the radial differences between the nodes of these
functions, indicated by arrows, the absolute inner phase shift is determined. Specifically,
for the regions corresponding to the points labeled ”1”, ”2”, and ”3”, it is necessary to add
π, 2π, and 3π, respectively, to the numerical phase shift to compute the absolute phase
shift. The same behavior is observed for electrons with κ = 1.

The energy dependence of the total phase shift, which incorporates the Coulomb phase
shift, is shown in the left panel of Figure 6.8 for electrons with κ = −1 (solid line) and
κ = 1 (dashed line). This representation highlights the behavior of the phase shifts across
the electron’s kinetic energy spectrum. In the right panel of Figure 6.8, we plot the function
cos

(
∆̄−1 − ∆̄+1

)
, which plays a crucial role in the construction of the Ess(Ee) function

as defined in Eq. (5.5). An intriguing feature observed in this plot is a sign change in the
cosine function occurring near a kinetic energy of approximately 2 keV for the emitted
electron.

6.4.2 Results and discussions

In Figure 6.9, we present the quantities Fss and Ess, comparing cases where phase
shifts are either included or omitted in their definitions. Since Fss is expressed in terms
of the modulus squared of the scattering wave functions, it remains identical in both
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Figure 6.8: (Left panel): The total phase shifts for electrons emitted in DBD of 100Mo
with energy Ee and κ = −1 (solid) or κ = +1 (dashed). (Right panel): The real part of
exp
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−i

(
∆̄−1 − ∆̄+1

)]
, required in the construction of Ess(Ee) function from Eq. (5.5).

The figure is taken from [229].

scenarios. In contrast, the quantity Ess exhibits a pronounced difference between the two
cases, particularly for electron energies below 100 keV. Notably, it becomes significantly
smaller when phase shifts are included, even turning negative around 2 keV.

The angular correlation functions α are shown in Figure 6.10. In both DBD modes, α
becomes positive at electron energies below a few tens of keV when phase shifts are included
in the calculations. A similar observation was reported in [195], although the implications
for electron emission patterns were not addressed. In this low-energy range, events where
the electrons are emitted with an opening angle smaller than π/2 occur more frequently
than those with angles exceeding π/2. The most probable emission angle is 0, indicating a
preference for collinear electron emission. In the two-neutrino mode, such collinear emission
is feasible because the antineutrinos can be emitted in the opposite direction, conserving
momentum. However, in the neutrinoless mode, momentum conservation with collinear
electron emission is only possible if the nucleus recoils. It is important to note that the recoil
energy is not included in Eqs. (6.3) and (6.13), so care must be taken when interpreting
this intuitive picture.

An intriguing feature observed in Figure 6.10 emerges at electron energies above a few
tens of keV. In the two-neutrino mode, the angular correlation function α calculated with
phase shifts deviates significantly from the result obtained without phase shifts across
the entire energy range. Conversely, in the neutrinoless mode, the two curves remain
nearly identical, except near the energy boundaries. Furthermore, the inclusion of phase
shifts amplifies the relative difference between α2ν and α0ν , indicating that the angular
correlation function could serve as a valuable tool for distinguishing between neutrinoless
and two-neutrino double beta decay—provided sufficiently high statistical precision can be
achieved in experimental measurements..

In Figure 6.11, we present the κ2ν function, both with and without the inclusion of
phase shifts. When phase shifts are taken into account, the negative contours shift toward
higher electron energies and exhibit noticeable distortions in shape compared to the case
where phase shifts are omitted. More intriguingly, in the case with phase shifts, positive
contours appear, producing a physical picture similar to that discussed for the α2ν function.
Given that κ2ν is a continuous function, the presence of both positive and negative contours
implies the existence of two contour lines where κ2ν = 0. For 100Mo, these zero-contour
lines correspond to scenarios in which one electron has an energy close to 2 keV. In this
energy range, the electrons are emitted isotropically, assuming nuclear recoil is neglected.

Finally, we examine the angular correlation coefficients defined in Eq. (6.2). Table 6.4
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Figure 6.9: The functions Fss(Ee) and Ess(Ee) for the DBD of 100Mo obtained from: (A)
the modified DHFS potential and intentionally omitting the phase shifts in Eq. (5.5), i.e.,
Eq. (6.17); (B) the modified DHFS potential and including the phase shifts in Eq. (5.5).
The figure is taken from [229].
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Figure 6.10: The functions α2ν(Ee) and α
0ν(Ee) for the DBD of 100Mo obtained from: (A)

the modified DHFS potential and intentionally omitting the phase shifts in Eq. (5.5), i.e.,
Eq. (6.17); (B) the modified DHFS potential and including the phase shifts in Eq. (5.5).
The values ξ31 = 0.45 and ξ51 = 0.165 are used, in accordance with [55]. The figure is taken
from [229].
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Figure 6.11: The angular correlation distribution κ2ν(Ee1 , Ee2) for the DBD of 100Mo
obtained by: (left) intentionally omitting the phase shifts in Eq. (5.5), i.e., Eq. (6.17);
(right) including the phase shifts in Eq. (5.5). Contour lines are drawn at selected levels to
guide the eye. The same values for ξ31 and ξ51 as those in Figure 6.10 are used. The figure
is taken from [229].

Table 6.4: The values of K2ν for the DBD of 100Mo decay for multiple sets of ξ31 and ξ51
parameters, corresponding to the HSD and SSD hypotheses, along with experimental mea-
surements. The values from this work are labeled as ”TW” and for the other, the reference
next to the values indicates the original papers. For cases where the angular correlation
coefficient value is not explicitly provided, we have derived it based on the reported PSFs.
The ”No screening” case refers to the standard Fermi function approximation [63], while
”Realistic screening” involves models where atomic screening is derived from either the
Thomas-Fermi equation or the DHFS method. Values in the second and third columns are
computed either by neglecting phase shifts or by considering them approximately, while
the final column includes results that fully account for phase shifts.

K2ν without phase shifts K2ν with phase shifts
No screening Realistic screening Realistic screening

HSD -0.650 [88] -0.684 [179] -0.640 (TW)
(ξ31 = 0; ξ51 = 0) -0.646 [89] -0.684 [192]

-0.646 [179] -0.685 (TW)
-0.646 [75]

SSD -0.627 [89] -0.668 [92] -0.627 (TW)
(ξ31 = 0.368; ξ51 = 0.135) -0.627 [75] -0.669 [93]

-0.633 [179] -0.668 [192]
-0.674 [179]
-0.675 (TW)

EXP -0.630 [179] -0.671 [179] -0.624 (TW)
(ξ31 = 0.450; ξ51 = 0.165 [55]) -0.672 (TW)
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summarizes the K2ν values calculated with and without phase shifts for various parameter
sets of ξ31 and ξ51, corresponding to the HSD hypothesis, SSD hypothesis, and exper-
imental measurements. For studies where explicit angular correlation coefficient values
were unavailable, we derived them using the reported PSFs. Our results without phase
shifts are consistent with prior calculations that included atomic screening, whereas those
neglecting screening predict larger K2ν values. Notably, the HSD hypothesis yields the
smallest K2ν values, while the experimentally measured parameters [55] produce the largest
values. Incorporating phase shifts into the decay rate calculation (last column of Table 6.4)
results in K2ν values approximately 7% higher than those obtained without phase shifts.
This observation suggests that similar effects may arise in other studies if phase shifts are
included. For the 0νββ-decay of 100Mo, we calculate K0ν = −0.896 when phase shifts are
excluded and measured ξ31 and ξ51 values are used. Incorporating phase shifts increases
this value to K0ν = −0.882, reflecting a change of about 2%. This difference is expected,
as phase shifts affect a smaller portion of the integration domain in Eq. (6.13) compared
to Eq. (6.3). While this analysis focuses on the light neutrino exchange mechanism, we
emphasize that the impact of phase shifts may vary for alternative mechanisms driving
0νββ-decay.

6.4.3 Conclusions

In conclusion, we have investigated the impact of phase shifts on the kinematics of ββ-
decay in 100Mo, considering both 0ν and 2ν modes. Our analysis of the angular correlation
distributions, α and κ, revealed a striking feature: when electron phase shifts are included,
electrons are most likely emitted in the same direction if one has an energy below 2 keV.
While a similar observation was previously reported in [195], our study provides a more
detailed examination of the implications for electron emission patterns.

Through a systematic review of the previously reported K2ν values, we demonstrated
that incorporating phase shifts influences the results, irrespective of the approximations
employed in factorizing the 2νββ-decay rate or accounting for atomic screening effects.
Specifically, we found that properly accounting for phase shifts increases the angular
correlation coefficient, K, by 7% in the 2ν mode and 2% in the 0ν mode.

These findings could have significant implications for proposals aimed at constraining
new physics parameters based on angular correlation coefficients in 2νββ-decay [87, 88, 94,
89, 92, 93, 90, 105, 104]. Furthermore, phase shifts might influence methods to differentiate
between mechanisms driving 0νββ-decay [72, 79, 80]. However, as this study is limited to
the light neutrino exchange mechanism, a more detailed exploration of alternative scenarios
will be addressed in future work.
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7 Two-neutrino double electron capture

7.1 Introduction

Besides the 2νββ-decay, double beta decay of proton-rich isotopes is also possible and
remains in the early stages of experimental investigation [36]. There are three distinct
DBD modes associated with proton-rich nuclei [33, 34]: the double-positron emission
mode (0ν/2νβ+β+), the single electron capture accompanied by positron emission mode
(0ν/2νECβ+), and the double electron capture mode (0ν/2νECEC). Compared to the well-
studied 2νββ decay mode, experimental studies of these processes have faced challenges due
to their longer half-lives and lower Q-values. However, their distinct signatures, particularly
when employing coincidence trigger logic, could facilitate their detection [36]. Notably,
there have been positive indications of the 2νECEC mode in 130Ba and 132Ba through
geochemical measurements [41, 42, 43], as well as in 78Kr [44, 45]. More recently, the
XENON1T collaboration directly observed the 2νECEC mode in 124Xe [46, 47].

On the theoretical front, initial estimates of 2νECEC decay rates were provided by
Primakoff and Rosen [230, 231], followed by refinements from Vergados [232] and Kim
and Kubodera [233]. These early calculations relied on a non-relativistic treatment of
captured electrons. A significant advancement was made by Doi and Kotani, who developed
a detailed theoretical formulation that incorporated relativistic effects [33]. However, these
calculations assumed a point-like nucleus, enabling the analytical treatment of electron
bound states. Around the same time, Boehm and Vogel published results for selected
2νECEC cases, albeit without providing detailed computational procedures [234].

More recently, theoretical models have been improved by including atomic screening
effects through the Thomas-Fermi approximation for the electron cloud [235, 194, 195].
Diffuse nuclear surface effects have also been incorporated by adopting realistic charge
distributions within the nucleus [194, 195]. These advancements provide more precise
predictions for the decay rates of proton-rich isotopes undergoing double beta decay.

Although 2νECEC inherently bridges nuclear and atomic physics, several aspects of
atomic structure calculations have been either overlooked or treated simplistically in earlier
studies. In the first part of this Chapter, we adopt the DHFS self-consistent framework to
provide a more accurate treatment of atomic screening effects and a rigorous estimation of
the binding energies for the captured electrons. The DHFS atomic potential incorporates
both finite nuclear size and diffuse nuclear surface corrections. Additionally, we extend our
analysis to include all available s-wave electrons for capture, going beyond the K and L1

orbitals considered in previous investigations.

Our findings reveal that, for light atoms undergoing the 2νECEC process, the decay rate
reduction caused by improved atomic screening is compensated by an increase due to the
inclusion of higher-orbital captures beyond K and L1. However, this compensatory effect
is not observed in medium and heavy atoms, where the inclusion of higher orbitals leads to
a significant enhancement in the decay rate—up to 10% for the heaviest nuclei. For all
2νECEC transitions analyzed, we provide the capture fractions corresponding to the most
dominant channels. We also focus on low Q-value 2νECEC transitions in 152Gd, 164Er, and
242Cm, where the simultaneous capture of both K shell electrons is energetically forbidden.
Finally, using the updated phase-space factors, we reexamine the effective nuclear matrix
elements and evaluate their spread relative to those associated with 2νββ.

In the second part of this Chapter, we present a comprehensive analysis of the 2νECEC
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process in 124Xe. The formalism is refined using the Taylor expansion method [78, 179],
incorporating terms up to the fourth power of the lepton energies in the derivation of the
decay rate. This approach not only enhances the theoretical rigor but also introduces new
NME ratios, ξ2νECEC

31 and ξ2νECEC
51 . Measuring these ratios could offer valuable insights

into the interplay between low- and higher-lying intermediate nuclear states involved in
NME calculations.

In addition to this methodological improvement, we revisit both the atomic and nuclear
components of the calculation. For the atomic part, we use again the DHFS self-consistent
framework to determine the electron wave functions, ensuring an accurate treatment
of atomic screening and electron binding energies. The PSF calculations are refined by
accounting for Pauli blocking effects on the decay of innermost nucleon states and by
including all s-wave electrons available for capture, extending beyond the K and L1 orbitals
considered in previous studies. Furthermore, we calculate the atomic de-excitation energies
within the DHFS framework. These values, along with the capture fractions, can serve as
inputs for background modeling in liquid xenon experiments.

For the nuclear part, we employ the interacting shell model (ISM) [236, 237, 238, 239,
240, 241] and the proton-neutron quasiparticle random-phase approximation (pn-QRPA)
with isospin restoration[199]. Similar to 2νββ NMEs, the 2νECEC NMEs can only be
reliably calculated if the sum over excited 1+ states of the intermediate nucleus is included
(see Eqs. (7.17)), which is inherently supported by the ISM and pn-QRPA approaches.
Methods that bypass this full summation by adopting the closure approximation or the
single-state dominance (SSD) approximation often fail to produce accurate results. Within
the ISM, we replace the direct summation over intermediate states with a strength function
approach, which converges more rapidly to the exact result. A complete description of
this approach can be found in Section 4 of Ref.[241]. In this work, we extend the strength
function approach to account for higher-order terms in the denominators required by the
Taylor expansion formalism (see Eqs. (7.17)). The updated ISM NMEs, combined with
the improved PSFs, enable predictions of capture fractions for 2νECEC channels that
remain unobserved. For consistency, we analyze two widely used effective Hamiltonians,
which yield compatible nuclear structure results, reinforcing the reliability of our computed
NMEs and predicted capture fractions.

Additionally, we calculate the NMEs using the pn-QRPA method with isospin restora-
tion, where the particle-particle strength parameter is fixed to reproduce the experimental
half-life. Interestingly, we find that our pn-QRPA NME values are significantly smaller
than those reported in earlier pn-QRPA studies [242, 243].

7.2 A systematic study of two-neutrino double electron cap-
ture

7.2.1 The usual formalism for the 2νECEC

We investigate the two neutrino double electron capture (2νECEC) process,

2e− + (A,Z + 2)→ (A,Z) + 2νe, (7.1)

in which the initial nucleus (A,Z + 2) captures two atomic electrons, changing its atomic
number by two units and emitting two neutrinos. If the electrons are captured from the
x and y atomic orbitals, we denote the process as 2νxy. For simplicity, we adopt the
X-ray notation for the orbitals, where x and y = K, L1, M1, N1, etc. Following the 2νxy
process, the final atomic system remains electrically neutral but exists in an excited atomic
state, characterized by vacancies in the orbitals x and y from which the electrons were
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initially captured. As a result, the 2νECEC process is accompanied by atomic de-excitation,
involving a cascade of X-ray emissions and Auger electrons originating from the outer
shells.

Figure 7.1 schematically illustrates two possible channels for the 2νECEC process in
124Xe. In the top panel, both electrons are captured from the K orbital (2νKK), whereas
in the bottom panel, both electrons are captured from the L1 orbital (2νL1L1). It is
important to emphasize that the atomic de-excitation yields different energy depositions in
the detector, depending on whether the capture occurs from the K or L1 shells. Specifically,
atomic relaxation following L1L1 capture emits less energy compared to the KK capture,
leading to distinct experimental signatures for each capture mode.

Figure 7.1: A simplified schematic representation of the 2νECEC process in 124Xe. Top
panels: both electrons are captured from K shell. Bottom panels: both electrons are
captured from L shell. Left panels: two bound electrons from K (top) or L (bottom)
shell are captured by the initial nucleus 124Xe. Right panels: the atomic relaxation of the
final neutral atomic system 124Te, with two holes in K (top) or L (bottom) shell. The
de-excitation is done via X-ray emissions and Auger electrons from outer shells. The figure
is reproduced from [244] by adding the schematic representation of the 2νL1L1 process in
124Xe. The figure is taken from [245].

We adopt the following energy balance,

Mgs(A,Z + 2)−Mgs(A,Z) = ωx + ωy +Mxy(A,Z)−Mgs(A,Z), (7.2)

which implies that the energy difference between the atomic masses of the initial and final
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systems in their ground states, typically expressed as Q =Mgs(A,Z + 2) −Mgs(A,Z),
is distributed among the neutrinos, with energies ωx and ωy, and the atomic relaxation
energy of the final atom. The massMxy(A,Z) corresponds to an excited atomic state of
the final neutral system, featuring vacancies in the shells x and y from which the electrons
were captured in the initial atom. It can be expressed as,

Mxy(A,Z) = Ef + Zme −Bxy(Z) (7.3)

where Ef is the nuclear mass (energy) of the final nucleus, Zme is the rest energy of the
final atomic cloud (me is the mass of the electron), and Bxy(Z) is the total electron binding
energy of the final system with a configuration with two holes. We adopt the units in which
ℏ = c = 1. One can see that the atomic relaxation energy can be written as a difference in
the total electron binding energies of the final atom with gs and xy configurations,

Rxy = Bgs(Z)−Bxy(Z). (7.4)

The total energy of the emitted neutrinos can be written as,

ωx + ωy = Q−Rxy (7.5)

and making the usual approximation that Bxy(Z)−Bgs(Z + 2) = − |tx| − |ty|, we finally
obtain [33, 235, 195]

ωx + ωy = Ei − Ef + 2me − |tx| − |ty|
= Ei − Ef + ex + ey, (7.6)

where tx and ex = me − |tx| are respectively the binding and the total energy for the
electrons in shell x.

Based on the formalism outlined in [33, 235], the inverse half-life for the 2νECEC
process, transitioning from the 0+ ground state of the initial nucleus to the 0+ ground
state of the final nucleus, can be expressed as:

[
T 2νECEC
1/2

]−1
= g4A

∣∣M2νECEC
∣∣2G2νECEC

K→edge, (7.7)

where gA is the axial coupling constant, G2νECEC
K→edge is the phase-space factor (PSF) discussed

later, and M2νECEC, the nuclear matrix element (NME), is given by

M2νECEC = −me

Ã

[
M2νECEC

GT −
(
gV
gA

)2

M2νECEC
F

]
. (7.8)

Here, Ã = 1.12A1/2 in MeV and gV is the vector coupling constant. This choice of Ã
reproduces the average excitation energies in the intermediate nucleus for a wide range
of isotopes [64]. Nevertheless, there are reasons supporting the use of a single value for
both, as discussed in [64]. The double Gamow-Teller (GT) and Fermi (F) transition

matrix elements, in closure approximation, are M2νECEC
GT = ⟨0+f

∣∣∣
∑

j,k τ
−
j τ

−
k σjσk

∣∣∣ 0+i ⟩
and M2νECEC

F = ⟨0+f
∣∣∣
∑

j,k τ
−
j τ

−
k

∣∣∣ 0+i ⟩ [235]. Here, τ−j,k is the isospin-lowering operator,

transforming a proton into a neutron and σj,k is the nucleon spin operator.
It is important to emphasize that the factorization of the half-life in Equation 7.7 is

based on the closure approximation [33]. As a result, the PSFs provided here must be used
in conjunction with NMEs computed under the same approximation. Nevertheless, several
prior studies have calculated NMEs beyond the closure approximation while disregarding
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this constraint [242, 243, 246]. Despite this inconsistency, the predicted half-lives in those
studies are remarkably close to the experimental values. In the present work, we adopt
the closure approximation for direct comparisons. It is worth noting that an alternative
formulation for the 2νECEC half-life, which does not rely on the closure approximation,
will be presented in the second part of this Chapter.

We assume that electron captures can take place from any occupied s1/2 orbitals of
the initial atom, including K,L1,M1, . . .. Captures from other orbitals are significantly
suppressed for two primary reasons. First, the higher orbital angular momentum associated
with these orbitals reduces the capture probability. Second, the NMEs corresponding to
captures from non-s1/2 orbitals are comparatively smaller [33]. Under these assumptions,
we found that the PSF expression is

G2νECEC
K→edge =

me(GF |Vud|m2
e)

4

16π3
2Ã

3m2
e

1

m3
e

edge∑

x,y=K
EI−EF+ex+ey>0

B2xB2y

×
∫ EI−EF+ex+ey

0

[
⟨Kn,xy⟩2 + ⟨Ln,xy⟩2 + ⟨Kn,xy⟩⟨Ln,xy⟩

]
ω2
xω

2
ydωx

=

edge∑

x,y=K
EI−EF+ex+ey>0

G2νxy.

(7.9)

whereGF is the Fermi coupling constant and Vud the first element of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The summations extend over all occupied orbitals of the initial
atomic system that are potential sources for electron capture. The term ”edge” designates
the outermost orbital eligible for capture. The probability of locating an electron from
shell x at the nuclear surface can be expressed as [33, 235],

B2x =
1

4πm3
e

[
g2x(R) + f2x (R)

]
, (7.10)

in terms of the large- and small-component radial wave functions describing the bound
state, gx(r) and fx(r), respectively, evaluated on the nuclear surface R = 1.2A1/3. These
are described in Section A.2. The factors ⟨Kn,xy⟩ and ⟨Ln,xy⟩ can be written as,

⟨Kn,xy⟩ =
1

−ex + ωx + ⟨En⟩ − Ei
+

1

−ey + ωy + ⟨En⟩ − Ei

⟨Ln,xy⟩ =
1

−ex + ωy + ⟨En⟩ − Ei
+

1

−ey + ωx + ⟨En⟩ − Ei

(7.11)

where ⟨En⟩ is a suitably chosen excitation energy for the intermediate nucleus, (A,Z + 1).
In the actual calculations, the energy difference ⟨En⟩ − Ei = Ã−Q/2 +me.

For comparison with the results of the previous investigations, we define also the PSF
for captures from K and L1 orbitals only,

G2νECEC
K→L1

= G2νKK + 2G2νKL1 +G2νL1L1 (7.12)

which is a particularization of Equation 7.9. The factor of 2 stems from the equal contribu-
tions of 2νxy and 2νyx captures in the total decay rate for any x ̸= y orbitals.
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7.2.2 Electron bound states description

Accurate computation of the PSFs for any 2νECEC process necessitates precise atomic
structure calculations for the atomic systems involved. To achieve this, we used the
DHFS self-consistent framework. Details regarding the nuclear, electronic, and exchange
components of the DHFS potential, along with the convergence of the self-consistent
method, were previously outlined in [168, 247]. Our implementation is based on the
RADIAL subroutine package [207], which we also employed in our calculations (see
Subsection A.2.1 for more details). In earlier sections, the electron shells denoted as x or y
are uniquely specified by the state nκ, where n is the principal quantum number and κ is
the relativistic quantum number.

Table 7.1 compares experimental binding energies with theoretical predictions from
various models for selected isotopes (Kr, Xe, and Ba) undergoing the 2νECEC process.
The model presented in [33], which assumes a uniform nuclear charge distribution and
neglects atomic screening, fails to reproduce the experimental data accurately. Approaches
that incorporate atomic screening and diffuse nuclear surface effects, such as those in
[194, 195], offer improved predictions by employing a Thomas-Fermi screening function and
realistic proton density profiles within the nucleus. However, these models still overestimate
binding energies relative to experimental values. In contrast, the DHFS self-consistent
method employed in this work demonstrates superior accuracy, successfully reproducing
experimental binding energies within a 1% margin. It should be noted that the binding
energies for all orbitals of 124Xe can be found in Section A.2.2.

Table 7.1: The binding energies, tx, in units of eV, for all occupied s1/2 orbitals of the
neutral atoms, Kr, Xe and Ba, undergoing 2νECEC process. The experimental data are
sourced from [248], our values are obtained with the DHFS self-consistent method, and
values from prior studies are taken from [33] and [194, 195].

Shell(nℓj) tx[33] tx[194, 195] tx [This work] tx [Experiment] [248]
(eV) (eV) (eV) (eV)

Kr
K(1s1/2) −17936 −17700 −14280 −14327± 2
L1(2s1/2) −4507 −3100 −1902 −1927± 2
M1(3s1/2) – – −278 −292± 2
N1(4s1/2) – – −27.46 −27.51± 0.1

Xe
K(1s1/2) −41340 −39400 −34556 −34565± 2
L1(2s1/2) −10424 −7800 −5417 −5452± 2
M1(3s1/2) – – −1122 −1149± 2
N1(4s1/2) – – −208 −213± 2
O1(5s1/2) – – −23.63 −23.40± 0.1

Ba
K(1s1/2) −44610 −42400 −37450 −37442± 2
L1(2s1/2) −11293 −8500 −5961 −5991± 2
M1(3s1/2) – – −1274 −1293± 2
N1(4s1/2) – – −256 −254± 2
O1(5s1/2) – – −38 −31± 2
P1(6s1/2) – – −4.64 −5.21± 0.1

7.2.3 Results and discussions

The PSFs for captures from K and L1 shells only, G2νECEC
K→L1

, calculated for the 2νECEC
cases previously studied, are presented in Table 7.2. In this analysis, we adopted the same Q-
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values as used in [235]. Our results are consistently lower, by approximately 5%, compared
to those reported in [235], with the exceptions of 92Mo and 180W, where deviations are
more pronounced. Compared to the values reported in [194, 195], our PSFs generally fall
within 70%, showing a noticeable dependence on the mass number A. For lighter nuclei, our
values are systematically lower than those in [194, 195], but as the mass number increases,
our results tend to converge and even surpass the previously reported values. This trend
suggests differences in the underlying models, particularly in the treatment of screening
and nuclear size effects. In contrast, the G2νECEC

K→L1
values obtained in this study show a

consistent reduction of 10%-20% relative to those presented in [33]. This discrepancy can
likely be attributed to the absence of screening effects in [33]. We opted not to include
comparisons with the values reported in [234], as their definition of the PSF differs due to
an alternative separation of the decay rate.

In Table 7.3, we present the total PSFs, G2νECEC
K→edge, along with the capture fractions

for selected shell pairs, for all nuclei where 2νECEC is energetically allowed and single-
electron capture (EC) is energetically forbidden. A comparison with one of the most precise
calculations available [235] (column four of Table 7.2) reveals the following trends. For
light atoms, the more rigorous treatment of atomic screening employed in our calculations
effectively compensates for the inclusion of all κ = −1 shells, resulting in PSF values
comparable to those reported in [235]. An exception is 40Ca, where our calculated PSF
value, incorporating all κ = −1 shells, is approximately 7.5% higher. This discrepancy
arises from the interplay between binding energies and the Q-value in the PSF integral (see
Equation 7.9). For medium and heavy atoms, our results show a consistent increase in the
decay rate relative to [235]. This increase is almost linear with Z, reaching approximately
10% for the heaviest elements considered.

The low Q-value transitions of 152Gd, 164Er, and 242Cm exhibit unique behavior. In these
cases, both the KK and KL1 capture channels are energetically forbidden. Consequently,
the dominant contributions to the total PSF originate from the L1L1, M1M1, and L1M1

capture channels. Table 7.4 provides the values of the PSFs and capture fractions for
these low Q-value transitions. These results emphasize the role of higher-order electron
shells in the decay process and highlight the importance of including all energetically
allowed capture channels when evaluating decay rates for low Q-value transitions. Such
contributions, which are often neglected in simpler models, become significant in the case
of forbidden captures from lower-energy shells.

The inverse of the PSF, which is proportional to the half-life for each transition (as
given by Equation 7.7), is plotted in Figure 7.2 for all nuclei listed in Table 7.3 as a function
of the atomic number. The results indicate a clear trend: the half-life decreases as both the
Q-value and the atomic number increase. This behavior is driven primarily by the larger
phase-space factors associated with higher atomic numbers, which result in a higher decay
rate and consequently shorter half-lives.

Finally, we investigate the effective matrix elements for the 2νECEC process of 78Kr,
124Xe, 130Ba and 132Ba. These can be obtained as,

∣∣M2νECEC
eff

∣∣ = 1√
T 2νECEC
1/2 G2νECEC

K→edge

=
me

Ã

∣∣g2AM2νECEC
GT − g2VM2νECEC

F

∣∣ .
(7.13)

using the experimental half-lives and the PSFs from Table 7.3. The effective NME values are
summarized in Table 7.5. It is important to highlight that, for 132Ba, an experimental half-
life measurement has been reported in [42]. However, the authors emphasized that this value
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Table 7.2: Comparison of the G2νECEC
K→L1

(in units of 10−24 yr−1) values from [33], [235], and
[194, 195], with values obtained through the method explained in this study. The Q-values
cited in [235] were utilized. In cases where these values were not available, the Q was
calculated using atomic masses provided in [197].

Nucleus Q (MeV) G2νECEC
K→L1

[33] G2νECEC
K→L1

[235] G2νECEC
K→L1

[194, 195] G2νECEC
K→L1

[This work]
(MeV)

(
10−24yr−1

) (
10−24yr−1

) (
10−24yr−1

) (
10−24yr−1

)
36Ar 0.43259 – – 2.900× 10−4 4.168× 10−4

40Ca 0.19351 – 1.250× 10−5 1.020× 10−5 1.314× 10−5

50Cr 1.1688 – 4.220× 10−1 2.380× 10−1 4.161× 10−1

54Fe 0.6798 – 4.690× 10−2 3.021× 10−2 4.553× 10−2

58Ni 1.9263 17.00 15.30 9.900 14.79
64Zn 1.0948 – 1.410 1.030 1.364
74Se 1.209169 – 5.656 3.410 5.454
78Kr 2.8463 774.0 660.0 410.0 637.0
84Sr 1.79 – 93.60 64.62 90.58
92Mo 1.651 – 208.0 82.32 128.2
96Ru 2.71451 2.740× 103 2.400× 103 1.450× 103 2.328× 103
102Pd 1.1727 – 46.00 42.09 44.64
106Cd 2.77539 6.220× 103 5.410× 103 4.299× 103 5.269× 103
108Cd 0.27204 – 2.070× 10−2 6.820× 10−2 1.975× 10−2

112Sn 1.91982 – 1.150× 103 869.7 1.120× 103
120Te 1.71481 – 888.0 840.3 866.3
124Xe 2.8654 2.020× 104 1.720× 104 1.510× 104 1.685× 104
126Xe 0.92 – 46.10 60.59 44.98
130Ba 2.619 1.630× 104 1.500× 104 1.477× 104 1.464× 104
132Ba 0.844 – 39.10 61.98 38.12
136Ce 2.37853 1.580× 104 1.250× 104 1.222× 104 1.224× 104
138Ce 0.698 – 18.40 34.47 17.92
144Sm 1.78259 – 5.150× 103 6.436× 103 5.055× 103
152Gd 0.0557 – – 1.120× 10−2 5.989× 10−7

156Dy 2.012 – 1.760× 104 2.208× 104 1.734× 104
158Dy 0.284 – 1.830× 10−1 3.191 1.751× 10−1

162Er 1.844 1.810× 104 1.500× 104 2.008× 104 1.470× 104
164Er 0.02507 – – 8.300× 10−3 7.392× 10−11

168Yb 1.40927 – 4.710× 103 7.872× 103 4.647× 103
174Hf 1.0988 – 1.580× 103 3.432× 103 1.563× 103
180W 0.1432 – 1.560× 10−3 1.478 1.321× 10−3

184Os 1.453 – 1.290× 104 2.422× 104 1.275× 104
190Pt 1.384 – 1.290× 104 2.815× 104 1.285× 104
196Hg 0.82 – 821.0 3.587× 103 815.8
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Table 7.3: Values of the G2νECEC
K→edge (in units of 10−24 yr−1) and of the capture fractions for

various shell pairs. The Q-values are computed using atomic masses provided in [197].

Nucleus Q G2νECEC
K→edge KK KL1 KM1 KN1 L1L1

(MeV)
(
10−24yr−1

)
(%) (%) (%) (%) (%)

36Ar 0.4326 4.244× 10−4 83.40 14.23 1.62 – 0.61
40Ca 0.1935 1.347× 10−5 81.38 15.44 2.07 0.16 0.73
50Cr 1.1705 4.301× 10−1 81.35 15.39 2.18 0.12 0.73
54Fe 0.68076 4.717× 10−2 80.41 16.01 2.35 0.16 0.80
58Ni 1.9264 15.22 80.45 15.97 2.37 0.15 0.79
64Zn 1.09502 1.407 79.73 16.50 2.48 0.14 0.85
74Se 1.20924 5.648 78.64 17.03 2.74 0.30 0.92
78Kr 2.84767 661.9 78.64 16.92 2.81 0.35 0.91
84Sr 1.78977 94.16 77.83 17.33 2.98 0.44 0.96
92Mo 1.65044 133.8 76.69 17.89 3.25 0.56 1.04
96Ru 2.7145 2.437× 103 76.64 17.85 3.31 0.60 1.04
102Pd 1.20347 53.70 75.16 18.77 3.59 0.68 1.17
106Cd 2.77539 5.540× 103 75.71 18.31 3.55 0.69 1.11
108Cd 0.27179 2.122× 10−2 65.39 24.87 5.12 1.01 2.26
112Sn 1.91981 1.181× 103 74.78 18.82 3.72 0.76 1.18
120Te 1.73558 975.8 74.06 19.20 3.87 0.83 1.24
124Xe 2.85674 1.756× 104 74.22 19.00 3.88 0.86 1.22
126Xe 0.91778 47.36 71.66 20.62 4.28 0.95 1.48
130Ba 2.6237 1.570× 104 73.57 19.31 4.00 0.92 1.27
132Ba 0.84407 40.87 70.45 21.26 4.50 1.03 1.59
136Ce 2.37853 1.303× 104 72.88 19.67 4.14 0.97 1.33
138Ce 0.69594 19.03 68.37 22.43 4.86 1.14 1.82
144Sm 1.7824 5.417× 103 71.11 20.67 4.49 1.07 1.50
150Gd 1.28728 1.301× 103 69.29 21.72 4.81 1.16 1.69
152Gd 0.05567 1.547× 10−6 – – 7.40× 10−4 1.04× 10−3 38.56
154Dy 3.31234 2.490× 105 71.29 20.48 4.51 1.09 1.47
156Dy 2.00595 1.837× 104 70.19 21.14 4.69 1.14 1.59
158Dy 0.28282 2.028× 10−1 42.31 35.46 9.04 2.26 6.01
162Er 1.84696 1.601× 104 69.29 21.64 4.87 1.19 1.68
164Er 0.02508 8.606× 10−9 – – – – 0.87
168Yb 1.40936 5.052× 103 67.42 22.71 5.20 1.27 1.90
174Hf 1.09994 1.724× 103 64.94 24.06 5.62 1.39 2.20
180W 0.14323 2.522× 10−3 5.94× 10−5 17.72 8.08 2.34 34.73
184Os 1.45289 1.399× 104 65.02 23.90 5.64 1.43 2.17
190Pt 1.40132 1.519× 104 63.83 24.50 5.84 1.50 2.32
196Hg 0.81859 916.2 56.49 28.25 7.04 1.84 3.38
212Rn 1.71019 1.400× 105 61.36 25.58 6.27 1.68 2.63
214Rn 0.15031 1.376× 10−2 – 1.07 1.38 0.52 39.52
218Ra 1.42814 6.758× 104 58.58 26.92 6.72 1.83 3.03
224Th 1.16975 2.802× 104 54.68 28.74 7.34 2.03 3.64
230U 0.75251 2.393× 103 42.80 33.66 9.16 2.59 5.87
236Pu 0.45693 95.16 16.51 39.25 12.33 3.64 13.66
242Cm 0.08682 1.243× 10−3 – – – – 9.66
252Fm 0.782 8.121× 103 34.11 36.07 10.34 3.05 7.96
258No 1.051 7.188× 104 41.77 33.61 9.28 2.73 6.14
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Table 7.4: Values of the G2νECEC
K→edge (in units of 10−24 yr−1) and of the capture fractions for

the dominant shell pairs in case of low Q-value transitions. The Q-values are computed
using atomic masses provided in [197].

Nucleus Q G2νECEC
K→edge L1L1 L1M1 L1N1 L1O1 M1M1 M1N1 M1O1 N1N1 N1O1

(MeV)
(
10−24yr−1

)
(%) (%) (%) (%) (%) (%) (%) (%) (%)

152Gd 0.05567 1.547× 10−6 38.56 35.94 10.12 1.84 7.56 4.17 0.75 0.57 0.21
164Er 0.02508 8.606× 10−9 0.87 26.59 12.06 2.33 28.11 20.49 3.79 3.62 1.33
242Cm 0.08682 1.243× 10−3 9.66 33.49 13.91 4.16 16.55 12.49 3.65 2.32 1.35
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Figure 7.2: Theoretical half-life scaled by g4A
∣∣M2νECEC

∣∣2 as function of atomic number for
nuclei presented in Table 7.3. The color scale indicates the Q-value for each transition. The
figure is taken from [245].

is tentative. Indeed, our analysis yields an effective NME value for 132Ba that is more than an
order of magnitude larger than those obtained for other nuclei. Consequently, we adopt the
more conservative half-life limit provided in [41]. Future experimental measurements may
help resolve this discrepancy. However, it is worth noting that geochemical measurements
often tend to underestimate half-lives, leading to an overestimation of effective NMEs.
This could be attributed to challenges in accurately identifying the relevant production
channels of the final atom [36]. Another intriguing possibility is that variations in the
weak interaction constant over time might be influencing these measurements, as discussed
in [249, 250, 251].

In Figure 7.3, we compare the effective NMEs listed in Table 7.5 for the 2νECEC
process with those corresponding to the 2νββ-decay. The latter are defined analogously to
the ECEC effective NMEs, but with isospin-lowering operators replaced by isospin-raising
operators in the definitions of the Gamow-Teller and Fermi matrix elements. Interestingly,
the effective NMEs obtained from both processes exhibit similar ranges, suggesting a
comparable underlying nuclear structure and dynamics governing these transitions.
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Table 7.5: Values or limits of the experimental half-life M2νECEC
eff . The Q-values are

computed using atomic masses provided in [197]. The bottom row corresponds to the 2νββ
decay of 134Xe. For this case, the value of the effective NME was obtained from the lower
half-life limit, and the PSF computed following [192] (0.225× 10−22 yr−1 using Q = 0.8258
MeV).

Nucleus T 2νECEC
1/2

∣∣M2νECEC
eff

∣∣
(yr)

78Kr 9.2+5.7
−2.9 × 1021[44] 0.457+0.095

−0.098

1.9+1.3
−0.8 × 1022[45] 0.318+0.100

−0.073
124Xe (1.1± 0.2)× 1022 [47] 0.072+0.008

−0.006
130Ba (2.2± 0.5)× 1021 [42] 0.170+0.023

−0.017

(6.0± 1.1)× 1020 [43] 0.326+0.035
−0.026

132Ba ≥ 2.2× 1021 [41] ≤ 3.335

Nucleus T 2νββ
1/2

∣∣∣M2νββ
eff

∣∣∣
(yr)

134Xe ≥ 2.8× 1022 [252] ≤ 0.398
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Figure 7.3: Absolute values of the effective nuclear matrix elements for the measured nuclei
undergoing 2νECEC process or 2νββ decay. The values for 2νECEC processes and 2νββ
decay of 134Xe are the ones from Table 7.5. The other 2νββ values are the ones reported
in [253], computed using the PSFs from [192]. Vertical bars indicate uncertainties derived
from the ones of the measured half-lives. Arrows indicate that the corresponding point is
an upper limit for the effective nuclear matrix element. The figure is taken from [245].
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7.2.4 Uncertainties and further improvements

We first conduct a sensitivity analysis on the input parameters, specifically the Q-value,
the average energy of the excited 1+ states ⟨EN ⟩, and the nuclear radius. The relative
variations in the PSFs resulting from changes in these parameters are summarized in
Table 7.6. Among these, the Q-value exhibits the greatest influence. Nevertheless, we
emphasize that modern measurements of the Q-value are highly precise, rendering the
absolute PSF values effectively insensitive to minor variations in this parameter. In contrast,
the sensitivities of the PSFs to ⟨EN ⟩ and the nuclear radius are significantly smaller, in
agreement with earlier findings reported in [235].

Table 7.6: Summary of uncertainties in the PSFs due to input parameters.

Source δG2νECEC
K→edge/G

2νECEC
K→edge

Q-value (5-7)×δQ/Q
⟨EN ⟩ 0.07 ×δ⟨EN ⟩/⟨EN ⟩

Nuclear radius 0.2 ×δR/R

Another source of uncertainty arises from the use of the DHFS model for atomic
structure computations. The DHFS approach achieves an accuracy of approximately 1%
in binding energies relative to experimental values [247]. These binding energies influence
the PSFs through their role in defining integration limits, determining neutrino energies,
and contributing to the ⟨KN ⟩ and ⟨LN ⟩ factors, where they always appear as additive
terms to the Q-value. Consequently, this uncertainty has a negligible impact, translating
to a relative variation of O(10−4) in the Q-value of the process. However, low Q-value
transitions are an exception, where binding energy uncertainties become dominant.

Uncertainty in the values of wave functions at the nuclear surface also contributes to PSF
errors. This effect was analyzed in [247] by comparing Coulomb amplitudes, proportional
to the wave function values on the nuclear surface, obtained using the DHFS model with
those derived from the more advanced Dirac-Hartree-Fock (DHF) model. The study found
that Coulomb amplitudes in the DHFS model agree within 0.25% with those in the DHF
model for the 1s1/2 and 2s1/2 shells, particularly for atomic numbers above 20. Assuming
this value as the uncertainty in our model, we estimate a relative error in the PSFs of
approximately 1%, as wave functions enter the PSF definition raised to the fourth power.
It is worth noting that this uncertainty is systematic, with DHFS Coulomb amplitudes
consistently overestimating those obtained in the DHF model.

Beyond the uncertainties discussed earlier, additional variations in the PSFs may
arise from enhancements to the overall modeling of the 2νECEC process. Firstly, the
determination of the summed neutrino energy, currently approximated using Equation 7.6,
can be refined by employing the exact relation provided in Equation 7.5. Such refinements
are particularly relevant for low Q-value transitions. For instance, the DHFS framework
predicts RKL1 = 55.05keV for 152Sm. As a result, the 2νKL1 process in 152Gd becomes
energetically allowed, contrary to the findings presented in Table7.3. This outcome is
consistent with earlier studies of resonant neutrinoless double electron capture, such as
those reported in [254, 255, 256]. Secondly, our current model does not include the Pauli
blocking effect on the decay of the innermost nucleon states. This limitation can be addressed
by averaging the bound electron wave function, weighted by a realistic nuclear charge
distribution, as described in [192, 257]. Preliminary results indicate that incorporating this
effect could lead to an increase of a few percent in the PSFs. Some of these aspects are
discussed in the second part of this Chapter dedicated to 2νECEC of 124Xe.
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7.2.5 Conclusions

In this part of Chapter 7, we have performed a comprehensive study of atoms undergoing
the 2νECEC process. While 2νECEC inherently bridges nuclear and atomic physics, prior
investigations have often treated atomic structure calculations simplistically or overlooked
key aspects. To address these gaps, we introduced two major improvements in modeling
the atomic component of double electron capture transitions. First, we employed the DHFS
self-consistent framework to refine the description of bound wave function and to improve
the accuracy of binding energy estimates for captured electrons. Second, we extended our
analysis to include captures from outer orbitals, beyond the K and L1 shells considered in
previous studies.

Using this enhanced model, we updated the phase-space values for all atoms undergoing
the 2νECEC process. For lighter atoms, we observed minimal differences relative to earlier
models that assumed simplified atomic screening and restricted captures to the K and L1

orbitals. This similarity arises from a cancellation effect, where the decay rate reduction
caused by more precise screening is balanced by the increase resulting from higher-orbital
captures. However, for medium and heavy atoms, our model predicted a nearly linear
increase in the decay rate with atomic number, reaching enhancements of approximately
10% in the decay rates for the heaviest cases.

Additionally, we provided detailed capture fractions for the dominant partial channels
and examined low Q-value 2νECEC transitions in 152Gd, 164Er, and 242Cm, where the
KK capture is energetically forbidden. Finally, we demonstrated that the effective nuclear
matrix elements for 2νECEC processes exhibit ranges comparable to those of 2νββ-decays.

7.3 Theoretical analysis and predictions for the two-neutrino
double electron capture of 124Xe

7.3.1 Improved formalism for 2νECEC

We improve the 2νECEC formalism by employing a Taylor expansion approach. Building
upon the methodology used for 2νββ decay [78, 179] (see Chapter 5), and extending the
expansion to include terms up to the fourth power in the lepton energies, we derive the
total inverse half-life of the 2νECEC process in an analogous form:

[
T 2νECEC
1/2

]−1
=

(
geffA

)4 ∣∣M2νECEC
GT−1

∣∣2 {G2νECEC
0

+ ξ2νECEC
31 G2νECEC

2 +
1

3

(
ξ2νECEC
31

)2
G2νECEC

22

+

[
1

3

(
ξ2νECEC
31

)2
+ ξ2νECEC

51

]
G2νECEC

4

}
,

(7.14)

The partial inverse half-life for the 2νxy process, in which atomic electrons are captured
exclusively from the x and y shells, can be expressed as:

[
T 2νxy
1/2

]−1
=(2− δxy)

(
geffA

)4 ∣∣M2νECEC
GT−1

∣∣2
{
G2νxy

0 +

+ ξ2νECEC
31 G2νxy

2 +
1

3

(
ξ2νECEC
31

)2
G2νxy

22 +

+

[
1

3

(
ξ2νECEC
31

)2
+ ξ2νECEC

51

]
G2νxy

4

}
.

(7.15)
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Here, geffA is an effective axial coupling constant and the parameters:

ξ2νECEC
31 =

M2νECEC
GT−3

M2νECEC
GT−1

, ξ2νECEC
51 =

M2νECEC
GT−5

M2νECEC
GT−1

(7.16)

are NME ratios arising from the Taylor expansion, with

M2νECEC
GT−1 =

∑

n

M2ν
GT (n)

me

En(1+)− (Ei + Ef )/2
,

M2νECEC
GT−3 =

∑

n

M2ν
GT (n)

4 m3
e

[En(1+)− (Ei + Ef )/2]
3 ,

M2νECEC
GT−5 =

∑

n

M2ν
GT (n)

16 m5
e

[En(1+)− (Ei + Ef )/2]
5 .

(7.17)

The summations are over all 1+ states of the intermediate nucleus and M2ν
GT (n) matrix

elements depend on the nth 1+ intermediate state, with energy En(1
+), as well as on the

ground states |0+i ⟩ and |0+f ⟩ of the initial and final nuclei, with the energies Ei and Ef :

M2ν
GT (n) = ⟨0+f ∥

∑

m

τ−mσm∥1+n ⟩⟨1+n ∥
∑

m

τ−mσm∥0+i ⟩, (7.18)

where τ−m is the isospin-lowering operator transforming a proton into a neutron, and σm is
the nucleon spin operator.

The PSFs entering the inverse half-lives are given by

G2νECEC
N =

me(GF |Vud|m2
e)

4

2π3 ln (2)

1

m5
e

∑

x,y

B2xB2yIN,xy

=
∑

x,y

G2νxy
N ,

(7.19)

where GF is the Fermi coupling constant, Vud represents the first element of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, and the summations extend over all occupied atomic
shells in the initial atom. The functions IN,xy depend on the total energies of the electrons
occupying the x and y orbitals in the initial atom, denoted as ex and ey, respectively. Their
explicit forms can be derived from Eqs. (5.29) and (5.30) by substituting Ee1 → −ex and
Ee2 → −ey. The probability of localizing an electron from shell x inside the nucleus is
expressed as:

B2x =
1

4πm3
e

[
⟨gx⟩2 + ⟨fx⟩2

]
, (7.20)

where

⟨gx⟩ =
∫
gx(r)ρ(r)r

2dr∫
ρ(r)r2dr

⟨fx⟩ =
∫
fx(r)ρ(r)r

2dr∫
ρ(r)r2dr

(7.21)

Here, gx(r) and fx(r) represent the large- and small-component radial wave functions,
respectively, for the bound electron in shell x. The nuclear charge distribution, normalized
to Z, is expressed as:

ρ(r) =
1

1 + e(r−crms)/a
(7.22)
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N = 0 N = 2 N = 22 N = 4
G2νECEC

N 18332.0 9802.2 3056.1 6116.3
G2νKK

N 13605.3 7230.0 2241.2 4482.4

G2νKL1

N 1741.9 945.8 298.9 599.4

G2νKM1

N 355.4 193.6 61.3 123.1

G2νKN1

N 78.6 42.8 13.6 27.3

G2νKO1

N 11.8 6.4 2.0 4.1

G2νL1L1

N 222.9 123.4 39.9 79.8

G2νL1M1

N 45.5 25.3 8.2 16.4

Table 7.7: The evaluated PSFs (Eq. 7.19) units of 10−24yr−1 for the total 2νECEC process
(first line) and the partial 2νxy processes (the following lines) of 124Xe. We have used
Q = 2856.73 keV [259].

Using a surface thickness of a = 0.545 fm, we determined that crms = 5.569 fm reproduces
the experimental root-mean-square (rms) radius,

√
⟨r2⟩ = 4.7661 fm, for 124Xe [258]. The

weighted average of the bound electron wave function, incorporating the nuclear charge
distribution, effectively accounts for Pauli blocking of the decay of innermost nucleon states
while retaining the intuitive interpretation of electron capture occurring on the nuclear
surface.

7.3.2 PSFs calculation and atomic relaxation energies

In most studies of the 2νECEC process, electron captures are primarily considered
from the K shell and L1 subshell [33, 235, 195]. However, in the specific case of double
electron capture in 124Xe, even electrons from the O shell exhibit a small but non-negligible
probability of being captured. In this work, we assume that neutrinos are emitted with
anti-parallel spins and allow electron capture from all occupied shells of the initial atom,
extending the summations in Eq. 7.19 up to the O1 subshell. We restrict our analysis to
subshells with κ = −1, as captures involving configurations where not all four leptons
occupy s-wave states are strongly suppressed due to additional terms in the NMEs [33].
This assumption may impact the interpretation of experimental data. For instance, the
signal model employed in [47] includes captures from all subshell combinations. In our
model, each subshell accommodates only two electrons, resulting in two pairs of electrons
available for capture when x ̸= y. This condition is incorporated into Eq. (7.19) by not
imposing the requirement x < y.

The results of the PSFs calculated using the Taylor expansion formalism for the
2νECEC process in 124Xe are presented in Table 7.7, based on Eq. (7.19). The first row
reports the total PSFs, while subsequent rows detail the contributions from the most
probable capture channels. As expected, the PSF values decrease with higher-order terms
in the Taylor expansion, consistent with trends observed for 2νββ-decay [78, 179].

While the first entry in Table 7.7 can be directly compared to older results, such as
17200× 10−24 yr−1 from [235], caution is required for a meaningful comparison. First, the
value from [235] is based on the closure approximation for the NME, whereas our results are
for NMEs derived within the Taylor expansion framework. Second, the older calculations
include only captures from the K and L1 shells, while our results incorporate contributions
from all occupied shells in 124Xe. Overall, we observe that employing the DHFS framework
for screening reduces the total PSF compared to the Thomas-Fermi screening model used
in [235, 195]. However, this reduction is offset by the inclusion of Pauli blocking effects
and the consideration of captures beyond the K and L1 shells, leading to an increase in the
total PSF value.
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Following the capture process, the final atom is left in an excited state. Experimentally,
the detection of de-excitation energies, released as X-rays and Auger electrons, serves as a
signature for identifying 2νECEC events. However, this energy release can also contribute
to background noise in experiments where the decay of 124Xe is an unavoidable source
of interference. The atomic relaxation energy associated with the 2νxy process can be
expressed in terms of the total electron binding energies of 124Te, both in its ground state
and in its excited state, which features vacancies in the x and y orbitals, as:

Rxy = Bg.s.(
124Te)−Bxy(

124Te). (7.23)

The relaxation energies obtained using the DHFS framework are presented in Table 7.12.
The details of the calculation of the atomic relaxation energies can be found in Section A.2.3.
Based on the findings in [247], these Rxy estimates are expected to have an accuracy better
than 1%. Given the current experimental energy resolution of a few keV [47], our estimations
provide a reliable basis for identifying the position of background peaks in liquid xenon
experiments [47, 83, 84].

7.3.3 The ISM evaluation of the NMEs

The NMEs, as defined in Eq. (7.17), were calculated following the approach described
in [246], but with several important modifications: (i) no single-state dominance (SSD)
assumption was made [241]; (ii) two effective Hamiltonians were utilized, including GCN5082
[246] (abbreviated as GCN in the tables below) and SVD [260]; (iii) distinct quenching
factors (qH) for the GT τ−σ operator were adopted for each effective Hamiltonian, calibrated
to match the two-neutrino double-beta decay data of 136Xe—specifically, qGCN = 0.4 [246]
and qSV D = 0.7 [239, 240]; and (iv) up to four nucleons were excited from the lower g7/2d5/2
orbitals into the higher jj55-space orbitals to account for configuration mixing.

Following [246], we calculate the NMEs in the jj55 model space, which includes the
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 orbitals for both protons and neutrons. Full shell
model calculations in this space are computationally challenging due to the large basis
dimensions required, particularly for 124Xe. Therefore, as in [246], we rely on truncations by
promoting nucleons from the lower g7/2d5/2 orbitals into the higher d3/2s1/2h11/2 orbitals.
We extend beyond the truncations used in [246] by allowing up to four nucleon excitations.
Additionally, we improve upon the single-state dominance approximation assumed in
[246] by performing a full summation over the intermediate 1+ states in Eq. (7.17). This
summation is carried out using the strength function approach described in Section 4 of
Ref.[241].

Notably, the full summation leads to a reduction of about 25% in the NME for the
GCN5082 Hamiltonian. Furthermore, instead of assuming a wide range of quenching
factors, we adopt quenching factors that accurately reproduce the NMEs for the two-
neutrino double-beta decay of 136Xe, calculated within the same model space and effective
Hamiltonians.

The results for the dominant nuclear matrix elements, M2νECEC
GT−1 , are displayed in

Fig. 7.4. The notation ”g7d5-jump” represents the number of nucleons allowed to be
excited (jump) from the lower g7/2d5/2 orbitals into the higher jj55-space orbitals, with a
maximum of 14. Both effective Hamiltonians yield similar results, and although the NMEs
have not yet fully converged, their values exhibit only minor variations, especially for the
SVD effective Hamiltonian.

We also computed the other two nuclear matrix elements, M2νECEC
GT−3 and M2νECEC

GT−5 ,
by extending the techniques outlined in Section 4 of [241]. These calculations involve the
Gamow-Teller τ−σ operator in Eq. (7.18), which was quenched by the qH factors specified
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Figure 7.4: The M2νECEC
GT−1 NME as a function of the number of nucleons that were allowed

to get excited from the lower g7/2d5/2 orbitals.

Model NME type jump=0 jump=2 jump=4
SVD M2νECEC

GT−1 0.0305 0.0329 0.0291
M2νECEC

GT−3 0.0066 0.0087 0.0064
M2νECEC

GT−5 0.0018 0.0026 0.0018
GCN M2νECEC

GT−1 0.0379 0.0354 0.0264
M2νECEC

GT−3 0.0108 0.0092 0.0057
M2νECEC

GT−5 0.0032 0.0027 0.0016

Table 7.8: ISM results for the NMEs of Eq. (7.17) (see text for details).

earlier (qSV D = 0.7, qGCN = 0.4). Within the ISM framework, this quenching effect reflects
the renormalization of the τ−σ operator in reduced model spaces [261, 262, 263], while the
axial coupling constant retains its free nucleon value, gA = 1.276 [209].

The NME results are summarized in Table 7.8, where ”jump” denotes the g7d5-jump
configuration. These results are further employed to extract the parameters ξ2νECEC

31 and
ξ2νECEC
51 , shown in Table 7.9. These parameters are essential for calculating the Taylor
expansion corrections to the decay half-lives, as given by Eqs. (7.14)–(7.15). It is important
to note that the NMEsM2νECEC

GT−3 andM2νECEC
GT−5 exhibit trends similar to those ofM2νECEC

GT−1 ,
as shown in Fig. 7.4.

Model ξ2νECEC
i jump=0 jump=2 jump=4

SVD ξ2νECEC
31 0.216 0.264 0.220
ξ2νECEC
51 0.059 0.079 0.062

GCN ξ2νECEC
31 0.285 0.260 0.216
ξ2νECEC
51 0.084 0.076 0.061

Table 7.9: ISM results for the ξi parameters of Eq. (7.16) (see text for details).
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Figure 7.5: Dependence of the matrix elements M2νECEC
GT−1 , M2νECEC

GT−3 , and M2νECEC
GT−5 on the

effective value of axial-vector coupling constant geffA for the case the calculated 2νECEC
half-life is the same as its experimental value, i.e., T 2νECEC

1/2 (124Xe) = 1.1× 1022 yrs [47].
Results were obtained within the QRPA with the restoration of the isospin by assuming
the realistic Argonne V18 nucleon-nucleon potential.

7.3.4 The pn-QRPA evaluation of the NMEs

The nuclear matrix elements M2νECEC
GT−1 , M2νECEC

GT−3 , and M2νECEC
GT−5 are computed using

the proton-neutron Quasiparticle Random Phase Approximation (pn-QRPA) with isospin
restoration, as described in [199]. These calculations employ the same extensive model space,
consisting of 23 subshells within the N = 0–5 oscillator shells, supplemented by the i11/2
and i13/2 orbitals, and use the same mean fields as those applied in the study of double-beta
decay in 128,130Te and 136Xe. Pairing and residual interactions are derived from modern
realistic nucleon-nucleon potentials, specifically the charge-dependent Bonn potential (CD-
Bonn) and the Argonne V18 potential. In solving the BCS pairing equations, the pairing
interaction strengths are slightly adjusted to accurately reproduce the experimental pairing
gaps [199].

The pn-QRPA equations involve three adjustable renormalization parameters: gph for
the particle-hole interaction, and gT=1

pp and gT=0
pp for the isovector and isoscalar components

of the particle-particle interaction, respectively. While the parameter gph = 1.0 is typically
used [199], the value of gT=1

pp is fixed to ensure that the 2νββ Fermi matrix element vanishes,

as required by isospin symmetry. Meanwhile, gT=0
pp is tuned to reproduce the half-life of

the 2νECEC process in 124Xe for each considered value of the effective axial coupling
constant, geffA . Unlike earlier QRPA calculations of 2νββ nuclear matrix elements, this
approach incorporates the overlap of the initial and final BCS vacua. This inclusion leads
to a reduction in the nuclear matrix elements by a factor of 0.828, as demonstrated in [202].

In Fig. 7.5, we present the NMEs for the 2νECEC process in 124Xe, calculated within
the pn-QRPA framework with isospin restoration, as functions of the effective axial-
vector coupling constant, geffA . These NMEs are computed for a fixed 2νECEC half-life
corresponding to its experimental value. A notable observation is that M2νECECGT − 1
exhibits a strong dependence on geffA , whereas M2νECECGT − 3 and M2νECEC

GT−5 show much
weaker dependencies. In Table 7.10, we list the calculated values ofM2νECEC

GT−K (forK = 1, 3, 5)
using both the Argonne V18 and CD-Bonn potentials. These values are reported for three
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choices of geffA —1.27 (unquenched), 1.00, and 0.80 (modestly quenched). For comparison, we
also include NMEs for the 2νββ processes of 128Te and 130Te. Since these transitions connect
the ground states of tellurium and xenon isotopes, their NMEs provide a meaningful context
for evaluating the 2νECEC NMEs. We observe that the 2νECEC NMEs are only slightly
larger, by about a factor of 2, than those for 2νββ. This similarity reflects comparable
experimental pairing gaps for all isotopes involved, as shown in Table 7.10. Additionally, we
present the ratios of NMEs, ξ13 and ξ15, in Table 7.10. The maximum value of ξ13, computed
for an unquenched geffA , is 0.231, 0.282, and 0.281 for the 2νECEC process of 124Xe and the
2νββ decays of 128Te and 130Te, respectively, using the CD-Bonn potential. It is important
to note that ξ13 > 0.26 was excluded for the 2νββ decay of 136Xe by the KamLAND-Zen
Collaboration [186]. However, a measured value of ξ13 = 0.45± 0.03(stat)± 0.05(syst) was
reported by the CUPID-Mo experiment [55].

Prior to the experimental determination of the half-life for the 2νECEC process in
124Xe, NMEs for this decay were computed using the pn-QRPA method with alternative
approaches for adjusting the particle-particle interaction strength parameter, gpp. One
method utilized experimental data from single β-decays [242], while another employed a
statistical formalism to reconcile QRPA results with experimental observations [264, 243].
Results of the second approach favor a strong quenching of axial-vector coupling constant
with geffA ≃ 0.4− 0.6. The obtained nuclear matrix elements in these studies are as follows:
M2νECEC

GT = 0.10 − 0.20 (geffA = 1.25), 0.34 − 0.71 (geffA = 1.00) [242] and M2νECEC
GT =

0.296 (geffA = 0.60) [243]. By comparing them with NMEs values in Table 7.10 and with
M2νECEC

GT = 0.191 and 0.186 (Argonne and CD-Bonn potentials) for geffA =0.60 calculated in
the presented formalism, we see that they are too large leading to a significant disagreement
with measured half-life for 2νECEC of 124Xe.

7.3.5 Total and partial half-lives predictions

Table 7.11 provides the calculated total half-life for the 2νECEC process, as well
as the half-life specifically for the KK capture channel. These results were obtained
using Eqs. (7.14) and (7.15), incorporating the phase-space factors listed in Table 7.7,
the NMEs presented in Table 7.8. Overall, the results indicate that the ISM provides
robust predictions that are relatively insensitive to changes in truncation schemes or
effective Hamiltonians. Moreover, the calculated half-lives demonstrate good agreement
with experimental measurements. It is also noteworthy that the inclusion of Taylor expansion
corrections, combined with the updated and more accurate PSFs, plays a significant role
in improving the alignment between theoretical predictions and experimental data.

Model Channel jump=0 jump=2 jump=4
SVD Total 1.94 1.61 2.12

KK 2.61 2.17 2.86
GCN Total 1.20 1.40 2.58

KK 1.62 1.88 3.48

Table 7.11: The predicted 2νECEC half-lives for 124Xe (in units of 1022 yr) from Eqs. (7.14)
and (7.15). To be compared with experimental data for the total half-life, (1.1± 0.2stat ±
0.1sys)× 1022 yr and the inferred data for the KK half-life, (1.5± 0.3stat ± 0.1sys)× 1022

yr (see section III.F of [47]).

For comparison, we note that several estimates of the half-life of 124Xe for the 2νECEC
process exist in the literature, based on different models for NME calculations. For instance,
the pn-QRPA studies in [242, 243] and the ISM results in [246] provide a wide range of
predictions. In [242], the predicted half-life spans (0.04–0.88)× 1022yr. However, the NMEs

114



Decay Chanel Rxy (keV) ISM CF (%)
KK 64.62 74.13-74.15
KL1 37.05 18.76-18.83
KM1 32.98 3.83-3.84
KN1 32.11 0.83-0.85
KO1 31.93 0.13
L1L1 10.04 1.22
L1M1 6.01 0.49
Other < 6 0.52-0.55

Table 7.12: The atomic relaxation energies (Eq. 7.23) obtained within the DHFS model
(second column) and the capture fractions (CF) predicted by ISM (third column). The
captures with atomic relaxation energies below 6 keV are subsumed under the label ”other”.
The ranges presented for the KK and KL1 channels correspond to the minimum and
maximum values of the ξ2νECEC

31 parameter predicted from ISM.

reported in that work are approximately five times larger than the values obtained here,
rendering them incompatible with the more accurate PSFs presented here. Moreover, the
PSFs in [242] are calculated using the expressions from [33], which rely on the closure
approximation. Similarly, [243] provides an estimated half-life range of (1.4–1.8)× 1022 yr,
but the calculations also rely on the closure approximation for PSFs. Consequently, the
results may not fully capture the effects included in the more refined models adopted
in this work. Ref. [246] presents two additional ranges for the partial half-life of 124Xe,
derived using the ISM and an effective theory (ET) extension applied to truncated ISM
NMEs. The half-life predictions for the KK capture are (1.3–18)× 1022 yr for ISM and
(0.43–2.9)× 1022yr for ET. However, the PSF values employed in this work are based on
[235], which also include contributions from KL1 and L1L1 capture channels. As a result,
the ranges reported in [246] are underestimated by approximately 20%. Additionally, their
PSF calculations assume the closure approximation, whereas their NMEs are computed
either by summing over all intermediate 1+ states in the ISM or by assuming the SSD
hypothesis in the ET approach.

Building on the good prediction of the experimental data for the total 2νECEC half-
life of 124Xe and the partial half-life for the KK channel, we provide predictions for
additional possible decay channels. Table 7.12 lists the relaxation energies calculated using
Eq. 7.23 and the predicted capture fractions (CFs) for various decay channels, including
the measured total and KK channels[47]. The ISM CF column presents the predicted
capture fractions (in %) derived using the interacting shell model (ISM). Detailed results
for different truncations and effective Hamiltonians will be published elsewhere. We note
that the predicted CF for the KK channel is 74.1%, slightly higher than the previously
adopted value of 72.4% from [47]. This difference arises from our more restrictive treatment,
which considers only s-wave electrons, whereas [47] included contributions from all electron
orbitals. Additionally, the incorporation of Taylor expansion terms and the updated PSFs
leads to minor adjustments in the new capture fractions. Our analysis also identifies the
KL1 channel as the next most probable decay mode after KK, with a predicted CF of
approximately 19%. Given the proximity of the relaxation energies associated with the
KL1–KO1 channels, we predict a cumulative CF of about 24% for these channels, roughly
one-third of the KK channel. This result suggests that future experimental searches may
be able to observe contributions from the KL1–KO1 channels, providing further insights
into the 2νECEC process in 124Xe.

It is important to emphasize that observables related to the 2νECEC process, such as
the total and partial half-lives, depend on the ξ2νECEC

31 and ξ2νECEC
51 parameters within the
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Taylor expansion formalism. From an experimental standpoint, the parameter ξ2νECEC
31

can be treated as a free variable when analyzing these observables, while ξ2νECEC
51 can be

fixed based on theoretical predictions due to its relatively smaller influence. Consequently,
experimental constraints on ξ2νECEC

31 can be derived by measuring the ratio of half-lives
between different decay channels, such as T 2νKK1/2/T 2νKL11/2. This approach parallels
the method proposed in [179], where ξ31 was constrained in 2νββ decays using the angular
correlation coefficient of the emitted electrons. Although the dependence of half-life ratios
on ξ2νECEC

31 is relatively weak, future experimental constraints on this parameter could offer
valuable insights and serve as a cross-check for the reliability of different NME calculations.

7.3.6 Conclusions

In conclusion, we analyzed the 2νECEC decay rates for the 124Xe isotope, recently
investigated experimentally [46, 47], and improved the calculation of both the PSFs and
the NMEs. The decay rate was derived more rigorously by employing the Taylor expansion
approach, which incorporates higher-order contributions for enhanced accuracy.

For the new PSF calculations, we implemented the following improvements: (i) the use
of the DHFS self-consistent framework, which accounts for atomic screening, diffuse nuclear
surface corrections, realistic nuclear charge densities, and electron exchange-correlation
effects; and (ii) the inclusion of Pauli blocking effects for the decay of innermost nucleon
states. Additionally, we considered electron captures from all s-wave orbitals, extending
beyond the previously studied K and L1 shells. Our findings reveal that while refined
screening corrections for bound states decrease the decay rate, Pauli blocking effects and
contributions from additional capture channels increase it.

For the nuclear component, we employed both the ISM and the pn-QRPA methods.
In the ISM approach, we extended the summation over 1+ states of the intermediate
nucleus to include Taylor expansion terms in Eqs. (7.14) and (7.17). We also expanded the
shell model truncation in the jj55 single-particle model space and validated the results
using two widely adopted effective Hamiltonians. New NMEs, M2νECEC

GT−3 and M2νECEC
GT−5 ,

were calculated using an extended framework based on [241]. The agreement between
ISM-calculated NMEs and those extracted from experimental data reinforces the validity
of similar predictions for the 2νββ decay of 124Sn [240].

With the ISM approach, we achieved a good description of the total half-life within
a factor of two compared to experimental data. We also predicted the capture fraction
of the KK channel to be 74.1%, which deviates slightly from the 72.4% value used in
earlier experimental searches [47]. Furthermore, new predictions for capture fractions in
additional decay channels were provided (see Table 7.12). Notably, we obtained a cumulative
capture fraction of approximately 24%, about one-third of the KK channel’s contribution,
suggesting that the KL1-KO1 channels, with relaxation energies between 37.05 keV and
31.93 keV, could be experimentally observed in the near future.

For the pn-QRPA method, we incorporated isospin symmetry restoration to calculate
NMEs associated with the 2νECEC decay of 124Xe. The particle-particle interaction
strength parameter, gT=0

pp , was adjusted based on experimental 2νECEC decay rates.
Compared to earlier pn-QRPA calculations [242, 243], our results yielded significantly
smaller values for M2νECEC

GT−1 . We found that NMEs for 2νECEC in 124Xe are comparable
to those for 2νββ in 128,130Te. This similarity reflects the analogous nuclear systems, which
differ only in neutron numbers and exhibit comparable experimental pairing gaps—an
essential input for pn-QRPA calculations.
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8 A semi-empirical formula for two-neutrino DBD

8.1 Introduction

Despite recent progress in measuring 2νββ-decay and ongoing efforts to develop a robust
theoretical framework, discrepancies between theoretical predictions and experimental data
remain unresolved. A key challenge lies in the significant variation observed in experimental
NMEs for 2νββ-decay. These discrepancies cannot be consistently addressed within existing
nuclear models without resorting to case-specific fine-tuning of parameters.

In this Chapter, we introduce a semi-empirical formula (SEF) designed to calculate
NMEs for two-neutrino double-beta decay. The SEF incorporates dependencies on proton
and neutron numbers, pairing effects, isospin, and deformation properties of the initial
and final nuclei. This approach draws inspiration from nuclear many-body methods and
observed experimental trends, effectively capturing essential physical correlations and
symmetries.

Compared to previous phenomenological and nuclear models, the SEF provides the
best agreement with experimental NMEs. The reliability of the SEF is further confirmed
through cross-validation against available experimental data. Additionally, we present
predictions for NMEs in nuclear systems of experimental interest, paving the way for more
precise evaluations of 2νββ-decay observables in future studies.

8.2 Current state

The inverse 2νββ-decay half-life is commonly presented as

(
T 2ν
1/2

)−1
=

∣∣M2ν
∣∣2 G2ν , (8.1)

where G2ν is the PSF, and

M2ν = g2AM
2ν
GT − g2VM2ν

F , (8.2)

is the NME governing the transition. It should be noted that we consider here only the
first order of the Taylor expansion formalism provided in Chapter 5. The vector and
axial-vector coupling constants, denoted as gV = 1 and gA, respectively, are fundamental
parameters in nuclear weak interaction processes. While gV is well-established, gA is
typically model-dependent and remains an open issue in the theoretical description of
these interactions [182]. In this analysis, we adopt the impulse approximation for nucleon
currents and consider only s1/2 wave states of the emitted electrons. The nuclear matrix
elements, M2ν

F and M2ν
GT , correspond to the Fermi and Gamow-Teller (GT) transitions,

which are governed by the Fermi and GT operators. These operators act as generators of
isospin SU(2) and spin-isospin SU(4) symmetries, respectively. Since isospin symmetry is a
good approximation in nuclei, it is generally assumed that M2ν

F contributes negligibly to
the decay rate. Consequently, the dominant contribution arises from M2ν

GT , which can be
expressed as

M2ν
GT = me

∑

n

Mn

En − (Ei + Ef )/2
, (8.3)
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with

Mn = ⟨0+f ∥
∑

j

τ+j σj∥1+n ⟩⟨1+n ∥
∑

k

τ+k σk∥0+i ⟩. (8.4)

Here, |0+i ⟩ (|0+f ⟩) is the ground state of the initial (final) even-even nucleus with energy Ei

(Ef ), and the summations run over all |1+n ⟩ states the intermediate odd-odd nucleus with
energies En and over all j, k nucleons inside the nucleus.

The phase-space component of the decay rate can be accurately determined using
a relativistic treatment of the emitted (captured) electrons within a realistic potential
of the final (initial) atomic system. The most precise PSFs, computed using the self-
consistent Dirac-Hartree-Fock-Slater method and incorporating radiative and atomic
exchange corrections [168, 172] (see also Chapter 5), are presented in Table 8.1. In contrast,
the computation of the 2νββ-decay NMEs remains a long-standing and challenging problem
in this field. With the increasing interest in detecting neutrinoless modes, there has been a
notable reduction in the uncertainties of half-lives for two-neutrino modes (see column 11
in Table 8.1) and, consequently, in the corresponding experimental NMEs, calculated as
M2ν−exp = (T 2ν−exp

1/2 G2ν)−1/2 (see Table 8.2 and Table 8.3). Despite these advancements,
the distribution and structure of the experimental NMEs remain poorly understood. A
theoretical model that accurately reproduces the current experimental NMEs could offer
valuable insights and realistic predictions for future experimental searches across the nuclear
chart.

Predictions of the 2νββ-decay NMEs rely on a variety of nuclear structure models,
each offering distinct approaches to address the complexities of nuclear systems. Prominent
methods include the proton-neutron quasiparticle random phase approximation (pn-QRPA)
and its variants [270, 271, 272, 273, 65, 274, 275, 202, 276, 277, 278, 199, 243, 78], which are
widely used due to their ability to handle correlations in particle-particle and particle-hole
channels effectively. The nuclear shell model (NSM) also plays a central role in these predic-
tions [279, 280, 236, 281, 239, 282, 240, 283, 284], offering detailed microscopic descriptions
by explicitly accounting for nucleon interactions within a limited valence space. Other
approaches include the interacting boson model (IBM) [285, 286, 287, 288], which maps
nucleon pairs onto bosons, and the projected Hartree-Fock-Bogoliubov (PHFB) method
[289], which incorporates deformation and pairing correlations effectively. Alternative
models, such as the Fermi surface quasi-particle (FSQP) model [290, 291], effective theory
(ET) frameworks [292], and other approaches [293, 294], further expand the theoretical
landscape. Additionally, phenomenological models [295, 296, 297] provide empirical fits
to experimental data, offering simplified but often insightful descriptions of decay rates.
Despite this diversity, calculating 2νββ-decay NMEs remains a formidable task due to the
complex structure of open-shell medium and heavy nuclei and the requirement to describe
a complete set of intermediate nuclear states. Consequently, discrepancies among theoret-
ical predictions persist, highlighting the ongoing need for refined models and improved
methodologies to better capture the physics of double-beta decay.

Two widely used approaches for studying double-beta decay are the pn-QRPA and
the NSM. While the NSM is limited to low-lying excitations, it effectively incorporates
all correlations within the valence space. Higher-lying excitations can also be accessed
through the Lanczos strength function method [280]. To reproduce 2νββ-decay data, the
Gamow–Teller operator is typically quenched to match results from single β-decays or
charge exchange reactions, assuming an unquenched gA [279, 281]. In contrast, the pn-QRPA
extends to orbitals far from the Fermi surface, accounting for high-lying excited states
up to 20–30 MeV, though it incorporates fewer correlations. The M2ν

GT and M2ν
F matrix
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elements have been shown to exhibit a strong dependence on the isoscalar and isovector
particle-particle interactions of the nuclear Hamiltonian [72, 78]. The IBM simplifies
nuclear structure by representing low-lying states as L = 0 (s boson) or L = 2 (d boson)
pairs, focusing on transitions involving 0+ and 2+ neutron pairs converting into protons.
Meanwhile, the PHFB formalism constructs nuclear wave functions with good particle
number and angular momentum by projecting onto axially symmetric intrinsic HFB states,
although it limits the nuclear Hamiltonian to quadrupole interactions. While not addressed
in this work due to challenges in obtaining systematic results, recent advancements in ab
initio methods show promise for describing 2νββ-decay transitions. Notable developments
include coupled-cluster calculations for 48Ca [298] and hybrid approaches that combine
chiral effective-field theory with the NSM for 48Ca, 76Ge, and 82Se [299]. These advances
may enhance theoretical predictions and further reduce uncertainties in nuclear matrix
element calculations.

Phenomenological models simplify the description of 2νββ-decay processes. For instance,
as outlined in [183, 184], when the intermediate nucleus has a 1+ ground state, the decay is
assumed to be dominated by two virtual β-decay transitions. The first transition connects
the initial nucleus to the 1+ ground state of the intermediate nucleus, while the second
transition connects this 1+ state to the final ground state. This framework is referred to as
the single-state dominance (SSD) hypothesis. A key advantage of the SSD hypothesis is
that it minimizes dependence on detailed nuclear structure models. Instead, the nuclear
matrix element M2ν can be derived directly from experimental data, such as measured
log ft values or charge-changing reactions. However, recent experimental results challenge
the SSD hypothesis. A study on electron energy distributions in the 2νββ-decay of 100Mo
[55] indicates that transitions through higher-lying states in the intermediate nucleus
cannot be neglected. These additional transitions can contribute significantly to M2ν , and
their interference effects, particularly destructive interference, must be accounted for to
accurately describe the decay process.

To date, three additional phenomenological models have been proposed to predict 2νββ-
decay half-lives or NMEs. One such model [295] draws parallels with the Geiger-Nuttall
law, which describes α decay half-lives. The other two models [296, 297] suggest that
half-lives or NMEs depend on specific nuclear properties, including the Coulomb energy
parameter (ξ ≈ ZA−1/3), the Q-value, and the quadrupole deformation parameter of the
initial nucleus. Despite their utility, these models exhibit limitations in capturing the full
complexity of 2νββ-decay dynamics. As discussed later, refinements to these approaches
could enhance their predictive accuracy and provide a more comprehensive framework for
describing double-beta decay processes.

8.3 Phenomenological model

We propose a phenomenological approach to describe 2νββ-decay NMEs, drawing
inspiration from nuclear theory insights and patterns observed in experimental data. The
proposed semi-empirical formula (SEF) is

M2ν−ph =

(
Zf

Nf

)α( ∆pn

1− β</β>

)γ

(Tf )
σ , (8.5)

where Zf , Nf , and Tf are the proton number, neutron number, and the isospin of the final
nuclear ground state, respectively. We note that the ground state of the initial (final) even-
even nucleus belongs to the isospin multiplet with Ti = (Ni − Zi)/2 (Tf = (Nf − Zf )/2),
representing the only state in the nucleus where the isospin projection equals the total
isospin.
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Figure 8.1: The phenomenological NMEs, obtained using a simplified model M2ν−ph =
(Z/N)50 T 5, are represented in the (Z,N) space for stable even-even nuclei. The base of
the representation, shown in orange, corresponds to the known nuclear chart. The figure is
taken from [303].

The dependence of M2ν
GT on isospin was explored in an exactly solvable model [72].

Observations indicate that the values of (Zf/Nf )
50T 5

f , as shown in Figure 8.1 and Table 8.3,

exhibit a spread comparable to M2ν−exp. The six largest peaks correspond to NMEs for the
2νββ-decay of 98Mo, 114Cd, 104Ru, 94Zr, 110Pd, and 100Mo, in this order. While 100Mo has
the largest experimentally measured NMEs, theoretical predictions [300, 301, 243] suggest
that some of these cases could exceed 100Mo’s NME, though measurements are limited by
their lower Q-values [302]. Interestingly, the simple form (Zf/Nf )

50 T 5
f accurately predicts

the ordering of 2νββ-decay NMEs and serves as a robust foundation for further refinement.
The quantities β< = min(βZ , βZ+2) and β> = max(βZ , βZ+2), appearing in Eq. (8.5),

are defined using the quadrupole deformation parameters βZ and βZ+2 for the ground
states of the initial and final nuclei, respectively. It is important to highlight that only
prolate shapes have been considered for these nuclear configurations, as the signs of
the quadrupole deformation parameters cannot be deduced from the associated electric
quadrupole transition probabilities, B(E2). Future experimental studies offering insights
into the nuclear shapes involved in 2νββ-decay may enable further refinements to the
model. For this analysis, however, we adopt the positive quadrupole deformation parameters
provided in the Brookhaven Nuclear Database [265].

The dependence on deformation parameters reflects findings from pn-QRPA [202, 276],
PHFB [304, 305], and NSM [306] calculations, which indicate that discrepancies between
the deformations of initial and final states tend to suppress the NMEs for 2νββ-decay.
Furthermore, the pairing parameter ∆pn, defined as the product of experimental pairing
gaps [307], is also included to capture pairing effects influencing the decay rates,

∆pn = ∆Z
p ∆Z

n ∆Z+2
p ∆Z+2

n . (8.6)

This highlights the importance of transitions involving the lowest 1+ states of the interme-
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diate nucleus. The associated β transition amplitudes are directly connected to the BCS u
and v occupation amplitudes, which, in turn, can be determined from the gap parameter.

8.4 Results and discussions

The best fitting parameters α, γ, and σ have been obtained from the minimization of
the chi-squared

χ2 =

N∑

i=1

(Oi − Pi)
2

σ2i
, (8.7)

where Oi is the experimental NME with uncertainty σi, and Pi is the predicted NME. The
sum includes data from both direct counter experiments and radiochemical observations.
For the 2νββ-decay transitions categorized under the ”Fitted” label in Table 8.1 (N = 10),
the resulting 2νββ-SEF yielded parameters α = 46.94, γ = 0.22, and σ = 4.90. Interestingly,
when ”Fitted” 2νECEC cases were incorporated as additional inputs (N = 12), but with
Tf → Tf + 1, the same fit parameters were obtained. This observation suggests a potential
multilevel modeling framework for both types of transitions. However, further half-life
measurements for proton-rich nuclei are necessary to confirm this hypothesis.

Table 8.2 provides a comparative analysis of 2νββ-decay NMEs derived from the SEF,
the SSD hypothesis, and the latest computations using various nuclear models. The datasets
are also displayed in Fig. 8.2. The comparisons are quantified through χ2/N values. Among
the approaches, the 2νββ-SEF demonstrates the closest agreement with experimental
NMEs, consistently producing χ2/N values that are roughly two orders of magnitude lower
than those obtained from other models. It is worth noting that the NME values listed
for nuclear models in Table 8.2 correspond to the calculated M2ν

GT , each scaled by the
square of the effective gA adopted in the respective studies. While the SSD hypothesis and
NSM and FSQP calculations also show relatively smaller χ2/N values, broader conclusions
remain challenging due to the limited number of cases analyzed within these datasets. It is
also noteworthy that the pn-QRPA results from [78], which incorporate SU(4) symmetry
restoration and an effective gA = 0.904 derived from observed 2νββ-decay half-lives, exhibit
a significant reduction in χ2/N compared to earlier pn-QRPA calculations presented in
[243]. The latter employed β-decay observables to fine-tune nucleon-nucleon interactions
and single-particle energies for each ββ-decay system, yet yielded larger deviations from
experimental data.

We further assess the 2νββ-SEF by comparing it with earlier empirical models and
evaluating its design, stability, and predictive capabilities. Table 8.3 displays NMEs obtained
from this work alongside those derived from previous phenomenological models [295, 296,
297] and the corresponding experimental values. To evaluate the quality of the fits, we
calculated the reduced chi-squared values, χ2

ν = χ2/ν, where ν denotes the number of
degrees of freedom (DOF). The results reveal that previous models yield significantly larger
χ2
ν values compared to the 2νββ-SEF proposed in this study. This highlights the better

performance of the SEF in capturing experimental trends. It is also worth noting that the
model proposed in [296] may suffer from overfitting, as it has only two DOF, making it
less robust given the limited size of the experimental dataset analyzed.

To gain deeper insight into the foundation of the 2νββ-SEF, the analytical form of
(Zf/Nf )

50T 5
f was progressively refined by optimizing fit parameters and enhancing model

complexity. The analytical expressions for each iteration are provided in the caption of
Table 8.3. Interestingly, Model A achieves a χ2

ν value comparable to the best prior model
from [295]. However, Model B demonstrates that slightly reducing the exponents controlling
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Figure 8.2: The 2νββ-decay NMEs obtained with the SEF in comparison with the ex-
perimental data and the most recent calculations from various nuclear structure models:
pn-QRPA [243, 78], IBM [288, 287, 286], NSM [284, 281], PHFB [289]. The gray box
included cases with no experimental values of the half-lives.

Zf/Nf and Tf yields a substantial improvement in alignment with experimental NMEs.
Further refinements, including pairing parameters and quadrupole deformation, highlight
that incorporating deformation overlap represents the most impactful enhancement to the
initial form, which only relied on Zf/Nf and Tf . Additionally, we observe that modeling
the deformation overlap as (1− β</β>) is preferable to (β> − β<), based on the current
experimental dataset.

We employed leave-one-out cross-validation (LOOCV) to evaluate the robustness of
the 2νββ-SEF in fitting experimental data and generating predictions. This method
systematically omits one data point at a time during the fitting process and assesses the
performance of the 2νββ-SEF using the remaining data. The χ2

ν values obtained for each
exclusion are provided in the last column of Table 8.3, with the predicted NME for the
omitted case displayed in parentheses. The results demonstrate that removing any single
case has a negligible impact on the predictions. Additionally, the minimal fluctuations in
χ2
ν values validate the SEF’s stability and its predictive reliability.

At first glance, the predicted 2νββ-decay NME for 128Te appears to deviate from the
experimental value. However, it is essential to emphasize that the experimental NME
for 128Te is based on geochemical measurements of ancient tellurium ores [50]. Such
measurements warrant careful scrutiny, as unknown processes during ore formation may
have influenced the production of daughter isotopes. For instance, it has been proposed
in [308, 249] that these results could be affected by potential time variations in the weak
interaction strength. Similar concerns may also apply to measurements involving 130Ba
and 132Ba. Given these uncertainties, we have excluded all geochemical data from the fit.
By contrast, the radiochemical measurement of 238U was retained, as its larger uncertainty
reduces the likelihood of distorting the fit parameters. This choice is supported by the
LOOCV of 238U presented in Table 8.3.

The 2νββ-SEF predicts notably different NMEs for isotope pairs differing by two
neutrons, a feature also reflected in modern nuclear structure models presented in Table 8.2.
For example, the SEF estimates NME ratios close to 2 for the isotope pairs 128,130Te and
134,136Xe. This result contrasts with Pontecorvo’s earlier assumption that such pairs should
exhibit nearly equal NMEs [309]. Other pairs showing similar trends include 98,100Mo,
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114,116Cd, and 94,96Zr, although the small Q-values of the neutron-deficient isotopes may
limit near-future measurements for these cases. Fortunately, the 2νββ-decay of 134Xe could
soon be detected, as it constitutes an unavoidable background in Dark Matter searches
[81, 82, 84, 310]. The SEF also provides optimistic half-life predictions, in the range of
1020–1021 years, for the 2νββ-decay of 110Pd and 124Sn, as well as for the 2νECEC of 106Cd.
These nuclei, with relatively large Q-values, are already being investigated as candidates
for upcoming measurements [219, 311, 312, 35, 36]. Future direct counter experiments
could further test and validate the SEF, which, despite its simplicity and reliance on just a
few parameters, has successfully reproduced the wide spread of experimentally measured
2νββ-decay NMEs.

8.5 Conclusions

In this Chapter, we introduced a semi-empirical formula to describe the NMEs for
two-neutrino double beta decay. Drawing insights from nuclear many-body methods and
patterns observed in experimental data, the proposed 2νββ-SEF incorporates dependencies
on proton and neutron numbers, pairing effects, isospin, and deformation properties of
the initial and final nuclei. Additionally, we identified indications of multilevel modeling
applicability for both 2νββ-decay and the 2νECEC process. However, further measurements
involving proton-rich nuclei are necessary to confirm this hypothesis.

A detailed comparison with prior phenomenological and nuclear models demonstrated
that the SEF achieves the closest agreement with experimental data, effectively capturing
the wide variations observed in measured 2νββ-decay NMEs. The model’s robustness was
validated through LOOCV, and we also provided justifications for excluding geochemical
measurements as inputs. Finally, we highlighted that the SEF predicts significantly different
NMEs, by approximately a factor of 2, for nuclear systems differing by two neutrons,
challenging earlier assumptions of near equality. Future measurements of additional 2νββ
transitions will be instrumental in verifying the accuracy of these predictions.
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9 Summary and outlook

This thesis is dedicated to refining theoretical predictions for nuclear β-decay and
ββ-decay in atomic nuclei, which act as crucial probes for exploring the fundamental
properties and interactions of neutrinos. Using quantum field theory and advanced many-
body methods, the thesis addresses several key topics: the atomic exchange correction for
allowed β-decay, with a particular focus on the unique first forbidden β-decay of 187Re;
an improved formalism for predicting observables in 2νββ-decay and 2νECEC processes;
the influence of electron phase shifts on the angular correlation between emitted electrons
in 2νββ-decay and 0νββ-decay; and a semi-empirical formula for predicting NMEs in
2νββ-decay. The key findings of this dissertation thesis are summarized below.

• We reexamined the atomic exchange correction for allowed β transitions, accounting
for contributions from all occupied s1/2 and p1/2 orbitals. The electron wave functions
were calculated using a modified DHFS self-consistent method. To ensure orthogonal-
ity between the continuum and bound electron states in the potential of the final
atom, we modified the final iteration of the self-consistent procedure. Our findings
demonstrate that orthogonality plays a crucial role in the computation the exchange
correction. Failure to enforce orthogonality between the continuum and bound states
in the final atom introduces errors in the overlaps between the initial atom’s bound
states and the final atom’s continuum states, resulting in a downturn in the total
exchange correction. After enforcing orthogonality, we observed significant differences
in both magnitude and energy dependence compared to prior studies. We tested the
present model with the experimental electron spectra of the β-decay of 67Ni, 151Sm
and 210Pb. We found a very good agreement, especially in the low-energy region of
the spectra where the previous models fail to describe the increasing behavior of the
experimental data.

In addition, motivated by the agreement with the experimental data, an analytical
parametrization for the exchange correction was developed for a broad range of
β-decaying nuclei, with atomic numbers spanning from Z = 1 to Z = 102. From
the systematic study, we found that, apart from the low-energy region, the total
exchange correction exhibits a progressive increase with nuclear charge. At ultra-low
energies, such as 5 eV, the Z dependence of the total exchange effect is influenced
by the closure of s1/2 and p1/2 orbitals. At higher energies, however, the exchange
correction shows a smooth dependence on nuclear charge—a behavior that differs
markedly from earlier studies. We attribute this discrepancy to the enforcement of
orthogonality between the continuum and bound states in our approach. Additionally,
we demonstrated that contributions from orbitals beyond the 2s1/2 orbital are crucial
for accurately determining the total effect, especially at low energies. Finally, the
analytical parametrization of the total exchange correction was tabulated for each
atomic number, for a straightforward implementation in future experimental analyses.

• We investigated one relevant candidate for neutrino mass scale measurement, the
ground-state to ground-state unique first forbidden β-decay of 187Re(5/2+) to
187Os(1/2−). In the β-decay model for rhenium, we have included the corrections
for finite nuclear size, diffuse nuclear surface, screening, and atomic exchange effects.
The latter two effects were calculated using a self-consistent DHFS description for
the atomic bound electrons of the final atom. Given that rhenium β emission involves
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a mixture of s1/2-state and p3/2-state electrons, our exchange correction accounts
for all possible contributions from exchanges with s1/2, p3/2, p1/2, and d3/2 bound
orbitals. Our results reveal significant modifications to the partial decay rates of both
s1/2- and p3/2-state emission channels due to screening and exchange effects, while
preserving the experimentally established dominance of p3/2-state emission.

A key outcome is that, beyond altering the partial decay rates, the atomic exchange
correction introduces substantial modifications in the shape of the total electron
spectrum for rhenium β-decay. By analyzing deviations from an allowed spectrum, we
found that calculations with and without the exchange effect produce entirely different
shape factors, changing from an increasing linear behavior to a decreasing quadratic
one. We provided best-fit parameters for both cases. The shape modification was found
to be significant enough to incorporate the exchange correction into the definition of
the Kurie plot to preserve its linearity in scenarios with zero effective neutrino mass.
Furthermore, we showed how varying effective neutrino masses influence the Kurie
plots near the endpoint of 187Re β-decay. In conclusion, our findings highlight the
critical role of atomic effects, particularly the exchange correction, in current and
future investigations of the neutrino mass scale using β-decay.

• The 2νββ-decay model was enhanced by incorporating radiative and atomic exchange
corrections. As these corrections are introduced on top of our previous Taylor ex-
pansion formalism, we presented a connection between this approach and the SSD
and HSD hypotheses. Additionally, we demonstrated that while the SSD hypothesis
is an approximation for separating the decay rate, it remains useful in testing the
truncation order of the Taylor series. We found that the exchange effect for one
electron emitted in ββ-decay is larger than in β-decay, as the atomic system’s charge
changes by two units in the former case.

For the 2νββ-decay of 100Mo, we found a steep increase in the number of event in
the low-energy region of the single electron distribution due to the atomic exchange
correction, which is in accordance with the previous studies on β-decay. Although
the radiative correction leave the shape of the single electron spectrum unchanged, it
is responsible for an overall increase in the decay rate of about 5%. We also found
that the both correction contribute constructively to a leftward shift of the maximum
in the summed electron spectrum, amounting to about 10 keV for the 2νββ-decay
of 100Mo. Since similar shifts are predicted by new physics scenarios in 2νββ-decay,
our finding might influence the experimental constrains of the BSM parameters.
Additionally, this corrections might affect the future ξ31 and ξ51 measurements. We
also provided the corrected single and summed electron spectra for the 2νββ-decay
of 100Mo under the assumptions of the SSD and HSD hypotheses, as well as for
experimentally measured values of the ξ31 and ξ51 parameters.

The Taylor expansion formalism including radiative and exchange corrections was
also extended for the 2νββ-decay to final 2+ excited states. The new model was for
tested the 2νββ-decay of 150Nd and 148Nd. Measurements of various transitions of
these isotopes to different excited states were conducted over a period of 5.845 years
using a four-crystal low-background HPGe γ spectrometry system at the STELLA
underground low-background laboratory of LNGS-INFN. We found that the half-
life predictions, based on the Taylor expansion formalism and pn-QRPA NMEs
calculations, are in good agreement with the experimental half-lives and limits.

• The Taylor expansion formalism was also extended to the angular correlations between
the emitted electrons in 2νββ-decay. With the new model, we investigated the impact
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of electron phase shifts on the kinematics of ββ-decay in 100Mo. For completeness,
we have considered both 0νββ-decay and 2νββ-decay. For 0νββ-decay only the
light-neutrino exchange mechanism was considered and the others are reserved for
future studies. Our analysis of the angular correlation distributions, α and κ, revealed
a striking feature: when electron phase shifts are included, electrons are most likely
emitted in the same direction if one has an energy below 2 keV.

From a systematic review of the previously reported angular correlation coefficients
K2ν , we demonstrated that incorporating phase shifts influences the results, irrespec-
tive of the approximations employed in factorizing the 2νββ-decay rate or accounting
for atomic screening effects. Specifically, we found that properly accounting for phase
shifts increases the angular correlation coefficient, K, by 7% in the 2νββ-decay and
2% in the 0νββ-decay.

• We have performed a systematic study of the all atoms undergoing 2νECEC processes.
The theoretical model was enhanced with two improvements. First, we employed the
DHFS self-consistent framework to refine the description of bound wave function and
to improve the accuracy of binding energy estimates for captured electrons. Second,
we extended our analysis to include captures from outer orbitals, beyond the K and
L1 shells considered in previous studies.

Using this enhanced model, we updated the PSFs for all atoms undergoing the
2νECEC process. For lighter atoms, we observed minimal differences relative to
earlier models that assumed simplified atomic screening and restricted captures to the
K and L1 orbitals. This similarity arises from a cancellation effect, where the decay
rate reduction caused by more precise screening is balanced by the increase resulting
from higher-orbital captures. However, for medium and heavy atoms, our model
predicted a nearly linear increase in the decay rate with atomic number, reaching
enhancements of approximately 10% in the decay rates for the heaviest cases.

For the recently measured 2νECEC process of 124Xe, special attention was addressed.
For this case, we provided the atomic relaxation energies and the updated PSFs
including also the Pauli blocking effects. Moreover, the NMEs of the process were
computed within the NSM and pn-QRPA models. The NSM result falls within the 2σ
uncertainty range of the experimental measurement. Compared to earlier pn-QRPA
calculations, our results yielded significantly smaller values for M2νECEC

GT−1 . We found
that NMEs for 2νECEC in 124Xe are comparable to those for 2νββ in 128,130Te.

• A novel semi-empirical formula to describe the NMEs for 2νββ-decay was introduced.
Drawing insights from nuclear many-body methods and patterns observed in ex-
perimental data, the proposed 2νββ-SEF incorporates dependencies on the ratio of
proton and neutron numbers, pairing effects, isospin, and deformation properties of
the initial and final nuclei. Additionally, we identified indications of multilevel mod-
eling applicability for both 2νββ-decay and the 2νECEC process. However, further
measurements involving proton-rich nuclei are necessary to confirm this hypothesis.

A detailed comparison with prior phenomenological and nuclear models demonstrated
that the SEF achieves the best agreement with experimental data, effectively capturing
the wide variations of the measured 2νββ-decay NMEs. The model’s robustness was
validated through LOOCV. Finally, we highlighted that the SEF predicts significantly
different NMEs, by approximately a factor of 2, for nuclear systems differing by two
neutrons, challenging earlier assumptions of near equality. Future measurements of
additional 2νββ transitions will be instrumental in verifying the accuracy of these
predictions.
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The results presented in this dissertation represent a significant step forward in under-
standing nuclear β-decay and ββ-decay. The proposed approaches, refined calculations,
and theoretical insights provide a strong foundation for ongoing and future experimental
studies of electron spectra and angular correlations in β-decay and ββ-decay. Additionally,
some of these findings may prove valuable for dark matter search experiments, where the
studied cases in this thesis constitute unavoidable sources of background. The achieve-
ments presented here open new avenues for research and lay the groundwork for further
advancements.
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A Wave functions for relativistic spin-1/2 particles

A.1 Dirac equation

The stationary states of a relativistic particle with spin 1/2 and mass M , under the
influence of a potential V (r), are described by the Dirac equation,

HDψ(r) = Eψ(r) (A.1)

with the Dirac Hamiltonian,

HD = −iα⃗ · ∇⃗+ βM + V (r), (A.2)

where α⃗ = (α1, α2, α3) and β are matrices of size 4× 4. In the spinorial representation they
can be written as

α⃗ =

(
0 σ⃗
σ⃗ 0

)
, β =

(
I2 0
0 −I2

)
. (A.3)

In the above expression, the vector σ⃗ = (σ1, σ2, σ3) is determined by the Pauli matrices
of size 2× 2 defined by,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.4)

and I2 is the unit matrix of size 2× 2. It is important to note that E in Equation (A.1) is
the total energy of the relativistic particle, including its rest energy M . In this chapter, we
adopt the system of units where ℏ = c = 1.

As for the operators associated with the observables of the relativistic particle, the
orbital angular momentum operator L no longer commutes with the Hamiltonian of the
system, as it did in the case of a non-relativistic particle, described by the Scrödinger
equation. In order to construct the total angular moment operator, it is necessary to define
the relativistic spin operator [155, 313],

Σ =
1

2

(
α⃗ 0
0 α⃗

)
. (A.5)

In the relativistic case, the total kinetic moment operator, defined as

J = L+Σ, (A.6)

commutes with the Dirac Hamiltonian from Equation (A.2). In addition to this, the
following operator can be defined,

K ≡ −β(2Σ ·L+ 1) =

(
−(J2 − L2 + 1

4)I2 0
0 (J2 − L2 + 1

4)I2

)
, (A.7)

which commutes with the operators HD, J2 and Jz. Thus, one can simultaneously construct
eigenfunctions for the operators HD, J

2, Jz and K, having the eigenvalues E, j(j + 1),
m and κ respectively. The new quantum number, κ, also called the relativistic quantum
number, can take both negative and positive integer values, and for a fixed value, one can
identify both the quantum number corresponding to the total angular momentum, j, and
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the quantum number corresponding to the orbital angular momentum, ℓ. The values of κ,
ℓ, and j are connected by the following relations,

j = |κ| − 1/2, ℓ =

{
κ if κ > 0,

|κ| − 1 if κ < 0,
(A.8)

or,

κ =

{
−
(
j + 1

2

)
if j = ℓ+ 1

2 ,

j + 1
2 if j = ℓ− 1

2 ,
κ =

{
−ℓ− 1 if j = ℓ+ 1

2 ,

ℓ if j = ℓ− 1
2 .

(A.9)

For an electron with the rest energy M = me = 511 keV, the construction of the atomic
potential, V (r), is crucial in determining the electronic wave functions. In what follows, we
consider only spherical symmetric potentials and we separate the discussion for the bound
and continuum states.

A.2 Bound states

For bound states (Ee < me), each discrete energy level is characterized by its relativistic
quantum number κ, its principle quantum number n and its total energy enκ = me − |tnκ|.
Here, tnκ is the binding energy of the electron in the (n, κ) state. The wave function can
be written as [33]

ψn,κ,m(r) =

(
gn,κ(r)Ωκ,m(r̂)
ifn,κ(r)Ω−κ,m(r̂)

)
. (A.10)

The spherical spinors, Ωκ,m(r̂), are defined by [314, 315]

Ωκ,m(r̂) ≡ Ωℓ
j,m(r̂) =

∑

µ=±1/2

〈
ℓ,
1

2
,m− µ, µ

∣∣∣∣j,m
〉
Yℓ,m−µ(r̂)χµ (A.11)

where ⟨j1, j2,m1,m2|j,m⟩ are the Clebsch-Gordan coefficients and Yℓ,m(r̂) are the spherical
harmonic functions. If the operator is defined,

S =
1

2
σ⃗, (A.12)

then, the spinors χµ are eigenvectors for the operators S2 and Sz with eigenvalues 3/4 and
µ = ±1/2 respectively, with

χ+1/2 =

(
1
0

)
, χ−1/2 =

(
0
1

)
. (A.13)

In the case of 1/2 spin particles, the Clebsch-Gordan coefficients in Equation (A.11)
have a simple analytic form [316], so the spherical spinors can be written in the following
compact form,

Ωℓ
ℓ±1/2,m(r̂) =

1√
2ℓ+ 1


±

√
ℓ±m+ 1

2Yℓ,m−1/2(r̂)√
ℓ∓m+ 1

2Yℓ,m+1/2(r̂)


 . (A.14)

The radial components of the bound orbitals satisfy the normalization condition,
∫ ∞

0
r2

[
g2n,κ(r) + f2n,κ(r)

]
dr = 1. (A.15)
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A.2.1 DHFS self-consistent method

For the calculation of the bound orbitals, we employed the RADIAL subroutine package
[207]. The program DHFS.f, included in the package, solves the Dirac-Hartree-Fock-Slater
(DHFS) equations for the ground-state configuration of neutral atoms and positive ions
with Ne bound electrons and Zp protons in the nucleus. Although the DHFS equations are
obtained by replacing the non-local exchange potential with a local exchange approximation
[317] the results are reliable and the procedure is efficient. There are evidences [318] that
the local exchange approximation can lead to accurate electron binding energies without
need for the extensive numerical calculations of the non-local exchange potential entailed
by the full Hartree-Fock approach.

Following the DHFS approach, the large- and small-component radial functions for
bound orbitals satisfy the radial Dirac equation,

(
d

dr
+
κ+ 1

r

)
gn,κ(r)− (enκ − VDHFS(r) +me)fn,κ(r) = 0,

(
d

dr
− κ− 1

r

)
fn,κ(r) + (enκ − VDHFS(r)−me)gn,κ(r) = 0,

(A.16)

where the DHFS potential,

VDHFS(r) = Vnuc(r) + Vel(r) + Vex(r), (A.17)

is a sum of the nuclear, electronic and exchange potentials.

For the nuclear potential, Vnuc(r), it is considered the electrostatic interaction of an
electron at r with a spherical nucleus filled with protons following a Fermi distribution
[319]

ρp(r) =
ρ0

1 + e(r−Rn)/z
, (A.18)

where Rn = 1.07A1/3 fm, z = 0.546 fm, and ρ0 must be determined from normalization.
Thus, the nuclear potential is

Vnuc(r) = −α
∫

ρp(r
′)

|r − r′|dr
′. (A.19)

The electronic potential describes the interaction energy of an electron at r with the
atomic cloud, and it is found from integrating over the volume of the electron density, ρ(r),

Vel(r) = α

∫
ρ(r′)

|r − r′|dr
′. (A.20)

Due to Slater’s approximation [317], the exchange potential can be expressed in terms
of the electron density in the following way

V Slater
ex (r) = −3

2
α

(
3

π

)1/3

[ρ(r)]1/3 . (A.21)

With the exchange potential, V Slater
ex (r), the obtained self-consistent potential does

respect the correct asymptotic behavior,

lim
r→∞

rVDHFS(r) = −α(Zp −Ne + 1), (A.22)
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because the exchange term cannot cancel the self-interaction term from the electronic
potential. The drawback is solved with the introduction of the Latter’s tail correction [320]
for the exchange potential,

Vex(r) =





V Slater
ex (r) r < rLatter,

−α(Z−N+1)
r − Vnuc(r)− Vel(r) r ≥ rLatter.

(A.23)

The cutoff radius, rLatter, is determined by solving the equation

Vnuc(r) + Vel(r) + V Slater
ex (r) = −α(Zp −Ne + 1)

r
. (A.24)

The only unknown in determining the potential, VDHFS(r), is the charge density of
the atomic cloud, ρe(r). This is determined iteratively until stabilization, hence the self-
consistency of the Dirac-Hartree-Fock-Slater method [321, 322]. For the first electron
density it is obtained analytically from the Moliere parametrization of the Thomas-Fermi
potential [323],

ρ(1)e (r) =
Ne

4πrb2

[
3.60e−6r/b + 0.792e−1.2r/b + 0.0315e−0.3r/b

]
, (A.25)

where b = 0.88534Z
−1/3
p a0 is the Thomas-Fermi radius, with a0 the Bohr radius, and Ne is

the number of bound electrons of the neutral atom or positive ion. Through this, the first
exchange and electronic potentials are determined, and finally the first DHFS potential,

V
(1)
DHFS(r), by Equation (A.17). With this potential the system of coupled differential

equations (A.16) is solved, and the first single-particle wave functions and the first binding
energies are obtained. Having the single-particle wave functions, the electronic charge
density can be renewed with the following relation,

ρ(2)e (r) =
∑

ψ†
n,κ,m(r)ψn,κ,m(r) (A.26)

where the summation is done after all shells occupied with electrons. In the case of electronic
configurations in which all shells (indexed by a and determined by the quantum numbers
na and κa) are completely occupied by electrons, the total charge density has spherical
symmetry (Unsöld theorem) [324] and is given by,

ρ(2)e (r) =
1

4π

∑

a

qa
[
g2na,κa

(r) + f2na,κa
(r)

]
. (A.27)

Here qa = 2ja + 1 = 2 |κa| is the number of bound electrons in the a shell. In the case
of configurations with incompletely occupied shells, with qa < 2ja + 1 = 2 |κa|, spherical
symmetry of the charge density is imposed by considering a fractional occupation number
of the incompletely occupied shell equal to qa/(2ja + 1). Having electron charge density,

ρ
(2)
e (r), one can determine the potential, V

(2)
DHFS(r).

The next iteration will use the combined potential,

V
(3)
DHFS(r) = (1− w)V (1)

DHFS(r) + wV
(2)
DHFS(r), (A.28)

where the weight parameter, w, has a starting value 0.05. During the iterative stabilization
of the electronic charge density, the weight parameter gradually increases up to a maximum
value of 0.5. The self-consistent procedure stops when neither the single-particle wave
functions nor the binding energies anymore vary within a user-imposed numerical tolerance.
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At this moment the electronic charge density, and implicitly the Dirac-Hartree-Fock-Slater
type potential, reach convergence.

The implementation of the self-consistent procedure described above can be found in the
DHFS.f program included in the RADIAL package. This is available in the supplementary
materials of [207], where a comprehensive package manual is also presented.

A.2.2 The DHFS bound states of 124Xe

In the context of the ground state 2νECEC process in the neutral atom 124Xe, the
reaction can be described as follows:

124Xe + 2e− →124 Te∗ + 2νe, (A.29)

During this process, two atomic electrons are captured by the 124Xe nucleus. Conse-
quently, the resulting 124Te atom is left with two vacancies in its electronic configuration,
corresponding to the captured electrons. Importantly, despite the electron capture, the
overall charge of the 124Te atom remains neutral. Hence, in the context of 2νECEC (and
EC) processes, it becomes necessary to consider the description of atomic excited states.
This particular aspect will be discussed in the subsequent Section, focusing on the topic of
atomic relaxation energy.

Table A.1: Binding energies for bound electrons in the neutral 124Xe atom. The results are
obtained with the self-consistent DHFS method presented and used in this work (second
column). The last column presents the experimental measurements [325].

Shell (nℓj) tnκ (DHFS) tnκ(EXP) [325]
[eV] [eV]

1s1/2 -34556.5 −34564.4± 2
2s1/2 -5417.3 −5452.8± 2
2p1/2 -5104.3 −5103.7± 2
2p3/2 -4774.6 −4782.2± 2
3s1/2 -1122.2 −1148.7± 2
3p1/2 -989.7 −1002.1± 2
3p3/2 -926.5 −940.6± 2
3d3/2 -690.9 −689.4± 2
3d5/2 -677.4 −676.7± 2
4s1/2 -208.5 −213.3± 2
4p1/2 -160.8 −145.5± 2
4p3/2 -147.9 −145.5± 2
4d3/2 -69.8 −69.5± 2
4d5/2 -67.7 −67.5± 2
5s1/2 -23.6 −23.4± 2
5p1/2 -12.4 −13.4± 2
5p3/2 -11.0 −12.1± 2

Table A.1 presents the binding energies for all orbitals of the neutral atom 124Xe.
Consistent with the findings in 150Nd, a remarkable agreement is observed between the
DHFS binding energies and the corresponding experimental data. This agreement is
particularly notable for inner shells with κ = −1 form, which corresponds to the orbital
where the electron is most likely to be captured.

A.2.3 Total electron binding energy

In Chapter 7, we have shown that the detection of double electron capture (2νECEC)
events depends on the atomic relaxation of the final system, which results in the emission
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of X-rays and Auger electrons. The theoretical determination of the position of the
experimental peak in the detector relies on the atomic relaxation energy. As the final
atom remains with holes in the shells x and y and relaxes to its atomic ground state
configuration, the atomic relaxation energy can be expressed in terms of the total electron
binding energies of those configurations, as shown in Eq. (7.4),

Rxy = Bgs(Z)−Bxy(Z) for 2νECEC from shells x and y. (A.30)

The following section presents the primary components involved in calculating the total
electron binding energy, B, for a given atomic configuration using the DHFS self-consistent
approach. It is important to note that the total electron binding energy is defined as
negative, and is therefore included in the atomic mass as a subtraction,

M(A,Z) =M(A,Z) + Zme −B(Z). (A.31)

The total electron binding energy for a ground state atomic configuration can be
obtained from the evaluation of the following matrix elements,

Bgs[Ψgs] = ⟨Ψgs |H|Ψgs⟩, (A.32)

where H is the atomic Hamiltonian defined as,

H =
Z∑

i=1

[αi · pi + (β − 1)me] +
Z∑

i=1

Vnuc(ri) +
Z∑

i<j=1

α

|ri − rj |
, (A.33)

where the matrices α and β are defined in Eq. A.3. Here, ri and pi are respectively the
position and momentum operators of the i-th electron.

The ground state atomic wave function, Ψgs, is constructed as a Slater determinant
from the individual electron wave functions,

Ψgs =
1√
Z!

∣∣∣∣∣∣∣

ψ1(r1) . . . ψ1(rZ)
...

. . .
...

ψZ(r1) . . . ψZ(rZ)

∣∣∣∣∣∣∣
(A.34)

Here, the orthonormality of the bound electron wave functions holds,

⟨ψi|ψj⟩ =
∫
ψ†
i (r)ψj(r)dr

=

∫ ∞

0
r2 [gi(r)gj(r) + fi(r)fj(r)] dr

= δij

(A.35)

It is worth noting that when the atom is in an excited state after undergoing the EC
process with a hole in shell x, the construction of the atomic wave function Ψx involves
a different set of individual electron wave functions. For ease of notation, we generally
denote these sets as ψ1, ψ2, . . . , ψZ . There may be slight differences in the individual wave
functions due to changes in the electronic configuration.

Using the Slater-Condon rules [326, 327], the total electron binding energy can be
separated as,

B[Ψ] = Bkin +Bnuc +Bel +Bex, (A.36)
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where the individual terms are given by,

Bkin =
∑

i

∫
ψ†
i (r) [α · p+ (β − 1)me]ψ(r)dr, (A.37)

Bnuc =
∑

i

∫
ψ†
i (r)Vnuc(r)ψ(r)dr, (A.38)

Bel =
α

2

∑

i,j

∫ ∫ [
ψ†
i (r)ψi(r

′)
] [
ψ†
j(r)ψj(r

′)
] 1

|r − r′|drdr
′ (A.39)

and

Bex = −α
2

∑

i,j

∫ ∫ [
ψ†
i (r)ψj(r

′)
] [
ψ†
j(r)ψi(r

′)
] 1

|r − r′|drdr
′. (A.40)

The first two terms are the kinetic and respectively the nuclear total energies. In the
last two expressions the unrestricted sums create terms with i = j, called self-interacting
terms. Those are not contributing in the expression of total binding energy because the
mutual cancellations in Bel +Bex. If one needs to extract the actual total exchange energy
and total electron-electron interaction energy, one need to exclude the self-interaction terms
from the expressions of Bel and Bex.

Depending on whether the atomic configuration is closed or not, the calculation of the
total electron binding energy is different. For configurations with completely filled shells
the Eq. A.32 holds. For opened-shell configurations the total binding electron energy is
obtained as an average energy,

Bav =
1

D
∑

Ψ

⟨Ψ |H|Ψ⟩, (A.41)

where the sum runs over all states corresponding to all combinations of filled orbitals in
the open shells. Here, D is the number of states in the summation. If we denote with,

Bpot = Bnuc +Bel +Bex, (A.42)

then the total electronic binding energy for opened-shell configurations is given by,

Bav = Bav,kin +Bav,pot. (A.43)

In terms of radial integrals the average kinetic term is given by [328]

Bav,kin =
∑

a

qa

∫ {
gnaκa

(
κa
r
fnaκa −

dfnaκa

dr

)

+ fnaκa

[(
κa
r
gnaκa +

dgnaκa

dr

)
− 2mefnaκa

]}
dr

(A.44)

where as previous qa = 2ja + 1 = 2 |κa| is the number of bound electrons in the a shell and
for opened-shells, with qa < 2ja + 1 = 2 |κa|, a fractional occupation number qa/(2ja + 1)
is considered. The average potential energy is given by [328],
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Bav,pot =
∑

a

qa

{∫ (
g2naκa

+ f2naκa

)
Vnucdr

+
α

2
(qa − 1)

[
F 0(a, a)−

∞∑

L=1

dL(κa, κa)

2ja
FL(a, a)

]

+
α

2

∑

b̸=a

qb

[
F 0(a, b)−

∞∑

L=0

dL(κa, κb)

2jb + 1
GL(a, b)

]}
.

(A.45)

Here the sum runs over all occupied shells a and

FL(a, b) = RL(a b, a b)

GL(a, b) = RL(a b, b a)
(A.46)

are the Slater integrals,

RL(a b, c d) =

∫ ∞

0

∫ ∞

0
[gnaκa(r1)gncκc(r1) + fnaκa(r1)fncκc(r1)]

rL<
rL+1
>

× [gnbκb
(r2)gndκd

(r2) + fnbκb
(r2)fndκd

(r2)] dr1dr2,

(A.47)

with r< = min(r1, r2) and r> = max(r1, r2). The coefficients dL(κa, κb) is defined as,

dL(κa, κb) = vL(ℓa, ℓb)
2jb + 1

2ja + 1

〈
Ljb0

1

2

∣∣∣∣ja
1

2

〉
, (A.48)

where

vL(ℓa, ℓb) =

{
1 if L+ ℓa + ℓb is even,

0 otherwise.
(A.49)

In the definition of dL(κa, κb) coefficients, the Clebsch-Gordan coefficient can be evalu-
ated with the useful relation [316],

√
2ja (2jb + 1)

〈
L, jb, 0,

1

2

∣∣∣∣ja,
1

2

〉
=

√
(J − 2L) (J + 1)

〈
L, jb −

1

2
, 0, 0

∣∣∣∣ja −
1

2
, 0

〉

√
(J − 2jb) (J − 2ja + 1)

〈
L, jb +

1

2
, 0, 0

∣∣∣∣ja −
1

2
, 0

〉
,

(A.50)

where J = L+ ja + jb. The Clebsch-Gordan coefficients, ⟨j1, j2, 0, 0|j3, 0⟩, in the right-hand
side vanish if j1 + j2 + j3 = 2K is odd. If j1 + j2 + j3 is even,

⟨j1, j2, 0, 0|j3, 0⟩ = (−1)K−j3

√
2j3 + 1

2J + 1

[
τ(K)

τ(K − j1)τ(K − j2)τ(K − j3)

]1/2
(A.51)

with

τ(K) =
2K(K!)2

(2K)!
=

K!

1 · 3 · 5 · . . . · (2K − 1)
. (A.52)
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The evaluation of Slater integrals is a challenging task that requires careful consid-
eration. A direct evaluation approach is often not sufficiently accurate, and it can also
be computationally intensive, making it impractical in many cases. The aforementioned
drawbacks can be overcome by employing Hartree’s method to solve the Slater integrals.
This method provides a more accurate and efficient approach for evaluating the integrals,
addressing both the accuracy and computational efficiency issues. For the presentation and
implementation of the method we indicate the Supplementary Materials of [207].

A.3 Continuum states

The electrons/positrons emitted in DBD processes are not free particles but interact
with the Coulomb field generated by the atomic final systems, which is a positive/negative
ion of charge Zf = ±2. The scattering wave functions of the outgoing charged particles are
essential ingredients that influence the kinematics of the DBD process. For an electron with
momentum pe, energy Ee =

√
p2
e +m2

e, and spin projection s, its wave function ψs(Ee, r)
can be expanded in term of Coulomb-distorted spherical waves [155, 63, 181]

ψs(Ee, r) =
∑

κ,µ

4πiℓ
〈
ℓκ,

1

2
, µ− s, s

∣∣∣∣j, µ
〉
Y ∗
ℓκ,µ−s(p̂e)

(
g̃κ(Ee, r)Ωκ,m(r̂)

if̃κ(Ee, r)Ω−κ,m(r̂)

)
, (A.53)

where ⟨j1, j2,m1,m2|j,m⟩ are the Clebsch-Gordan coefficients, r stands for the position
vector of the electron with r̂ = r/r, κ is the relativistic quantum number and Ωκ,m(r̂)
are the spherical spinors [314, 315]. The label µ is the projection of the total angular
momentum j = |κ| − 1/2, and the orbital angular momentum is: ℓκ = κ if κ > 0 and
ℓκ = |κ| − 1 if κ < 0. The large- and small-component radial functions, g̃κ(Ee, r) and
f̃κ(Ee, r), respectively, satisfy the following spherical Dirac equation,

(
d

dr
+
κ+ 1

r

)
g̃κ − (Ee − V (r) +me)f̃κ = 0,

(
d

dr
− κ− 1

r

)
f̃κ + (Ee − V (r)−me)g̃κ = 0.

(A.54)

The functions g̃κ(Ee, r) and f̃κ(Ee, r) must also satisfy the boundary condition ”a plane
wave plus incoming spherical waves” and are normalized in such a way that [63, 181]

{
g̃κ(Ee, r)

f̃κ(Ee, r)

}
= exp

(
−i∆̄κ

){gκ(Ee, r)
fκ(Ee, r)

}

−−−→
r→∞

exp
(
−i∆̄κ

)

per





√
Ee+me
2Ee

sin
(
per − ℓκ π

2 + η ln(2per) + ∆̄κ

)
√

Ee−me
2Ee

cos
(
per − ℓκ π

2 + η ln(2per) + ∆̄κ

)



 ,

(A.55)

where ∆̄κ is the overall phase shift and η = αZfEe/pe is the Sommerfeld parameter. The
usual approximation in the DBD is that only the leading order from the expansion of the
wave function contributes and thus the leptons are emitted in s1/2-wave.

It is useful to expand the electron wave function in terms of spherical waves,

ψ(Ee, r) = ψ(s1/2)(Ee, r) + ψ(p1/2)(Ee, r) + ψ(p3/2)(Ee, r) + . . . , (A.56)

where the superscript represents the orbital and total angular momentum
(ℓj = 01/2, 11/2, 13/2, ...) written in the spectroscopic notation (ℓj = s1/2, p1/2, p3/2, ...). The
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first few spherical waves are the following [128]

ψ(s1/2)(Ee, r) =

(
g−1(Ee, r)χµ

f+1(Ee, r)(σ · p̂)χµ

)
, (A.57)

ψ(p1/2)(Ee, r) = i

(
g1(Ee, r)(σ · r̂)(σ · p̂)χµ

−f−1(Ee, r)(σ · r̂)χµ

)
, (A.58)

ψ(p3/2)(Ee, r) = i

(
g−2(Ee, r) [3(r̂ · p̂)− (σ · r̂)(σ · p̂)]χµ

f+2(Ee, r) [(r̂ · p̂)(σ · p̂)− (σ · r̂)]χµ

)
, (A.59)

where p̂ = pe/pe is defined by the momentum of the electron, pe =
√
E2

e −m2
e.

For continuum states (Ee > me), the wave functions are not square integrable, so
usually the normalization is done on the energy scale, i.e.

〈
ψEeκ

∣∣ψE′
eκ

〉
= δ(Ee − E′

e). (A.60)

In the following sections, we present multiple analytical and numerical continuum wave
functions for a given potential V (r). The normalization of large- and small-component
radial functions, gκ(Ee, r) and fκ(Ee, r) respectively, is chosen so that they reproduce the
following spherical Bessel function in the limit V (r)→ 0:

gκ(Ee, r)⇒
√
Ee +me

2Ee
jlκ(pr), fκ(Ee, r)⇒

√
Ee −me

2Ee

κ

|κ|jl−κ(pr). (A.61)

In particular cases of the spherical waves expansion, Eq. (A.56), we have

g−1(Ee, r)→
√
Ee +me

2Ee
j0(pr), f−1(Ee, r)→ −

√
Ee −me

2Ee
j1(pr)

g+1(Ee, r)→
√
Ee +me

2Ee
j1(pr), f+1(Ee, r)→

√
Ee −me

2Ee
j0(pr)

g−2(Ee, r)→
√
Ee +me

2Ee
j1(pr), f−2(Ee, r)→ −

√
Ee −me

2Ee
j2(pr)

g+2(Ee, r)→
√
Ee +me

2Ee
j2(pr), f+2(Ee, r)→

√
Ee −me

2Ee
j1(pr).

(A.62)

A.3.1 Charged sphere potential: approximated solutions

We assume the final nucleus as a uniformly charged sphere, generating the following
potential,

V (r) =

{
−αZ

r for r ≥ R,
−αZ

2R

[
3−

(
r
R

)2]
for r < R.

(A.63)

Here, R is the radius of the final nucleus, R = r0A
1/3 with r0 = 1.2 fm. By keeping the

lowest power of the expansion of r, the radial wave functions for the s1/2 wave and p3/2
wave states are given by [63]

(
g−1(Ee, r)
f+1(Ee, r)

)
=

(
A−1

A+1

)
, (A.64)

and

(
g−2(Ee, r)
f+2(Ee, r)

)
=
per

3

(
A−2

A+2

)
, (A.65)

140



respectively.

The normalization constant can be expressed in a good approximation as

A±k ≃
√
Fk−1(Z,Ee)

√
Ee ∓me

2Ee
(A.66)

where k = |κ| and the Fermi function Fk−1(Z,Ee) is given by

Fk−1(Z,Ee) =

[
Γ(2k + 1)

Γ(k)Γ(2γk + 1)

]2
(2peR)

2(γk−k)eπη |Γ(γk + iη)|2 . (A.67)

The remaining quantity is given by

γk =
√
k2 − (αZ)2, (A.68)

and Γ(z) is the Gamma function.

A.3.2 Point-like potential: analytical solutions

In this approximation scheme, we consider the case, where the final nucleus generates a
point-like potential, V (r) = −αZ/r. The radial wave functions can be expressed analytically
as [214]

gκ(Ee, r) =
κ

k

1

pr

√
Ee +me

2Ee

|Γ(1 + γk + iη)|
Γ(1 + 2γk)

(2pr)γkeπη/2

× Im{ei(pr+ζ)
1F1(γk − iη, 1 + 2γk,−2ipr)},

fκ(Ee, r) =
κ

k

1

pr

√
Ee −me

2Ee

|Γ(1 + γk + iη)|
Γ(1 + 2γk)

(2pr)γkeπη/2

×Re{ei(pr+ζ)
1F1(γk − iη, 1 + 2γk,−2ipr)},

(A.69)

with

eiζ =

√
κ− iηme/Ee

γk − iη
. (A.70)

Here, 1F1(a, b, z) is the confluent hypergeometric function. We mention that the numerical
solutions from the RADIAL package, with the input rV (r) = −αZ, are equivalent to the
analytical solutions presented in Eq. (A.69), if we fix r on the nuclear surface.

A.3.3 Charged sphere nucleus with Fermi proton distribution: numerical
solutions

We consider the final nucleus as a sphere filled with protons following a Fermi distribution
[319]

ρp(r) =
ρ0

1 + e(r−crms)/a
, (A.71)

where we chose for the half-way radius crms = 1.07A1/3 = 6.118 fm (only for 187Re) and for
the surface thickness a = 0.546 fm. ρ0 is determined from the normalization to Z.Thus, the
electrostatic interaction of an electron at r with the final nucleus is described by Vnuc(r)
from Eq. (A.19).
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A.3.4 Charged sphere potential and Thomas-Fermi screening: numerical
solutions

In this scheme, we consider the numerical solutions of the radial Dirac equation for a
uniform charged distribution of the final nucleus. Using the numerical wave functions as
solutions of the radial Dirac equation for the potential described by Eq. (A.63), we consider
the finite size effect of the final nucleus. Moreover, the screening effect of atomic electrons
is considered by the Thomas-Fermi approximation. The universal screening function used
ϕ(r) is the solution of the Thomas-Fermi equation

d2ϕ

dx2
=
ϕ3/2√
x
, (A.72)

with the boundary conditions ϕ(0) = 1 and ϕ(∞) = 0. In Eq. (A.72) x = r/b, with

b ≈ 0.8853a0Z
−1/3
f and a0 is the Bohr radius. For solving the Thomas-Fermi equation we

implied the numerical Majorana method described in [329].

A.3.5 Modified and true DHFS potential: numerical solutions
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Figure A.1: Modified self-consistent potentials (solid curves) for the initial neutral atom,
45Ca (top), and the final positive ion, 45Sc+ (bottom). See Eq. (A.73) and text for details.
In both cases, we indicate the nuclear potential (dashed curve), the electronic potential
(dot-dashed curve) and the Slater’s exchange potential (dotted curve). Figure is taken from
[165].
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Table A.2: Binding energies for neutral atom 45Ca in eV. In the first column, containing the
occupied shells, we indicate with ∗ the relevant shells for the calculation of the exchange
correction. In the second and third column, we present the true DHFS self-consistent
method binding energies and the results obtained with the modified potential, respectively.
In the last column, the experimental values taken from [325], are presented.

Orbital (nℓj) tnκ(true) tnκ(modified) tnκ(exp) [325]
∗1s1/2 -4015.1 -4015.1 −4041± 2
∗2s1/2 -434.1 -434.1 −441± 2
∗2p1/2 -359.1 -359.1 −353± 2
2p3/2 -355.2 -355.2 −349± 2
∗3s1/2 -53.2 -53.2 −46± 2
∗3p1/2 -34.0 -34.0 −28± 2
3p3/2 -33.6 -33.6 −28± 2
∗4s1/2 -5.45 -5.08 −6.113± 0.01

Table A.3: Binding energies for neutral atom 187Re in eV. In the first column, we indicate
all occupied shells using the spectroscopic notation [207, 330]. In the second and third
columns, we present the true DHFS self-consistent method binding energies and the results
obtained with the modified DHFS self-consistent method, respectively. In the last column,
we present the experimental values taken from [325].

Orbital (nℓj) tnκ (true) tnκ (modified) tnκ(exp) [325]
1s1/2 -71857.5 -71857.5 −71681± 2
2s1/2 -12508.4 -12508.4 −12532± 2
2p1/2 -11993.7 -11993.7 −11963± 2
2p3/2 -10537.7 -10537.7 −10540± 2
3s1/2 -2911.9 -2911.9 −2937± 2
3p1/2 -2677.7 -2677.7 −2686± 2
3p3/2 -2360.0 -2360.0 −2371± 2
3d3/2 -1961.4 -1961.4 −1953± 2
3d5/2 -1891.9 -1891.9 −1887± 2
4s1/2 -615.7 -615.7 −629± 2
4p1/2 -516.7 -516.7 −522± 2
4p3/2 -442.2 -442.2 −450± 2
4d3/2 -277.8 -277.8 −278± 2
4d5/2 -263.9 -263.9 −264± 2
5s1/2 -91.2 -91.2 −86± 2
5p1/2 -60.6 -60.6 −56± 2
4f5/2 -55.0 -55.0 −47± 2
4f7/2 -52.3 -52.3 −45± 2
5p3/2 -49.0 -49.0 −45± 2
5d3/2 -9.28 -9.24 −9.6± 1
5d5/2 -8.24 -8.20 −9.6± 1
6s1/2 -7.98 -7.67 −7.9± 1

143



The easiest way to ensure the orthogonality between continuum and bound states,
e.g.,

〈
ψ′
Ees

∣∣ψ′
ns

〉
= 0, is to use the same potential in the calculation of the continuum and

bound wave functions for the final positive ion atom. The procedure we used is that when
obtaining the bound states, in the last iteration of the DHFS self-consistent method, we
do not impose the Latter’s tail correction for the exchange potential, Eq. A.23. In this way
the potential for both continuum and bound states is written as,

V (r) = Vnuc(r) + Vel(r) + V Slater
ex (r), (A.73)

where the electronic and exchange components are obtained from the last iterated electron
density. In this way, we respect the correct asymptotic condition for a scattering potential,
lim
r→∞

rV (r) = −α(Zp −Ne). In Fig. A.1, we present the modified potentials for the initial

neutral atom 45Ca, and the final positive ion 45Sc+. In what follows, when we use the
potential from Eq. (A.73), for both continuum and bound states, we call the procedure
a modified DHFS self-consistent method. Contrary, when the Latter’s tail correction is
imposed on the exchange potential as in Eq. (A.17), we call the procedure a true DHFS
self-consistent method.

We indeed deviate from the true DHFS self-consistent method, but it turns out that
the modifications in the binding energies and the bound wave functions are negligible. In
Table A.2, we present the binding energies of the occupied states for the neutral atom 45Ca.
The difference between the true self-consistent DHFS potential and the modified potential
leads to a negligible difference just in the binding energy of the last occupied orbital, 4s1/2.
In Table A.3, we compare the binding energies obtained with the true and modified DHFS
methods with the experimental values for the neutral atom 187Re. We can see again that
the deviation from the conventional (true) DHFS method subtly influences the binding
energies of the last three occupied orbitals.
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[75] F. Šimkovic, P. Domin, and S. V. Semenov, Journal of Physics G: Nuclear and
Particle Physics 27, 2233 (2001).
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[103] R. Mohapatra, A. Pérez-Lorenzana, and C. de S. Pires, Physics Letters B 491, 143
(2000).

[104] J. Kotila, J. Barea, and F. Iachello, Phys. Rev. C 91, 064310 (2015).
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[172] O. Niţescu, R. Dvornický, and F. Šimkovic, Phys. Rev. C 109, 025501 (2024).
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[245] O. Niţescu, S. Ghinescu, S. Stoica, and F. Šimkovic, Universe 10, 10.3390/uni-
verse10020098 (2024).
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