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1 INTRODUCTION 1

1 Introduction

In 1911 an existence of the atomic nucleus was revealed by Rutherford by bom-

barding of a gold-foil with α-particles. The weight of nucleus was explored by

Thomson, who discovered also existence of isotopes. In 1932 the neutron was

found by Chadwick, together with proton appearing to be the basic constituent

of nucleus. It was natural to suppose an existence of another essential interaction

binding protons and neutrons in nuclei - the strong interaction. Since that time it

has been one of the basic problems and tasks of nuclear physics to understand its

nature and principle, and, consequently, to describe the structure and properties

of atomic nuclei.

The first qualitative features of the nuclear interaction was deduced from

binding energies of light nuclei (mainly of deuteron - the only two-nucleon sys-

tem bound), it turned out to be of a short-range and strong nature. There

were performed first proton-proton scattering experiments in 30’s which revealed

its charge independence. The first more fundamental idea of strong interaction

originated from Japanese physicist Hideki Yukawa in 1935. He suggested an exis-

tence of particle of medium mass (in comparison with nucleons) – meson – which

should be responsible for intermediation of the strong interaction. Gravitational

and electromagnetic interactions were the only forces known at that time, both

having a simple mathematical form. However, the strong interaction proved to

be much more complicated.

In 1937 the muon was found in cosmic radiation, interpreted as the particle

proposed by Yukawa. Although the incorrectness of this assumption revealed

later, it had supported the interest in Yukawa’s idea. Finally, in 1947 the real

meson, pion, was discovered in cosmic background, and soon after that also in

Berkeley. The existence of a strong-interacting meson was motivation for the

theoretical study of strong interaction in 50’s. The pion appeared as a particle

analogical to the photon in quantum electrodynamics. Based on QED success, ex-
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pectations were strong. After decade of nucleon-nucleon scattering and deuteron

research the pion (one-pion exchange) turned out to be a long-range part of strong

interaction, while the shorter-range double-pion exchange was unable to describe

empirical facts.

Building-up a phenomenological description of nuclear potential was a way out

which was enabled by successful development of NN scattering experiments, that

(contrary to the research of many-body system properties) offered more detailed

information, especially in high energy scattering. Through these experiments

an importance of spin and spin-orbit interaction was recognized. This period

coincides with the first attempts of many-body system description in one-pion

approach. Schiff [1] came with an idea that nuclear saturation could result from

strong nonlinear self-interactions of scalar field. Johnson and Teller [2] showed

that nucleon moving in potential created by a classical condensed field explained

many empirical features of nuclear structure. Also Duerr [3] showed that using

of the field theory considering vector and scalar mesons explained many finite

nuclei properties.

In 1961 detection of heavier mesons became an important landmark in dis-

covering the nature of strong interaction - ρ meson was found in Brookhaven

and ω meson in Berkeley. The first product of this progress were OBE models

(One Boson Exchange), based on Yukawa’s conception of meson-intermediated

nuclear interaction, and on the results of observations showing that mesons inter-

acted also with themselves, with tendency to behave as a single particle of finite

mass and quantum numbers. The most important of these correlation-induced

contributions to strong interaction appeared to be a correlated 2π-exchange, sim-

ulated by the exchange of a single isoscalar-scalar meson (σ), being responsible

for mid-range part of the interaction.

This fact together with the discovery of other mesons have influenced also de-

scription of many-body systems. Nuclear matter, a hypothetical infinite uniform

system of nucleons, has become a subject of study. Due to several approxima-
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tions which can be introduced for a description of such a system, mathematical

solution of the problem is relatively simple. Nuclear matter is characterized by

several parameters, e.g., binding energy per nucleon and saturation density. These

empirical values are obtained from high-energy heavy-ion collision experiments,

as well as from the study of heavy nuclei (by an extrapolation of charge and

mass distribution) where the matter in their center is approximately the nuclear

matter.

A great interest was paid to nonrelativistic description of many-body sys-

tem. The base of this approach is the Hartree-Fock theory where nucleons move

independently in a self-consistent single-particle potential originated from their

interaction with other nucleons. The result is a set of single-particle wave func-

tions. These calculations were also applied (considering of phenomenological

two-particle potential reproducing the nuclear matter properties) to finite nuclei

of the periodic table of elements. In spite of the successes of the nonrelativistic

approach there remained some discrepancies between empirical observations and

calculated results.

In 1974 an important progress was achieved when Walecka used a renormal-

izable field theory of baryons and mesons, characterized by finite number of cou-

pling constants and masses [4, 5]. These can be calibrated to the observable

nuclear properties, and then it is possible to extrapolate to high density and

high temperature regions without any additional parameters. Since baryons and

mesons are used as relevant degrees of freedom, the theory has been known as

quantum hadrodynamics (QHD). Relativistic nucleon motion must be considered

with increasing density as well as causal constraints. The reason for the relativis-

tic treatment is also the fact that in spite of the apparently low nuclear binding

energies which are only several per cents of the nucleon rest mass, this is due to

a delicate balance between attractive scalar and repulsive vector potentials, both

of the value of several hundreds of MeV. From above mentioned follows that the

only approach unifying the required constraints is a local relativistic many-body
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quantum field theory.

The most important contributions to the boson exchange potential come from

an exchange of σ(0,+,0), ω (1,-,0), η (0,-,0), ρ (1,-,1), π (0,-,1), and δ (0,+,1)

mesons (with spin, parity, and isospin, respectively). Other mesons appeared to

be less important, mostly due to their heavy masses and weak coupling constants.

Walecka’s original idea was to create a fundamental theory of strong interac-

tion where the mesons are quanta of field analogically to the role of photon in

QED. However, nowadays the candidate for fundamental theory is the quantum

chromodynamics (QCD) where gluons are the carriers of the interaction between

quarks. From other features of this theory (asymptotical freedom, quark con-

finement) follows that QCD is simple and manageable only at short distances

(high energies), and complicated at long distances (low energies). The meson

theory can be understood as an effective description of quark-gluon dynamics in

low-energy region. If the general lagrangian obeying QCD symmetries (Lorentz

covariance, parity conservation, time inversion and charge-coupled invariance...)

is constructed then the effective theory is general parametrization of the under-

lying quantum chromodynamics. The main reason for using such a low-energy

approach is experimental observation of mesons and baryons. One of the goals of

effective hadron theory is to reach better understanding of its previous successes

in low energy region as well as their relation and connection to QCD. Another

argument for developing the effective theories is the renormalization problem.

The original Walecka’s QHD model was renormalizable. Unfortunately, these

renormalizable models have encountered difficulties due to large effects from loop

integrals that incorporate the dynamics of the quantum vacuum [6]. The effective

theory was an alternative.

Deeper understanding of the strong interaction is motivated not only by ne-

cessity of the nuclear structure and reaction description but also by observed

astrophysical and cosmological phenomena. The situation is illustrated in Fig. 1.

Existing atomic nuclei cover only narrow window of the nuclear equation of state



1 INTRODUCTION 5

(EOS). However, astrophysics region supposes an existence of extreme phenom-

ena, requiring knowledge of delicate details of the nuclear interaction behavior.

Already in 1934 Baade and Zwicky [7] proposed an idea of neutron stars - objects

with small radius and much stronger gravitational coupling than in the case of

ordinary stars. Such a kind of stars rises from supernova explosions - one of the

final periods of their evolution. The first models were developed by Oppenheimer

and Volkov, describing neutron star matter as an ideal gas consisting of free neu-

trons. Most of the works on neutron stars at that time were based on an idea

that neutron cores of ordinary stars are the source of their energy. However, after

understanding of thermonuclear synthesis, interest in this field fell down.

Figure 1: Connection between finite nuclei and stellar configurations, being in
principle giant atomic nuclei, is apparent also from this illustration.

Discovery of cosmic sources of röntgen radiation [8] refreshed this area of

nuclear interaction applications. The finding was interpreted as an observation

of a young neutron star and many models of neutron stars and their evolution

have emerged. However, many theoreticians did not believe in an existence of such

extreme objects. Situation changed in 1967 when the pulsars [9] were discovered.
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Nowadays, it is generally accepted that pulsars are rapidly rotating neutron stars.

A pulsar in supernova explosion remnants was revealed, thus confirming theory

of pulsars’ birth process. Observing pulsars in binary systems enabled empirical

determination of their mass.

Due to the recent developments both in the theoretical and experimental nu-

clear physics and astrophysics, it is inevitable to improve the models describing

nuclear systems. This work deals with nuclear matter properties calculations in

the mean-field theory. The nuclear matter is a starting point for description of

other phenomena and processes. Since new accelerator facilities produce nuclei

with high isospin asymmetry and nuclear matter at densities of several times

of the saturation density, and developing astrophysical observations of compact

objects consisting from highly asymmetric nuclear/baryon matter have been per-

formed, it is useful to enhance the isovector description of nuclear matter. This

work fulfils this aim through incorporation of isovector scalar δ meson as well

as by cross interaction between vector ω and ρ mesons. The parametrizations

obtained by fitting procedure to the more fundamental Dirac-Brueckner-Hartree-

Fock theory (which is, however, not applicable to finite nuclei calculations yet)

represent an effective description of asymmetric nuclear matter applicable also to

finite nuclei calculations. The role of the cross interaction is examined, both in

asymmetric nuclear matter and neutron star matter (nuclear matter containing

also hyperons and leptons in β-equilibrium).

This work consists of introduction where a brief historical overview has been

given. The second section describes an outline of recent status of the finite nuclei

and nuclear matter description problems and also closely related (astrophysical)

topics. The theoretical framework of the mean-field theory is then given, includ-

ing vector cross interactions as well as hyperon and lepton incorporation in β

equilibrated matter. The goal draft follows. The obtained results are analyzed in

detail in the next two sections. Summary and outlook are presented in the end

of work.
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2 Recent Developments

Several physical phenomena provide information about nuclear structure and NN

interaction. The scattering of medium-energy nucleons, employing the Dirac-

Hartree description of the nucleus together with the relativistic impulse approx-

imation (RIA) [10], is one of them. Interaction between projectile and target

which is assumed to have the same form as the interaction between free nucleons,

is used to produce a nucleon-nucleus optical potential.

The effective field theories (developed due to difficulties of renormalizable

QHD theories, as mentioned in introduction), rely on the observation that it

is not necessary to explicitly include dynamics at significantly shorter length

scales than that are relevant for phenomena examined. The effects of degrees of

freedom corresponding to shorter length scales are implicitly contained in coupling

parameters in the effective theory, by fitting these parameters to experimental

data. A well-known application of the effective theory is chiral perturbation

theory in which one observes that the spontaneous breaking of chiral symmetry

in QCD implies that Goldstone boson such as pions are the relevant degrees of

freedom in the low-energy region [11]. Studies of two- and many-body systems

are under investigation now [12].

Generally theoretical activities in the field of nuclear many body theories can

be grouped into three different approaches: ab initio methods; self-consistent

mean-field (MFT) and shell-model theories; and macroscopic models with mi-

croscopic shell corrections. Nuclear MFT are partially analogical to density-

functional theory [13] which gives a successful description of many-electron sys-

tems.

The starting point of ab initio methods is a given nucleon-nucleon potential

- an effective interaction for description of nucleon-nucleon scattering data. Its

characteristic features are strong repulsive core, thus the nuclear matter behaves

as a strongly correlated quantum liquid. Such a description requires highly sophis-
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ticated many-body theories, for example, Dirac-Brueckner-Hartree-Fock [5, 14]

that provide a direct connection of two-nucleon problem and nuclear matter prop-

erties. However, due to its complexity it is not applicable to finite nuclei calcu-

lations at present. Another possibility is an usage of correlated basis functions

[15]. Nuclear saturation properties are well reproduced by all these treatments.

There is, however, a distinction - the nuclear matter saturation is appropriately

reproduced also quantitatively only by models which employ not only nucleon-

nucleon interaction, but also additional empirical three-body force. Continuous

investigation is being run nowadays, trying to use connections from underlying

QCD [16] to explain the microscopic origin of this force, and recently also by

intrinsic nucleonic degrees of freedom.

The average features of nuclear binding energies are described sufficiently by

macroscopic nuclear liquid-drop model [17]. The energy is parameterized in terms

of the global properties such as volume energy, asymmetry energy, surface energy

etc. Additionally, using a phenomenological single-particle potential, a correc-

tion energy is calculated from single particle spectrum, and this microscopic-

macroscopic method has reached high descriptive power. A large amount of

ad hoc modelling, however, strongly limits the extrapolation capabilities of this

model.

Another model working at microscopic level but employing also effective inter-

actions is the shell-model. In this approach one takes for the mean-field a standard

phenomenological single-particle model but then performs a configuration-mixing

calculation involving all many-body states that can be constructed using a broad

band of single-nucleon states around the Fermi energy [18]. The residual inter-

action in the active space is usually fitted phenomenologically, and also problem

of proper saturation point is avoided by using a phenomenologically prescribed

mean field. Due to rapidly growing dimension with system size the Monte Carlo

techniques or specific diagonalization methods have been developed for heavier

nuclei.
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On the other hand, the mean-field theories concentrate on self-consistent de-

termination of the nuclear mean field. The effective interactions are used in the

mean-field calculations. Actual parameters are adjusted by fits to nuclear struc-

ture data. After passing through problem of symmetry of the wave function which

had limited application of the model to ground-state properties of even nuclei,

studies of properties of heavy nuclei could be systematically performed. Exper-

imental developments increasing our knowledge of nuclei far from stability have

also significantly contributed to improvement of effective interactions. Nowadays,

one has to introduce correlations beyond the mean field to improve further the

description quality of this very successful model.

Generally, the mean-field models deal with a potential well of nucleons com-

puted from the nucleonic wave functions. This is theory at the level of Hartree-

Fock approximation. This is inadequate for a description of nuclear proper-

ties that are strongly influenced by pairing correlations. Generalization of the

mean-field concept including a pairing field, calculated with the Hartree-Fock-

Bogoliubov (HFB) equations [19], takes these correlations into account.

Widely used method for time-reversal-invariant systems is the BCS approxi-

mation. However, due to required knowledge of pairing partner states it is well

defined only in the case of time-reversal invariance. In such systems a much

simpler calculation scheme is generated, and it is the reason that the BCS is

introduced for such systems.

The basic idea of microscopic-macroscopic approaches is a separation of to-

tal energy into the smooth background energy and the shell-correction energy.

It is calculated from single-particle energies obtained either from parameter-

ized single-particle models (modified harmonic oscillator, Woods-Saxon or folded

Yukawa potentials) or from fully self-consistent mean-field calculations where this

shell-correction energy appears as an useful tool for analyzing MFT models and

parametrizations [20]. The background energy then has to be parameterized

with the highest possible accuracy. A direct connection of self-consistent MFT
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and micro-macroscopic models is obtained by means of semiclassical approxima-

tions. The simplest one is the Thomas-Fermi model and extended Thomas-Fermi

model [21]. This model is able to describe many local features of self-consistent

MFT models. References to many relativistic and extended Thomas-Fermi works

can be found in Ref. [22].

Due to a present incapability to perform full ab initio calculation of finite

nuclei, one employs effective interactions. The short range of nuclear interaction

and the long wavelength of the single-nucleon states suggest an expansion in terms

of zero-range interactions which is called density-matrix expansion and provides

formal derivation framework for the Skyrme energy functional [23]. It is necessary

to obtain an effective two-body interaction, e.g. from Brueckner-Hartree-Fock

microscopic force. The derivation of parameters of the expansion from the given

Brueckner-Hartree-Fock calculations has provided a fair reproduction of nuclear

properties in subsequent mean-field calculations [24] but it fails quantitatively. It

could be the problem of local-density approximation itself or of the Brueckner-

Hartree-Fock calculations but this question has not been answered clearly yet.

2.1 Effective Interactions

Three standard models are used for the nuclear mean field - based on Skyrme

interactions [25], Gogny force [26] and relativistic mean-field model [4].

The Skyrme Hartree-Fock approach employs zero-range interaction. The to-

tal binding energy in the Skyrme Hartree-Fock approach is given by the sum of

the kinetic energy, the Skyrme energy functional which models the effective in-

teraction between nucleons, the Coulomb energy, the pair energy and corrections

for spurious motion. Due to local nature of the Skyrme energy functional, it has

several technical advantages. The number of integrations required for solutions

of Skyrme Hartree-Fock equations is significantly reduced because of the same

structure of exchange and direct terms. There are two basic concepts to derive

the Skyrme energy functional. The first one is a derivation from the Hartree-
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Fock expectation value of the zero-range momentum dependent two-body force

introduced by Skyrme. Almost all the Skyrme forces are well known to have

unrealistic pairing properties. This strict approach is thus rarely used, and the

contributions to the pair energy are dropped. Additionally, it introduces many

dependencies among the coupling constants that lead to some difficulties. For

instance, the usual parametrization of a three-body force which was used in some

early parametrizations to derive the density-dependent term, causes a spin insta-

bility in the infinite nuclear matter and finite nuclei, a problem which persists

even in recent parametrizations. The second concept is parametrization of energy

functional directly without reference to an effective two-body force. It is free of

all previous mentioned difficulties. Free parameters are coupling constants of the

energy functional not fixed by global symmetries. Also particle-hole and particle-

particle (pairing) channels of the effective interactions are decoupled. The only

disadvantage is that the additional coupling constants have to be adjusted to the

data and only few applications have tried this so far.

The interpretation of the Skyrme interaction as an energy density functional

endows the spin-orbit interaction with a more flexible isospin structure. The new

forces were thus constructed [27] differing from the standard Skyrme Hartree-Fock

forces in the extrapolation of shell structure to exotic nuclei. The difference in

spin-orbit force between standard relativistic mean-field and the Skyrme energy

functional in a nonrelativistic limit is not made by its isospin dependence only,

but also by its density dependence. This degree of freedom was explored in Ref.

[28].

In the first Skyrme interactions a power of density dependence α = 1 was

used, however, this yielded too large incompressibility. The simple generalization

from 1 to α has been the most efficient way, although many other generalizations

have been tried. Nonetheless, all generalizations of density dependence performed

so far were formulated within the Hartree-Fock expectation-value approach to

the Skyrme energy functional which leads to the interrelations between coupling
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constants and also adds density dependencies in unwanted places.

While the standard relativistic mean-field model has finite range couplings

through exchange of mesons, the Skyrme Hartree-Fock method uses strictly point

couplings. However, there is a variant of the Skyrme Hartree-Fock which merges

the gradient term with the zero-range two-body force into a finite-range two-

body coupling. Recently also an alternative approach has been developed [29].

Whereas the Skyrme functional can be viewed as a systematic expansion in deriva-

tives up to second order with usually simple density dependence, this alternative

approach’s functional omits the terms containing derivatives except for the spin-

orbit interaction and employs much more elaborate density dependence for all

remaining terms.

Unlike the Skyrme Hartree-Fock, the Gogny force employs a finite range inter-

action. However, there was not reached a correct reproduction of binding energies

at the Hartree-Fock level of approximation. It was thus suggested to add a den-

sity dependence in the interaction and also spin-orbit term. The divergence of

zero-range pairing model is avoided and that enables one to use Gogny interac-

tion simultaneously in both mean-field and pairing channels. The interaction has

been adjusted with the direct Coulomb and Coulomb exchange terms calculated

exactly.

Widely used and powerful tool for describing various aspects of many body

problem - the mean-field theory [5, 30] - provides an elegant and economic frame-

work for calculation. The first attempts were nonrelativistic ones, however, due to

empirically proved existence of large scalar and vector fields in nucleon-nucleon

interaction comparable with nucleon mass, it appeared necessary to take into

account relativistic effects. Relativistic treatments have several advantages, for

example, natural incorporation of the spin-orbit force [5], shift of the saturation

curve - the so-called ”Coester band” - towards the empirical values [14], the suc-

cessful description of finite nuclei [31], etc. The nonlinear MFT approach [32] has

already been proven to be a reliable tool for the calculations of finite nuclei prop-
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erties in the valley of stability. By reason that new experimental capabilities have

been developed by a continual improvement of particle accelerators, it is available

nowadays to measure properties of exotic nuclei with high isospin asymmetry. Ad-

ditionally, increasingly more precise observations and measurements of properties

of neutron stars and supernovae have been carried out. This naturally brings a

need for a better description of isospin degree of freedom, which can be done

by enhancing the isovector meson sector. The isovector scalar δ-meson was in-

cluded into MFT in Ref. [33] for this purpose and recently also cross interactions

between isovector and isoscalar fields have been introduced [34], being studied

also in this work. The basic concept of MFT is building the many-body state as

an independent quasiparticle state from single-particle wave functions which are

four-component Dirac spinors. The interaction through meson fields is considered

to be an effective one. One has a choice to use effective zero-range forces (point

couplings) and much more frequently used effective finite-range interactions. As-

suming nucleus to be a system of interacting nucleons and mesons, the effective

interaction is introduced through Klein-Gordon equations for the meson fields

which are coupled to the Dirac equations for the nucleons. Using several approx-

imations, these equations are solved selfconsistently. Either through nonlinear

self-couplings of meson fields or through density-dependent coupling constants

(or through a combination of both) one can also model a density dependence.

More detailed information about mean-field framework will be given in the third

section of this work.

There are also several alternatives to this model, mostly motivated by its

particular defections. For example, derivative tensor couplings of the vector fields

are used within the standard relativistic mean-field approach [35], and derivative

couplings of the scalar field were introduced in Ref. [36].

An alternative to nonlinear couplings in terms of the density-dependent cou-

pling constants have been suggested [24], known as density-dependent mean-field

model. Relativistic Hartree-Fock models of nuclear matter and finite nuclei are
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described in Ref. [37, 38]. The role of pion is discussed in Ref. [39], relativistic

density-functional theory for nuclei is analyzed in Ref. [40]. Also a point coupling

model has been explored recently [41]. However, these models does not approach

yet in quality the standard model.

Model of strong interaction needs to contain also the Coulomb interaction.

All relativistic mean-field forces and also the early Skyrme Hartree-Fock forces

incorporate the direct Coulomb term only.

Another important feature is represented by pairing correlations. A widely

used effective pairing interaction is a zero-range local force, often including a

density dependence. This simple form of interaction was introduced in 1970’s

[42]. All pairing models blur the occupation of single-particle levels close to the

Fermi surface. Thus the dominant contribution comes from the nuclear surface.

The strength of pairing force depends on isoscalar effective mass and is adjusted

phenomenologically to reproduce the odd-even staggering of energies in selected

nuclei. Also more complicated pairing interactions were used by adding several

terms for density derivatives to a density-dependent interaction. Deriving a rela-

tivistic theory of pairing has been an important progress of recent years, also with

its application to finite nuclei [43]. However, calculations using pairing interac-

tions do not converge generally, hence a prescribed cutoff has to be complemented.

There are slight differences among cutoff recipes used in different methods.

2.2 Correlations Beyond the Mean-Field

The bulk properties of many nuclei are well described by the static mean-field

approach discussed above. However, to achieve higher precision or to describe

larger set of data one has to consider additional correlations. It is possible through

various concepts. The first is the generator coordinate method which is closely

related to multi-configurational Hartree-Fock method used in atomic physics and

also to Monte Carlo shell model in nuclear physics. Second one is the path-

integral method, where both methods allow to deal with large-amplitude collective



2 RECENT DEVELOPMENTS 15

motions that appear to be the most important correlation effect. The third

method are diagrammatic methods which are also useful for collective motion

study.

The generator coordinate method was one of the first attempts to incorpo-

rate both collective and single-particle nuclear dynamics [44]. It can describe

a wide range of phenomena and it has improved out understanding of the con-

nection between phenomenological models of collective motion and microscopic

approaches (e.g., Hartree-Fock). Moreover, thanks to the approximations of this

method such as the Gaussian overlap approximation which is an intermediate step

of connection between generator coordinate method and Schrödinger equation,

it is possible to make links between microscopic models and collective models.

They have been used to determine simple rotational and variational corrections

to mean-field results.

A characteristic feature of the many-body problem study is an existence of

symmetries. They introduce relations between the single-particle wave functions.

While self-consistent mean-field wave functions are often constructed in a su-

perposition manner, they break symmetries of nuclear Hamiltonian and these

symmetries associated with zero excitation energy and large-amplitude motion

have to be restored. One possibility is using of particle-number projection with

variation after projection [45] that arises from the BCS states not being eigen-

states of the particle-number operator, and is useful in description of, e.g., fast

rotating nuclei. It is often advantageous to use also the Lipkin-Nogami approx-

imate scheme for particle-number projection [46]. Similarly, since the deformed

mean-field states are not eigenstates of the total angular momentum, the angular

momentum projection is used [47], together with several additional approxima-

tions [48] satisfactorily describing properties of deformed nuclei. The last, but

very important restoration procedure is center-of-mass projection [49], induced

by broken translational invariance following from localization of mean field in

space. The relative contribution of center-of-mass correction to the total bind-
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ing energy is the largest for light nuclei since its value decreases with increasing

nucleon number and vanishes for infinite nuclear matter.

A straightforward extension of stationary mean-field models is represented by

the time-dependent mean-field methods. There are various approaches: time-

dependent density-functional theory [50], in the nuclear dynamics known as

the time-dependent Hartree-Fock (TDHF), or the time-dependent Hartree-Fock-

Bogoliubov (TDHFB) in the case of pairing. There are many applications of these

methods, e.g., in nuclear and heavy-ion dynamics [51]. Limiting cases are often

considered, for example, the low-energy region of surface vibrations and fission

is reached by adiabatic TDHF. The TDHFB is a starting point for quasiparticle

Random-Phase Approximation (QRPA), due to its first derivation with diagram-

matic techniques [52] being a basic theory of nuclear excitations in the regime of

giant resonances. There exists many different notations for the RPA equations

and techniques for their solution. Since one is often interested only in few key

data, many simplifications such as sum-rule approaches are also used. One has

also to note that there are some problems in connection with energy functionals

and usual practise is to ignore RPA correlations, since they are supposed to be

contained in the energy functional, and to consider only RPA excitations.

2.3 Parametrizations

Several bulk properties of finite nuclei and key features of nuclear matter are used

as a phenomenological input for adjusting of the effective forces. Probably the

most paramount one is the total binging energy of nucleus which can be obtained

by numerical solutions of the mean-field equations, corrected also for spurious

motion. Nuclear structure can be well analyzed by using the nuclear charge den-

sity which provides information about nuclear shape and is determined by elastic

electron scattering. Due to a need for considering also intrinsic electromagnetic

structure of the nucleons, one has to take into account also the proton and neu-

tron densities individually. Most of the information contained in the charge form
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factor at low momentum can be described by root-mean-square radius, the (first)

diffraction radius and surface thickness. By reason that calculation of charge rms

radius from full charge form factor is difficult, approximations are often used for

simplification [53]. Another related quantity directly accessible from experiments

is the isotopic shift of charge mean-square radii. The most important quantity

affecting the charge distribution is proton distribution, however, also neutron

distribution provides useful information.

Effective interactions are widely characterized also by infinite nuclear matter

properties. Important features are energy per particle (often called equation of

state) with its minimum at saturation density, then incompressibility of matter

corresponding to the curvature around saturation point and related to, e.g., gi-

ant monopole resonance. Isovector curvature at saturation point determines the

symmetry energy, and due to quasiparticle nature of mean-field models, an im-

portant quantity is also nucleon effective mass. For more detailed information

and theoretical definition of these quantities see the next section of this work.

The actual values of infinite nuclear matter properties are listed in Tab. 1.

Table 1: Properties of nuclear matter for various parametrizations: binding en-
ergy Eb at saturation density ρsat

B , incompressibility K∞, and nucleon effective
mass fraction m∗/m. Adapted from Ref. [55].

Parametrization ref. Eb[MeV ] ρsat
B [fm−3] K∞[MeV ] m∗/m

SIII [56] -15.93 0.145 356 0.76
SkM∗ [57] -15.86 0.161 218 0.79
SkP [58] -16.03 0.163 202 1.00
SLy6 [59] -15.92 0.159 230 0.69
SkI4 [27] -15.92 0.160 248 0.65
BSk1 [60] -15.80 0.157 231 1.05
D1S [61] -16.02 0.160 209 0.67
NL3 [62] -16.24 0.148 272 0.59

NL-Z2 [63] -16.07 0.151 172 0.58
PC-F1 [41] -16.17 0.151 270 0.61
NL-BA [64] -16.19 0.150 248 0.60
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For study of surface properties there was developed semi-infinite nuclear mat-

ter extension of the models, for example, in relativistic mean-field framework [65].

Key properties of such a matter are the surface and asymmetry coefficients and

the surface thickness.

A particular attention has to be paid to the pairing gap and odd-even stagger-

ing of masses. The unpaired nucleon contribution is not half of a pair, on top of it,

it also breaks intrinsic time-reversal invariance. Thus all other nucleons rearrange

themselves, which adds a contribution from the mean-field to odd-even stagger-

ing [66]. There are some difficulties arising from the fact that disentangling of

the mean-field and pairing contributions is not simple. Additionally, also above-

mentioned correlations can be expected to be different for odd and even nuclei.

Pairing correlations give significant corrections to several observables which can

be used to determine the parameters of more complicated pairing interactions.

One can see that there are many possibilities for a choice of an effective force

phenomenological input. The mostly used parametrizations with these inputs are

listed in Tab. 2 and Tab. 3. Generally, the earlier parametrization used the less

data taken into account. For SkI1-5, NL-Z2 there is listed full set of input data,

while its fitting strategy was initially used for Zσ, NL1, NL-Z and PL-40 with

smaller data set.

There are some differences between relativistic and nonrelativistic models that

are caused by relativistic kinematics, as in the energy per baryon, saturation

density value, effective mass ratio and also incompressibility modulus. They are

larger than estimated extrapolation errors from least-squares method, and have to

be fully understood yet. They cannot be caused by a finite range of interactions,

as it is seen from point-coupled model PC-F1 results (see Tab. 1).

The prediction of the parametrizations for neutron matter equation of state

is shown in Fig. 2. Skyrme interactions give a wide window of predictions, never-

theless, SLy6 interactions are well accommodated for neutron data. Relativistic

mean-field interactions are unable to fit variational many-body calculations, and
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Figure 2: Energy per particle in neutron matter calculated with several
parametrizations from Tab. 2 and Tab. 3. Filled lozenges connected with a thin
solid line represent results from a variational many-body calculations [54] which
are frequently used as reference data for neutron matter.

extensions are inevitable.

The Gogny force, the Skyrme energy functional as well as the relativistic

mean-field parametrizations are able to describe nuclear bulk properties very

satisfactorily. Additionally, also excitation properties such as fission, vibrational

states, rotations and giant resonances can also be very well accommodated. How-

ever, differences among the models and some problems arise in some observables

and in an extrapolation to exotic regions. For more detailed information about

weaknesses and open problems in description of finite nuclei and nuclear matter

see, e.g., review [55].

To enclose this part of overview from slightly more general point of view of

quantum hadrodynamics one can say that in concordance with original motivation

of QHD development, the progress proceeds also towards its extrapolation to high

baryon densities and temperatures. The predictive power of mean-field theories

leans on expanding in ratios of field strengths to meson masses instead of fields
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Table 2: Compilation of various observables considered for different parametriza-
tions, as taken from Ref. [55]. E = binding energy, r = charge rms radius, R
= charge diffraction radius, σ = charge surface thickness, δr2 = isotopic shift of
charge m.s. radius, rn = neutron rms radius, INM = infinite nuclear matter (Eb

= binding energy per nucleon at saturation density, ρsat
B = saturation baryon den-

sity, K∞ = incompressibility, asym = symmetry energy, m∗
0/m = effective baryon

mass ratio, κTRK = sum-rule enhancement factor).

Gogny D1, D1S [61]
E, r: 16O, 19Zr
l.s: 16O(1pn),1pp

INM equilibrium symmetric INM
Pairing: even-odd E in Sn isotopes (quenched)
SI-SVI [56]
E: 16O,40Ca,48Ca,56Ni,90Zr,140Ce,208Pb
r: 16O,40Ca,48Ca,56Ni,90Zr,140Ce,208Pb
l.s: 16O(1pn),1pp

INM: additionally for SkM [69]
K∞, asym (resonances in 208Pb),

INM additionally for SkM∗ [57]
surface energy (fission barriers)

SkP [58]
E: 16O, 208Pb
l.s: differences E
INM: Eb, ρ

sat
B , K∞, asym, κTRK , m∗

0/m=1, asym(ρ/2)
Pairing: average gaps
SLy1-10 [59]
E: 16O,40Ca,48Ca,56Ni,78Ni,132Sn,208Pb
r: 16O,40Ca,48Ca,56Ni,208Pb
l.s: 208Pb(3pn)
INM: Eb, ρ

sat
B , K∞, asym, κTRK , EOSneut

SkI1-5 [27], NL-Z2 [63], (NL-Z [35], PL-40 [70], NL1 [71], Zσ [72])
E: 16O,40Ca,48Ca,56Ni,58Ni,88Sr,90Zr, 112Sn,120Sn,

124Sn,132Sn,144Gd,208Pb,214Pb
R: 16O,40Ca,48Ca,58Ni,88Sr,90Zr, 112Sn,120Sn,124Sn,208Pb
σ: 16O,40Ca,48Ca,90Zr,208Pb
l.s: 16O(1pn,1pp) (only Skyrme HF)
δr2: 214Pb-208Pb (only Skyrme HF)
INM: κTRK (only Skyrme HF)
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Table 3: Completion of the previous table. All notations are identical.

NL3 [62]
E: 16O,40Ca,48Ca,58Ni,90Zr, 116Sn,124Sn,132Sn,208Pb,214Pb
r: 16O,40Ca,48Ca,58Ni,90Zr, 116Sn,124Sn,208Pb,214Pb
rn: 40Ca,48Ca,58Ni,90Zr,116Sn, 124Sn,208Pb
INM: Eb, ρ

sat
B , K∞, asym

themselves which are too large. This is the reason of relative success of MFT and

also its main limitation. Reliable description of transition of baryon matter to

quark-gluon plasma (more generally examined in Ref. [67, 68]) is important, and

has a direct connection to a wide range of phenomena - early universe matter,

supernova explosions, high-energy heavy-ion collisions etc. Only neutron stars

provide zero temperature nuclear matter (except protoneutron stars) while most

of other processes require an extension to finite temperature. It is straightforward

in MFT, since the hamiltonian is diagonal and the mean-field thermodynamic

potential can be calculated exactly. An analysis of nuclear matter at finite tem-

perature is performed in Ref. [73]. Incorporation of heavier baryons - hyperons -

into finite nuclei calculations (in the MFT framework in, e.g., Ref. [74]) appears

also interesting. The role of hyperons in the nuclear matter will be analyzed also

in this work. Recently many works have explored modification of hadron masses

in nuclear medium [75, 76], its influence on nuclear force [77] and on relativistic

transport [78]. Kaon condensation was also studied in Ref. [79, 80]. One of

QHD enhancements is also developing the theories where meson couples directly

to quarks [81, 82]. The endeavor is to find a connection between quark-meson

interaction and observed nucleon-meson coupling constants. Perspective way of

the development in the recent years has been also a better understanding of nu-

clear matter with high isospin asymmetry, which is also one of the goals of this

dissertation.

For detailed review of recent progress in QHD see e.g. [30, 83] and references
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therein. More detailed view of closer to our work related topics will be given also

in the next sections.

2.4 Experimental Facilities

Theoretical effort is inherently associated with experiments. Whenever innova-

tive experimental techniques for accelerating and/or detecting particles have been

developed, new and - quite often - unexpected features have shown up. In that re-

spect it is of utmost importance for the nuclear physics community to develop new

apparatus to explore atomic nuclei by heating the nucleus (temperature degree

of freedom), by bringing angular momentum to the nucleus (extremely rapid ro-

tating nuclei), by forming very proton- and neutron-rich nuclei (approaching and

mapping the drip line regions), and, in general, by exposing the atomic nucleus

to an external agent and studying its response. In all that topics the isovector

part of effective interactions is of utmost importance.

The landscape of nuclear physics has been altered by several top facilities dur-

ing the recent years. Better understanding of strong interactions at the partonic

level is expected to be provided by high-energy nuclear physics facilities: RHIC

(Relativistic Heavy Ion Collider) [84] at Brookhaven national Laboratory that

began operation in 2000, and CEBAF (Continuous Electron Beam Accelerator

Facility) [85] at the Thomas Jefferson National Accelerator Laboratory. Nuclear

physics is, however, not defined by a single frontier. Low-energy facilities con-

tinue to be an important part of the enterprise. They fall into two complementary

types - the fast beam or in-flight method and the ISOL (Isotop Separation On-

Line) or re-accelerated beam approach. Exploitation of the in-flight method is

highly developed in the National Superconducting Cyclotron Laboratory at the

Michigan State University [86]. In North America (TRIUMF - Canada’s national

Laboratory for Particle and Nuclear Physics [87], and Oak-Ridge National Labo-

ratory [88]) similar activities in radioactive beam research are going on. Vigorous

activity in these fields is seen also in Europe where several projects are running
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- two new ISOL-based radioactive beam facilities have produced their first sci-

entific results (SPIRAL at GANIL (Grand Accelerateur National D’Ions Lourds)

[89] and REX-ISOLDE in CERN [90]). The community is preparing for the next

generation of experiments like the International Accelerator for Beams of Ions

and Antiprotons at GSI Darmstadt [91], and the European Isotope Separator

On-Line (EURISOL) at GANIL. Furthermore, apart from the European effort

in the second generation facilities, a new route towards combining the benefits

of both the ISOL and in-flight techniques will be explored at RIA (Rare Isotope

Accelerator) [92] in the US, and an in-flight facility called Radioactive Ion Beam

Factory is proposed in Japan, where already valuable scientific results have been

obtained at the RIKEN Research Accelerator Facility [93]. Facilities for the study

of exotic nuceli are under construction also in Russia, China and India.

2.5 Astrophysical Observation Progress

Nuclear matter is a subject of study not only for nuclear physics but also for

astrophysics. Several astrophysical objects and phenomena are directly connected

to nuclear matter problems, like finite stages of stellar evolution (supernovae

explosions, protoneutron stars and neutron stars) and the early universe. Several

frequently used theoretical models of neutron star structure are illustrated in

Fig. 3.

Experimental observations are continuously increasing in their precision and

reliability. For example, currently about 1400 pulsars (rapidly rotating neutron

stars) are known. Especially orbital observatories such as Hubble Space Tele-

scope, the Chandra X-Ray observatory and the X-Ray Multi Mirror Mission

allow us to obtain highly precise and reliable neutron star data. The gravita-

tional mass of neutron star can be extracted directly from observations of X-ray

binaries and binary radio pulsar systems. This masses appear to be concentrated

around 1.35 solar mass [94], however, some observations indicate higher masses,

probably due to accreted matter [95]. When rotational frequencies of fast pulsars
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are combined with mass data they can also provide constraint on the equation of

state. The fastest pulsar observed has a period of 1.6 ms, however, observational

methods are of pure sensitivity to millisecond pulsars, thus biasing the data to a

considerable amount [96]. Next important property of a neutron star is its radius.

Direct radius observation do not exists, nevertheless, undirect analyzes lead to

radii around 10 km or less (e.g., [97]). Besides moment of inertia, also gravita-

tional red shift offers a possibility of EOS constraint. Strong magnetic field of

neutron stars, in extreme cases called magnetars [98], can also significantly af-

fect a structure of compact star [99]. Finally, X-ray observatories like ASCA and

ROSAT provide a detection of thermal photons from stellar surface where surface

temperatures of stars are derived from measured flux and spectrum. Thus, it is

possible to observe cooling ratio of neutron star that depends strongly on neutron

star matter properties, mostly on proton fraction, an existence of Bose-Einstein

condensates, or superfluidity occurence. From the most recent results follows that

the brightest isolated neutron star RXH1856 analyzes indicate that there may be

no need for considering of strange quark matter or hybrid hyperon-quark matter
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[100], and even at very high densities only hyperonic matter may occur, as it is

also in this work assumed.

Thus, now one may be able to constrain the dense matter properties at the

level unreachable before. From numerous studies of application of nuclear matter

to neutron stars we can briefly name [101] in mean-field approach, [102] in Dirac-

Brueckner-Hartree-Fock approach, and other [103]. More detailed recent review

of nuclear and high-energy astrophysics is available in [104].

2.6 Strange Matter Physics

Since in the neutron star interior we expect densities several times of the nuclear

saturation density, extrapolation of models to high density region is inevitable.

Classical view of matter consisting of protons, neutrons and electrons is thus

insufficient and more realistic composition is needed. At higher densities the K−-

condensate [105], quark deconfinement [106] and/or hyperons [107] are possible

to appear. We will discuss more closely the latter case.

When new particles in the cosmic ray experiments were discovered, they were

entitled as ”strange” due to their unusual long lifetimes of about 10−10 sec. The

new quantum number ”strangeness” has been introduced. While protons (uud)

and neutrons (udd) consist of three quark in the quark picture interpretation,

hyperons contain one strange quark (Λ hyperon (uds) and the triple of Σ hyper-

ons (uus,uds,dds)), two strange quarks (Ξ hyperons (uss,dss)) or three strange

quarks (Ω hyperon (sss)). After theoretical suggestion of hyperon appearance in

high density nuclear matter [108] and hypernuclei [109] many works paid atten-

tion to them, e.g., [110, 111, 112, 113]. However, the strangeness is still largely

unexplored degree of freedom. This is due to a lack of experimental data that

are restricted to replacing one (at maximum two) neutrons by a strange Λ (or Σ)

hyperon. There exist no experimental knowledge about behavior of more than

two hyperons inside nuclei or nuclear matter. The difficulty is to create enough

hyperons within hyperon decay time scale and bring them together with nucle-
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ons to form any multi-hypernuclei. Another theoretical possibilities of stable

hyperon systems are metastable exotic multi-hypernuclear objects (MEMO), or

even states with more than three quarks. This speculative form of hypermatter,

called strange quark matter or strangelets, could be possibly more bound than

56Fe. Since this topic is beyond the scope of this work we will not discuss it in

more detail, for further information see, e.g., [114].

2.6.1 Strange Hadronic Matter

In 1953 there were the first Λ hypernuclei in cosmic ray emulsion experiment

observed [115]. The lightest one is 3
ΛH, a system of one proton, one neutron and

one Λ. From other hypernuclei features it is interesting, for example, the existence

of 9
ΛBe, where Λ stabilizes 8Be which normally decays to two α particles. Similarly

it works also in the case of 9
ΛLi and 9

ΛB. In the 70’s systematical hypernuclei

detection programs started at the AGS, CERN, in 80’s it was joint also by KEK

in Japan. These experimental effort led to a creation of hypernuclei shown in

Fig. 4. Hypernuclei up to baryon number of A = 209 has been observed so far.

Figure 4: The chart of known Λ,Ξ and Σ hypernuclei as well as double Λ hyper-
nuclei. Taken from [114].
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The single particle binding energies from excited states to very deep lying

states are capable to be extracted, thus opening the possibility to study deeply

bound probes in nucleus over a wide range of mass number. The Λ-nucleon

interaction is characteristic by no spin-orbit splitting experimental observation

and due to an existence of several restrictions on its binding to nucleon it is

relatively the best known hyperon-nucleon coupling [116]. Thus Λ seems to be-

have as a spinless neutron [117]. The potential depth of the Λ in nuclear matter

derived from experimental data is U
(N)
Λ ≈ 30 MeV. The observed trend of the

single particle energy with the mass number is very well reproduced by relativis-

tic mean-field models (e.g., [112]). Another measured quantity is the lifetime of

hypernuclei. They decay weakly by an emission of a pion (mesonic decay channel,

Λ → p + π− and Λ → n + π0) like a free Λ or by nonmesonic decay in nuclear

medium (Λ+p→ n+p and Λ+n→ n+n). For heavier hypernuclei like 12
Λ C the

mesonic channel is negligible. Finally, the lifetime of hypernuclei is determined to

be at the order of 10−10 s even for A ≈ 200 [118], and is thus close to the lifetime

of a free Λ. There exists only vague information about Σ and Ξ hypernuclei. The

existence of Σ hypernuclear systems is not experimentally clearly proved. Some

recent information indicates that due to repulsive potential depth of Σ in nuclear

medium there could exist no stable Σ hypernuclear state [119]. However, the Ξ

hypernuclei was found short after the first observation of Λ hypernucleus. The

potential depth of Ξ calculated by relativistic mean field models gives a value of

U
(N)
Ξ

.
= 28 MeV [120]. There exist only three double Λ hypernuclei - 6

ΛΛHe, 10
ΛΛBe

and 13
ΛΛB. Therefore, our knowledge of hyperon-hyperon interaction is very poor.

However, it seems to be much stronger than ΛN interaction [121] and about 3/4

of the NN interaction, and thus it has to be taken into account in hyperon-rich

systems. In this field a continuing activity is constantly developed [122]. Deeper

overview of hyperon problematics one can find in Ref. [123, 124].
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2.6.2 Strange Matter in Neutron Stars

Neutron star matter is not solely composed of neutrons but at higher energies it

consists also of a considerable amount of protons as well as hyperons. Thus incor-

poration of strangeness into models has a significant influence on its description.

Neutron star properties partially depend on the composition of baryonic mat-

ter or on the abundance of its constituents. Thus, analyzes of density dependence

of particle populations in neutron star matter performed also in this work are

a base for further calculation of properties of these objects. The first heavier

baryons appearing are Σ− hyperons, followed by Λs. Naturally also other hyper-

ons can be created at higher densities, however, it depends on a central density

of neutron star and on hyperon-nucleon couplings, both still being of uncertain

value. In any case the abundance of particular heavier components seems to have

a weak effect on bulk properties of hyperon matter [125, 126], due to a similar

influence of heavier Ξ− hyperon which the same as Λ feels an attractive potential

[127].

Since a neutron star structure is not a topic of this work we will not discuss

this problematics in detail, for more information see an overview [128].
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3 Mean-Field Approach for Nuclear Matter

The study of nuclear matter - a hypothetical uniform infinite system of nucleons

- has been an important part of the nuclear physics for several decades. This is a

starting point for describing more complicated and realistic phenomena not only

in nuclear physics (structure and properties of finite nuclei, dynamics of heavy-ion

collisions) but also in astrophysics (structure and evolution of neutron stars).

We will describe framework of the relativistic mean-field theory. By reason

that new experimental facilities have been developed by continual improvement

of particle accelerators, it is available nowadays to measure properties of exotic

nuclei with high isospin asymmetry. Additionally, increasingly more precise ob-

servations and measurements of properties of neutron stars and supernovae have

been carried out. This naturally brings a need for better description of isospin

degree of freedom which can be done by enhancing the isovector meson sector.

The isovector scalar δ meson [33] and vector cross interaction (VCI) [34] were

included into MFT for this purpose.

3.1 Asymmetric Nuclear Matter

The starting point of the model is lagrangian density that introduces nucleon

field ψ, isoscalar scalar meson field σ, isoscalar vector meson field ω, isovector

vector meson field ρ and isovector scalar meson field δ (see Tab. 4)1, and takes a

form

L(ψ, σ,ω,ρ, δ) = ψ̄ [γµ(i∂µ − gωωµ − (M − gσσ)]ψ

+1
2
(∂µσ∂

µσ −m2
σσ

2) − 1
4
ωµνω

µν + 1
2
m2

ωωµω
µ

−1
3
bσM(gσσ)3 − 1

4
cσ(gσσ)4 + 1

4
cω(g2

ωωµω
µ)

2

+1
2
(∂µδ∂

µδ −m2
δδ

2) + 1
2
m2

ρρµ.ρ
µ − 1

4
ρµν .ρ

µν

1pion field does not contribute because it is pseudoscalar, and nuclear matter is parity

invariant
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+1
2
ΛV (g2

ρρµ.ρ
µ)(g2

ωωµω
µ)

−gρρµψ̄γ
µτψ + gδδψ̄τψ , (1)

where antisymmetric field tensors are given by

ωµν ≡ ∂νωµ − ∂µων ,

ρµν ≡ ∂νρµ − ∂µρν ,

and the symbols used have their usual meaning [30]. The parameters entering the

lagrangian areM that denotes the nucleon rest mass whereasmσ, mω, m%, andmδ

are masses assigned to the mesons. The first term together with the last two ones

describe interaction of isoscalar and isovector mesons with nucleons where the

strength of these interactions is determined by dimensionless coupling constants

gσ, gω, g% and gδ. Three terms in the third line represent cubic and quartic scalar

self-interactions [129] and quartic vector self-couplings2 [32, 130], the strength of

which is also given by dimensionless self-interaction coupling constants bσ, cσ and

cω. The second and fourth lines represent free (noninteracting) lagrangian for

all mesons, and the fifth line realizes cross interaction between ω and ρ mesons3

characterized by cross coupling constant ΛV [34].

The constraint of stationarity of action for variations of arbitrary physical

field Φ

δ
∫ t2

t1
dt

∫

d3xL(~x, t) = 0 (2)

leads to the well-known Euler-Lagrange field equations

2cubic vector self-interactions are not possible due to parity conservation law. Initially, we

have also incorporated isovector vector ρ meson self-interactions, however, its too large value

indicates that physically it is not suitable degree of freedom. This effective parameter would

improperly represent several physically undistinguished phenomena, and thus has not been used

in the calculations.
3cross interaction between scalar σ and vector ρ mesons has also been tested, nevertheless,

it turned out to have an equivalent effect as ω-ρ VCI and thus to be redundant if using fit of

physical quantities considered.
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Table 4: Masses and quantum numbers of particles considered (spin J, isospin I,
strangeness S, hypercharge Y, third component of isospin I3, and electric charge
Q).

Particle Mass [MeV] J I S Y I3 Q
N (p,n) 939 1/2 1/2 0 1 1/2,-1/2 1,0

σ 550 0 0 0 0 0 0
ω 783 1 0 0 0 0 0
ρ 770 1 1 0 0 1,0,-1 -1,0,1
δ 980 0 1 0 0 1,0,-1 -1,0,1

∂L

∂Φ
− ∂µ ∂L

∂(∂µΦ)
= 0 . (3)

Equations of motion follow after their application to the lagrangian (1). This

produces the Dirac equation for nucleon field

[γµ(i∂µ − gωωµ − gρρµ.τ ) − (M − gσσ − gδδτ )]ψ = 0 . (4)

Isoscalar meson fields σ,ω are then described by Klein-Gordon and Proca equa-

tions, respectively,

(∂µ∂
µ +m2

σ)σ = gσ[ψ̄ψ − bσM(gσσ)2 − cσ(gσσ)3] , (5)

∂µω
µν +m2

ωων = gω[ψ̄γνψ − cωg
3
ω(ωµω

µων) − g2
ρρµ.ρ

µΛV gωωµ] . (6)

Analogically, isovector ρ and δ meson fields read,

∂µρ
µν +m2

ρρ
ν = gρ[ψ̄γ

µτψ − gρρµΛV g
2
ωωµω

µ] , (7)

(∂µ∂
µ +m2

δ)δ = gδψ̄τψ . (8)

Due to the fact that these equations are nonlinear, nowadays there is known

no suitable method to solve them and thus there is also no exact result. The
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way to avoid this is to replace the operators of meson fields by their expectation

values – the so-called mean-field approximation. The fields are thus treated as

classical ones. Its reliability increases with rising baryon density. The second ap-

proximation introduced is the non-sea approximation which doesn’t take account

of the Dirac sea of negative energy states.

In this model we are dealing with static, homogenous, infinite nuclear matter

that allows us to consider some other simplifications due to translational invari-

ance and rotational symmetry of nuclear matter. This causes that the expectation

values of space-like components of vector fields vanish and only zero components -

ρ0 and ω0 - remain. In addition, rotational invariance around third axe of isospin

space results in taking into account only the third component of isovector fields

- ρ(3) and δ(3) [5, 33]. The above-mentioned can formally be written as

σ −→ 〈σ〉 ≡ σ̄ ,

ωµ −→ 〈ωµ〉 ≡ δµ0ωµ = ω̄0 , (9)

ρµ −→ 〈ρµ〉 ≡ ρ̄
(3)
0 ,

δ −→ 〈δ〉 ≡ δ̄(3) .

Having inserted the above simplifications the field equations are reduced and we

can easily obtain potentials of both isoscalar meson fields

Uσ ≡ −gσσ̄ = −
g2

σ

m2
σ

[ρS − bσM(gσσ̄)2 − cσ(gσσ̄)3] , (10)

Uω ≡ gωω̄0 =
g2

ω

m2
ω

[ρB − cω(gωω̄0)
3 − U2

ρ ΛV (gωω̄0)] , (11)

and isovector meson fields

Uρ ≡ gρρ̄
(3)
0 =

g2
ρ

m2
ρ

[(2
Z

A
− 1)ρB − gρρ̄

(3)
0 ΛVU

2
ω] , (12)

Uδ ≡ −gδ δ̄
(3) = −

g2
δ

m2
δ

ψ̄τ3ψ =
g2

δ

m2
δ

(ρS
n − ρS

p ) , (13)
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where scalar density ρS is expressed as the sum of proton (p) and neutron (n)

part

ρS =
〈

ψ̄ψ
〉

= ρS
p + ρS

n , (14)

which are given by

ρS
i =

2

(2π)3

∫ ki

0
d3k

M∗
i

(k2 +M∗
i

2)
1/2

, i = p, n . (15)

In Eq. (15) ki is nucleons’ Fermi momentum and M∗
p , M∗

n denotes proton and

neutron effective masses, respectively, which can be written as

M∗
p = M − gσσ̄ − gδ δ̄

(3) , (16)

M∗
n = M − gσσ̄ + gδ δ̄

(3) . (17)

One can see that condensed scalar σ meson field generates a shift of nucleon

mass in consequence of which the nuclear matter is described as a system of

pseudonucleons with masses M∗ moving in classical fields σ̄, ω̄0 and ρ̄0
(3) where,

additionally, δ meson field is responsible for splitting of proton and neutron ef-

fective masses which is an important feature of δ meson influence on the nuclear

matter saturation mechanism and its properties. The δ meson seemed to be an

useful degree of freedom in describing of asymmetric nuclear matter, indicated

by its influence on, e.g., stiffness of equation of state, slope and curvature of

symmetry energy and properties of warm asymmetric nuclear matter [33, 131].

The solution requires to be performed self-consistently which can be clearly

seen from Eqs. (10)-(17) where σ potential (10) must be solved using iterations.

The baryon density is given by

ρB =
〈

ψ̄γ0ψ
〉

=
4

(2π)3

∫ kF

0
d3k =

2

3π2
k3

F , (18)
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with kF being an average Fermi momentum. It can be seen that scalar density

(15) is less than baryon density due to term M∗
i /(k

2 +M∗
i

2)
1/2

that causes re-

duction of the contribution of rapid moving nucleons to scalar source term. This

mechanism is responsible for nuclear matter saturation in the mean field theory

and essentially distinguishes relativistic models from nonrelativistic ones.

Cross coupling of the ω and ρ mesons requires also self-consistent calculation

of Eqs. (11) and (12), with iterative procedure for ω potential.

By reason that δ field splits nucleon effective masses, the proton and neutron

Fermi momenta will be also splitted, while they have to fulfil

ρB = ρp + ρn =
2

(2π)3

∫ kp

0
d3k +

2

(2π)3

∫ kn

0
d3k , (19)

where kp, kn are Fermi momenta of protons and neutrons, respectively. The

different value of Fermi momenta has consequences for the transport properties

of asymmetric nuclear matter.

To obtain formula for energy density of nuclear matter it is essential to have

cognizance of the energy tensor, in continuum mechanics defined [132] as

Tµν = −gµνL +
∂Φi

∂xν

∂L

∂(∂Φi/∂xµ)
, (20)

where Φi generally denotes physical fields. The energy density of such a system

is the zero component of the energy tensor ε = 〈T00〉.

To obtain relation for energy density, we start from Eq. (20)

TMFT
µν = −gµν

(

−
1

2
m2

σσ̄ +
1

2
m2

ωω̄
2
0 −

1

2
m2

δ δ̄
(3) 2 +

1

2
m2

ρρ̄
(3) 2
0

−
1

3
bσM(gσσ̄)3 −

1

4
cσ(gσσ̄)4 +

1

4
cω(gωω̄0)

4
)

(21)

+
1

2
ΛV (gρρ̄

(3)
0 )2(gωω̄0)

2 + iψ̄γµ∂νψ . (22)

The energy density being zero component of this tensor takes a form
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ε = TMFT
00 =

1

2
m2

σσ̄
2 −

1

2
m2

ωω̄
2
0 +

1

2
m2

δ δ̄
(3) 2 −

1

2
m2

ρρ̄
(3) 2
0

+
1

3
bσM(gσσ̄)3 +

1

4
cσ(gσσ̄)4 −

1

4
cω(gωω̄0)

4 (23)

−
1

2
ΛV (gρρ̄

(3)
0 )2(gωω̄0)

2 + iψ̄γ0∂0ψ ,

from which using Dirac equation (4) follows

ε = ψ+
[

−iα.∇ + βM∗
N,P + gωω̄0 + gρρ

(3)
0 τ3

]

ψ

+
1

2
m2

σσ̄
2 −

1

2
m2

ωω̄
2
0 +

1

2
m2

δ δ̄
(3) 2 −

1

2
m2

ρρ̄
(3) 2
0 (24)

+
1

3
bσM(gσσ̄)3 +

1

4
cσ(gσσ̄)4 −

1

4
cω(gωω̄0)

4

−
1

2
ΛV (gρρ̄

(3)
0 )2(gωω̄0)

2 .

After further manipulation for nucleon contribution to energy density we ob-

tain

εNUC =
2

(2π)3

[

∫ kp

0
d3k

√

k2 +M∗
p

2 +
∫ kn

0
d3k

√

k2 +M∗
n

2

]

, (25)

For ω meson field contribution we have

εω = UωρB −
1

2

m2
ω

g2
ω

U2
ω −

1

4
cωU

4
ω . (26)

Field of σ meson contributes by

εσ =
1

2

m2
σ

g2
σ

(gσσ̄)2 +
1

3
bσM(gσσ̄)3 +

1

4
cσ(gσσ̄)4 . (27)

Isovector vector component of the energy density has a form

ερ = Uρ(2
ρp

ρB

− 1)ρB −
1

2

m2
ρ

g2
ρ

U2
ρ . (28)
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Energy density induced by δ meson field is

εδ =
1

2
m2

δ δ̄
(3) 2 =

1

8

m2
δ

g2
δ

(M∗
n −M∗

p )2 , (29)

and, finally, vector cross interaction is represented as

εω−ρ = −
1

2
U2

ρ ΛVU
2
ω . (30)

Thus, after expression of integrals (25) the complete formula for the energy

density in the frame of the model considered will be

ε = εp + εn + εσ + εω + ερ + εδ + εω−ρ

= 1
π2

[

1
4
kpE

∗
p
3 − 1

8
M∗

p
2kpE

∗
p −

1
8
M∗

p
4 ln

( |kp+E∗

p |
Mp

)]

+ 1
π2

[

1
4
knE

∗
n
3 − 1

8
M∗

n
2knE

∗
n − 1

8
M∗

n
4 ln

( |kn+E∗

n|
Mn

)]

+UωρB − 1
2

m2
ω

g2
ω
U2

ω − 1
4
cωU

4
ω

+1
2

m2
σ

g2
σ

(

M −
M∗

p +M∗

n

2

)2

+ 1
3
bσM

(

M −
M∗

p +M∗

n

2

)3

+ 1
4
cσ

(

M −
M∗

p +M∗

n

2

)4

+Uρ(2
ρp

ρB
− 1)ρB − 1

2

m2
ρ

g2
ρ
U2

ρ + 1
8

m2
δ

g2
δ

(M∗
n −M∗

p )2 − 1
2
U2

ρ ΛVU
2
ω , (31)

where E∗
p ,E

∗
n are proton and neutron effective energies, respectively,

E∗
p =

√

k2
p +M∗

p
2 , (32)

E∗
n =

√

k2
n +M∗

n
2 . (33)

Finally, the binding energy per nucleon is related to energy density by

Eb =
ε

ρB

−M . (34)

The energy density per nucleon is a starting quantity for further properties of

nuclear matter. Incompressibility is given as its second derivative with respect to

baryon density, at the saturation point
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K = 9

[

ρ2 ∂
2

∂ρ2
(
ε

ρB

)

]

ρ=ρ0

. (35)

Symmetry energy of nuclear matter is defined as the second derivative of bind-

ing energy per nucleon (denoted as S2) with respect to the asymmetry parameter

α = (ρp − ρn)/(ρp + ρn), fulfilling equation

ε(ρ, α) = ε(ρ, 0) + S2(ρ)α
2 + S4(ρ)α

4, (36)

with S2 and S4 defined as

S2 =
1

2

[

∂2ε(ρ, α)

∂α2

]

α=0

, (37)

S4 =
1

24

[

∂4ε(ρ, α)

∂α4

]

α=0

. (38)

Symmetry energy value S2 at the saturation density is of special importance,

often denoted as symmetry energy parameter a4.

3.2 Hyperons

In this subsection we will introduce an additional degree of freedom - strangeness

- in the mean-field framework. Mathematically it is straightforward. Lagrangian

(1) is enriched by additional terms of the following form

L(ψB,e−,µ− , σ,ω,ρ, δ, σ∗,φ) = L(ψp,n, σ,ω,ρ, δ)

+
∑

Y ψ̄Y [γµ(i∂µ − gωY ωµ − gρY ρµψ̄γ
µτ − gφY φµ)

−(M − gσY σ − gδY δψ̄τψ − gσ∗Y σ
∗)]ψY (39)

+1
2
(∂µσ

∗∂µσ∗ −m2
σ∗σ∗2) + 1

2
m2

φφµφ
µ − 1

4
φµνφ

µν

+
∑

e,µ ψ̄e,µ(iγµ∂
µ −me,µ)ψe,µ ,
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where antisymmetric field tensor is given by

φµν ≡ ∂νφµ − ∂µφν , (40)

and the symbols used have the same meaning as in the first section. Y stands for

additional hyperon degrees of freedom, the interaction terms of hyperons have

the same form as for nucleons, differing only in coupling constants. New feature

of this lagrangian is incorporation of two additional mesons - (hidden) strange

scalar σ∗ and vector φ meson. These mesons are responsible for intermediation of

the strong interaction between hyperons that contain strange quarks, thus simu-

lating experimentally observed strong hyperon-hyperon interaction which is the

reason for their inclusion. Couplings of these mesons to nucleons are zero as the

nucleon does not contain any strange quarks. Formally, these new mesons are rep-

resented by interaction lagrangian where strength of baryon-meson interaction is

determined by dimensionless coupling constants gσ∗ , gφ; and correspondent non-

interaction lagrangian, mσ∗ ,mφ being strange meson masses. Since we study the

hyperon matter in β equilibrium, naturally also leptons appear which are treated

as non-interacting free Fermi gas, represented by the last lagrangian term. These

particles’ masses and quantum numbers are listed in Tab. 5.

Table 5: Masses and quantum numbers of additional particles considered.

Particle Mass [MeV] J I S Y I3 Q
Λ0 1116 1/2 0 -1 0 0 0
Σ− 1193 1/2 1 -1 0 -1 -1
e− 0.511 1/2 0 0 0 0 -1
µ− 105.65 1/2 0 0 0 0 -1
σ∗ 975 0 0 0 0 0 0
φ 1020 1 0 0 0 0 0

Coupling constants of hyperons to vector and isovector mesons as well as

vector strange mesons are derived from the quark model and are of the following

form [120]:
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1
3
gωN = 1

2
gωΛ = 1

2
gωΣ ,

gρN = 1
2
gρΣ , gρΛ = 0 , (41)

gδN = 1
2
gδΣ , gδΛ = 0 ,

gφΛ = gφΣ = −
√

2
3
gωN , gφN = 0 .

Remaining couplings of hyperons to scalar mesons are adjusted to reproduce

hypernuclei potentials in saturated nuclear matter [120]

U
(N)
Λ = U

(N)
Σ = −30 MeV . (42)

A recent analysis [133] shows that Σ− can feel repulsion in nuclear matter,

thus leading to strong suppression of its abundance in β stable hyperon matter.

However, for our purposes it is of little importance because despite this fact it has

minor effect on bulk hyperon matter properties as was shown in Ref. [125]. The

matter is dominated by nucleons up to high densities where universal short-range

forces are expected to take precedence over the specific baryon identities [126].

Finally, the hyperon couplings to scalar strange mesons are fixed by potential

well of Λ-hyperon in Λ-hyperonic matter deduced from double-hypernuclear data

[120]

U
(Λ)
Λ = −20 MeV . (43)

All baryons fulfill the Dirac equation

∑

B

[γµ(i∂µ−gωωµ−gρρµ.τ −gφBφµ)−(M−gσσ−gδδτ −gσ∗Bσ
∗)]ψB = 0 . (44)

Original isoscalar σ, ω, and isovector δ, ρ equations of motion do not change

significantly, and two equation for new mesons are added, having form of addi-

tional Klein-Gordon and Proca equations, respectively,
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(∂µ∂
µ +m2

σ)σ = gσ

[

∑

B

gσB

gσ

ρS
B − bσM(gσσ)2 − cσ(gσσ)3

]

, (45)

∂µω
µν +m2

ωων = gω

[

∑

B

gωB

gω

ρB
B − cωg

3
ω(ωµω

µων) − g2
ρρµ.ρ

µΛV gωωµ

]

, (46)

∂µρ
µν +m2

ρρ
ν = gρ

[

∑

B

gρB

gρ

ρB
Bτ − gρρµΛV g

2
ωωµω

µ
]

, (47)

(∂µ∂
µ +m2

δ)δ = gδ

∑

B

gδB

gδ

ρS
Bτ , (48)

(∂µ∂
µ +m2

σ∗)σ∗ = gσ∗Λ

∑

B

gσ∗B

gσ∗Λ

ρS
B , (49)

∂µφ
µν +m2

φφ
ν = gφΛ

∑

B

gφB

gφΛ

ρB
B . (50)

The mean-field replacement of meson field operators by their expectation val-

ues can be in addition to Eq. (9) written as

σ∗ −→ 〈σ∗〉 ≡ σ̄∗ ,

φµ −→ 〈φµ〉 ≡ δµ0φµ = φ̄0 . (51)

After reducing of equation of motion meson field potentials follow directly:

Uσ ≡ −gσσ̄ = −
g2

σ

m2
σ

[
∑

B

gσB

gσ

ρS
B − bσM(gσσ̄)2 − cσ(gσσ̄)3] , (52)

Uω ≡ gωω̄0 =
g2

ω

m2
ω

[
∑

B

gωB

gω

ρB
B − cω(gωω̄0)

3 − U2
ρ ΛV (gωω̄0)] , (53)

Uρ ≡ gρρ̄
(3)
0 =

g2
ρ

m2
ρ

[
∑

B

gρB

gρ

ρB
Bτ3B − gρρ̄

(3)
0 ΛVU

2
ω] , (54)

Uδ ≡ −gδ δ̄
(3) = −

g2
δ

m2
δ

∑

B

gδB

gδ

(ρS
Bτ3B) , (55)

Uσ∗ ≡ −gσ∗Λσ̄∗ = −
g2

σ∗Λ

m2
σ∗

∑

B

gσ∗B

gσ∗Λ

ρS
B , (56)

Uφ ≡ gφΛφ̄0 =
g2

φΛ

m2
φ

∑

B

gφB

gφΛ

ρB
B , (57)
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where τ3p = 1, τ3n,Σ− = −1, τ3Λ0 = 0 are isospin projections for baryons. Scalar

density ρS is expressed as the sum of baryon (B = p, n,Λ0,Σ−) contributions

that, in comparison with Eq. (14), can be written more generally as

ρS
B =

2JB + 1

(2π)3

∫ kB

0
d3k

M∗
B

(k2 +M∗
B

2)
1/2

. (58)

where kB is baryons’ Fermi momentum, (2JB + 1) corresponds to baryon spin

degeneration factor and M∗
B denotes baryon effective masses that can be written

as

M∗
B = M − gσBσ̄ − gδB δ̄

3τ3B − gσ∗Bσ̄∗ . (59)

Not only condensed scalar σ and δ fields as in pure nucleonic matter (see Eq.

(17)) but, additionally, also σ∗ meson fields generate a shift of baryon masses.

Note that while σ meson shifts all the baryon masses (even with different strength

for nucleons and hyperons), δ meson field is responsible for splitting of effective

masses of baryons with non-zero isospin. Additionally, due to no interaction of

strange mesons with nucleons, σ∗ meson shifts only hyperon masses.

Total baryon density is given by

ρB =
∑

B

ρB
B =

∑

B

2JB + 1

(2π)3

∫ kB

0
d3k =

∑

B

k3
B

3π2
. (60)

The momentum-energy tensor (20) applied to lagrangian (39) after some al-

gebra gives modified energy density per baryon

ε = εp,n,Σ−,Λ0 + εσ,ω,ρ,δ,σ∗,φ + εe−,µ− =

∑

B
1
π2

[

1
4
kBE

∗
B

3 − 1
8
M∗

B
2kBE

∗
B − 1

8
M∗

B
4 ln

( |kB+E∗

B
|

MB

)]

+
∑

e,µ
1
π2

[

1
4
ke,µE

3
e,µ − 1

8
m2

e,µke,µEe,µ − 1
8
m4

e,µ ln
( |ke,µ+Ee,µ|

me,µ

)]

+
∑

B
gωB

gω
Uωρ

B
B − 1

2
m2

ω

g2
ω
U2

ω − 1
4
cωU

4
ω

+1
2

m2
σ

g2
σ

(gσσ̄)2 + 1
3
bσM(gσσ̄)3 + 1

4
cσ(gσσ̄)4
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+
∑

B
gρB

gρ
ρB

Bτ3B − 1
2

m2
ρ

g2
ρ
U2

ρ + 1
2

m2
δ

g2
δ

U2
δ − 1

2
U2

ρ ΛVU
2
ω

+1
2

m2
σ∗

g2
σ∗Λ

(gσ∗Λσ̄
∗)2 + Uφ

∑

B
gφB

gφΛ
ρB

B − 1
2

m2
φ

g2
φΛ

U2
φ . (61)

While we are considering β-stable nuclear matter consisting of nucleons, hy-

perons and leptons, the equilibrium conditions of chemical potentials defined as

Fermi energy of particles at the top of Fermi sea must be fulfilled. Baryon chem-

ical potential takes a form

µB = gωBω̄0 + gρBρ̄0
(3)τ3B + gφBφ̄0 +

√

k2
B +M∗

B
2 , (62)

and for leptons

µe,µ =
√

k2
e,µ +m2

e,µ . (63)

Generally, the chemical potential equilibrium conditions can be written as

µB = qb,Bµn − qe,Bµe , (64)

where qb,B is baryon number of particles and qe,B denotes electric charge of par-

ticles, giving set of equilibrium equations

µΛ = µn ,

µΣ− = µn + µe ,

µp = µn − µe ,

µµ = µe . (65)

Neutrinos escape from stable neutron star since the density is not sufficient to

confine them, thus their energy diminishes and is not involved. The next natural

constraint is total baryon density given by Eq. (60).

A lifetime of neutron star compared to high energy collision typical timescale

indicates that the main difference between matter in high energy collisions and



3 MEAN-FIELD APPROACH FOR NUCLEAR MATTER 43

β stable nuclear matter in neutron star is a nonconservation of baryon number

(due to presence of leptons) and zero electric charge of the system. This can be

expressed as charge neutrality condition

ρp = ρe + ρµ + ρΣ− . (66)

Thus, self-consistent simultaneous calculation of twelve equations - hyperon

matter mesons potentials (52)-(57), set of chemical potential relations (65), total

baryon density (60) and charge neutrality (66) - has to be performed to obtain

properties of hyperon matter in β equilibrium.
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4 The Goal

Nuclear matter is constantly a current topic of research, serving as a starting

point for a study of several problems of nuclear physics and astrophysics. An

effort to understand the structure and properties of finite nuclei is one of them

that has led to developing of non-relativistic Brueckner-Hartree-Fock approach

[134]. However, in spite of a relative success, after applying to the calculations

of properties of nuclei in a ground state some discrepancies with the experimen-

tal results still remained there. These were substantially reduced by developing

of a relativistic enhancement of BHF approach, the so-called Dirac-Brueckner-

Hartree-Fock (DBHF) method, that enables deeper understanding of the relation

between nuclear structure and NN-interaction [135, 136]. Its principle is an usage

of Dirac equation for description of one-particle motion in nuclear matter. The

Dirac spinor entering calculation of nucleon-nucleon potential becomes density

dependent here. Just this additional density dependence is essential for cor-

rect reproduction of saturation density and binding energy of nuclear matter.

NN-potential obtained is then fitted to the nucleon-nucleon scattering data and

deuteron properties. A great effort has been devoted to the successful DBHF

description of the symmetric and asymmetric nuclear matter [135, 136, 137].

However, the DBHF approach is very complex and elaborate even in the case

of nuclear matter. Fully consistent application to finite nuclei description has not

been achieved yet.

This restriction can be partially overcome either by fitting of the free pa-

rameters of mean-field theory to the results of calculations of DBHF theory for

nuclear matter [130] which provides an effective parametrization of DBHF theory

and indirect connection to nucleon-nucleon potential, properties of finite nuclei as

well as properties of neutron stars; or via using of the density dependent coupling

approach [138].

Many works have dealt with DBHF description of symmetric and asymmetric
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nuclear matter (e.g., [139, 140, 141, 137]). Besides nuclei near the stability line

description of nuclei with high isospin asymmetry is important as well. Also

the matter of final stages of star evolution is neither symmetric nor neutron

one. Similarly in high energy ion collisions there are nuclei created with high

excess of neutrons. Thus, an inevitable step in description of such systems is an

enhancement of isospin degree of freedom. In accordance with this trend also

DBHF calculations progress in this direction [137, 142]. Therefore, the first aim

of this work is to apply the concept of Ref. [130] also to asymmetric nuclear

matter with parameters simultaneously fitted to binding energy per nucleon as

well as to isoscalar and isovector meson potentials.

Another aim is to examine an additional enhancement of isovector sector by

involving isoscalar-isovector cross interaction into calculations. We will especially

concentrate on its influence on nuclear symmetry energy. Dynamical collisions

between neutron-rich nuclei shows the main reaction mechanism including frag-

mentation is highly sensitive to symmetry energy density dependence [143]. It

is possible to obtain experimentally its value for nuclear matter at saturation

density (nowadays 30 ± 4 MeV [144]) from systematic study of atomic nuclei

masses. In this way it is determined only in narrow asymmetry and density win-

dow. Thus, only little attention had been paid to it in the past, due to unreliable

extrapolation to high densities. Nevertheless, also here the situation has changed

last years, with progress in development of ion beams which produce nuclei with

higher neutron excess. It is possible to experimentally study density dependence

of the symmetry energy through relativistic ion collision where matter at two-

three times of the saturation density is produced. This is the reason of intense

theoretical attention paid in last years. Thus, another aim of this work is a study

of the symmetry energy and influence of vector cross interaction on its density

dependence.

Due to developing experimental techniques and facilities it is possible nowa-

days to reach densities of several times of the saturation density. Similarly also
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astrophysical observations are still improving their precision and reliability. It

naturally brings a necessity of theoretical extrapolation of nuclear matter calcu-

lations to the higher densities. One way is an incorporation of heavier baryon

states - hyperons. Neutron star being practically a gigantic atomic nucleus creates

an opportunity to connect nuclear physics with astrophysics. Neutron star matter

is a nuclear matter in β equilibrated state. Thus, to obtain neutron star matter

properties we must calculate properties of matter containing protons, neutrons,

hyperons and due to β stability also electrons and muons.
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5 Obtaining the Parametrizations

The mean-field parametrizations were obtained by calculation using three differ-

ent DBHF results for nuclear matter as initial data - results of Li, Brockmann

and Machleidt [145], results of Lee, Kuo, Li and Brown [146] and finally calcu-

lations of Huber, Weber and Weigel [147]. The differences between them will be

discussed in the next subsections.

Original program codes were developed in order to calculate nuclear matter

properties as well as properties of hyperon matter in β-equilibrium. Moreover,

the MINUIT (Function Minimization and Error Analysis) package available at

CERN Program Library [148] was used for the optimization procedure, employing

the least squares method which can be formally written as a minimization of a

functional:

χ2 =
∑

i

[yi − y(~a)]2

σ2
i

, (67)

where yi represents DBHF results and y(~a) denotes mean-field calculation with

parameters ~a, the term σ2
i being correspondent statistical weight.

5.1 Fitting Symmetric and Neutron Matter Properties

Based on the realistic and relativistic NN interaction of the Bonn group, in Ref.

[145] there were performed DBHF calculations that yield effective NN interac-

tions, and subsequently the single-particle potentials, equations of state, nucleon

effective masses, and speed of sound for both symmetric and neutron matter were

studied. The Bonn A potential reproduced quantitatively the empirical satura-

tion properties of nuclear matter as well as nucleon effective mass.

As it is easily seen from the equations for meson potentials and for the energy

per nucleon, the squares of coupling constants appear exclusively in fraction with

meson masses and thus one can fix the meson masses to the experimental values

without any physical restriction of the MFT. The meson masses considered in
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Table 6: Parameter sets resulting from the fit of Machleidt et al. [145] DBHF
results (for nucleon-meson coupling constants).

Ma92A Ma92B
g2

σ 106.85 112.27
g2

ω 180.61 204.36
g2

ρ 18.445 9.4932
bσ -0.0025823 -0.002982
cσ 0.011529 0.013345
cω 0.015849 0.020449
ΛV 0.25857 —
χ2/N 2.76 9.95

this work are listed together with other properties and particles in Tab. 4.

The fit was performed using nucleons, σ, ω, and ρ mesons as degrees of free-

dom, then scalar isoscalar cubic and quartic self-interactions, vector isoscalar

quartic self-interactions, and vector-isovector cross interaction, fitting energies

per nucleon for symmetric and neutron matter and symmetric isoscalar poten-

tials. The corresponding parameter sets obtained with (Ma92A) and without

VCI (Ma92B) are listed in Tab. 6.

The energy density of the system per nucleon dependent on baryon density

is shown in Fig. 5. The DBHF results are represented by symbols (squares for

neutron matter and circles for the symmetric nuclear matter), and lines denote

results of the fit where the solid lines correspond to parametrization Ma92A with

VCI included, while the dotted lines are results where VCI have not been taken

into account. The saturation mechanism as an important feature of the relativistic

field theoretical models is clearly seen, making nuclear matter stable bounded

at approximately -16 MeV per nucleon and at the density 0.17 fm−3. Neutron

matter is unbound, feeling only slight saturation ”valley” (and only gravitation

enables the neutron matter in neutron stars to be in bound state). Both of these

parametrizations reproduce the DBHF results satisfactorily in whole fitting range

of densities relevant for common nuclei which can be said both for the energy
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Figure 5: Density dependence of binding energy per baryon for both neutron
and symmetric matter as resulted from the fit (represented by lines) to DBHF
calculations of Machleidt et al. [145] (symbols). Solid and dotted lines correspond
to parametrizations Ma92A and Ma92B, respectively (see Tab. 6).
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Figure 6: Density dependence of scalar and vector meson potentials in symmetric
matter, notation is the same as in the previous Fig. 5.
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per nucleon and also for the isoscalar σ and ω meson potentials. However, the

inclusion of an additional degree of freedom - VCI - slightly improves reproduction

of starting data, especially at the boundary fitted density regions which applies

mainly to the energy density for symmetric matter where there is some divergence

(that - as it will be shown through the next parametrizations - can be corrected by

incorporation of additional asymmetries). This is naturally connected with lower

χ2/N value that is roughly 3.6 times lower in Ma92A compared to Ma92B. In

Fig. 6 we can see density dependence of isoscalar scalar σ and vector ω potentials,

with the same notation as in the previous figure. It demonstrates that in spite

of small binding energy per nucleon the isoscalar potentials are of the order of

several hundreds MeV, at the saturation density being roughly 300 MeV. Also in

this case the reproduction of the original DBHF data is fair, again with slightly

better vector potential values in Ma92A, with scalar potential almost untouched

due to pure vector nature of VCI. For this reason much more distinct difference

between these two parametrization sets is visible from Fig. 7 where in absence
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Figure 7: Density dependence of ρ meson potential in pure neutron matter, no-
tation the same as in previous figures.
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Figure 8: Density dependence of symmetry energy calculated from parametriza-
tions Ma92A (with vector cross interactions) and Ma92B (without VCI).

of VCI the growth of the ρ potential is linear (dotted line). If VCI are switched

on the ρ potential slope is decreasing with baryon density. The effect is stronger

than in ω meson case also due to lower value of isovector potential and binding

of ω potential to DBHF data through the fit procedure. An impact on curvature

of the symmetry energy which is plotted in Fig. 8, is very interesting. The cross

interactions significantly affect density dependence of the symmetry energy - they

increase the rise of symmetry energy below 0.24 fm−3 and decrease it above this

density. Symmetry energy at the saturation density is 33.3 MeV which is in

accordance with the experimental value of about 30 MeV. The uncompressibility

of symmetric matter at the saturation density is 347 MeV.

5.2 Incorporating Additional Asymmetries

Symmetric and neutron matter are extreme cases of isospin asymmetry, however,

almost no objects in the universe are of such a pure nature. Thus, intermediate

asymmetries would improve description of nuclear matter properties. The Ref.
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Table 7: Parameter sets with (Le98A) and without cross interaction (Le98B)
resulting from the fit of Lee et al. [146] DBHF results.

Le98A Le98B
g2

σ 103.91 102.11
g2

ω 147.84 146.73
g2

ρ 17.432 9.6697
bσ 0.00097186 0.00083559
cσ 0.0012694 0.0012411
cω 0.0054204 0.0051878
ΛV 0.18790 —
χ2/N 1.69 2.62

[146] deals with asymmetric matter also using the DBHF approach with Bonn

A one-boson-exchange NN interaction. Not only saturation properties but, in

addition, even the empirical value of the symmetry energy at the saturation

density were reproduced satisfactorily. Authors have calculated also isoscalar

meson potentials for symmetric matter.

Results of the fit with the same degrees of freedom as were in the previous case

performed for binding energy per nucleon for several asymmetries, ranging from

symmetric matter to Z/A=0.2 as well as for symmetric matter scalar and vector

potential, are listed in Tab. 7. Parameter set obtained using model without vector

meson cross interactions is also added. All of the relevant physical quantities for

all of the asymmetries are reproduced closely, which can be seen in Fig. 9 where

similarly as in Fig. 5 energy density per baryon in dependence on baryon density

for parametrization with (Le98A, solid lines) and without VCI (Le98B, dotted

lines) is plotted. Especially pure neutron matter and symmetric matter for lower

densities are nicely reproduced due to cross interaction influence.

Fig. 10 shows density dependence of calculated isoscalar potentials compared

to DBHF results where MFT calculations follow DBHF results very closely too.

Isovector vector potential for three different asymmetries is drawn in Fig. 11.

VCI inclusion (solid line) indicates similar behavior compared to their absence
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Figure 9: Density dependence of binding energy per baryon as resulted from the
fit (represented by lines) to DBHF calculations of Lee et al. [146] (symbols). Solid
and dotted lines correspond to parametrizations Le98A and Le98B, respectively
(see Tab. 7). The fits were performed for several asymmetries ranging from
symmetric matter (Z/A=0.5) to highly isospin asymmetric matter with proton
population of 20%.
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Figure 10: Density dependence of scalar and vector meson potentials in the sym-
metric matter, notation is the same as in the previous Fig. 9.
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Figure 11: Density dependence of isovector vector ρ meson potential for three
different asymmetries as resulted from parametrizations Le98A (with VCI) and
Le98B (without VCI).
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Figure 12: Density dependence of symmetry energy calculated for parametriza-
tions Le98A (solid lines) and Le98B (dotted lines).
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(dotted lines) as in the previous parametrizations, for all of the asymmetries,

towards higher densities the attenuation of the potential rise is even stronger,

thus leading almost to some saturation plateau.

Calculations of VCI influence on symmetry energy behavior indicate that also

for this case there is increasing growth of symmetry energy below approximately

0.25 fm−3 and slower one in higher density region, as it is drawn in Fig. 12. This

fact will be commented more closely in the last data set.

5.3 Isovector Sector Enhancement

Description of nuclear matter with high isospin asymmetry requires incorporation

of the isovector sector into calculations. In the previous sets this sector was

represented by isovector vector ρ meson field. It could be expected that an

enhancement of this sector should lead to a better description of properties of

nuclear matter as well as finite nuclei. Thus, we included into calculation also

additional degree of freedom - isovector scalar δ meson field. Mass and quantum

numbers of this meson are listed in Tab. 4.

In Ref. [147], the energy per nucleon for several asymmetries by using DBHF

approach, potential Bonn B, has been calculated. Together with proton and neu-

tron scalar and vector potentials it enables to fit the mean-field parameter for

Table 8: Parameter sets resulting from the fit of Huber et al. DBHF results [147].

Hu95A Hu95B Hu95C Hu95D
g2

σ 90.532 86.432 91.110 87.591
g2

ω 108.95 106.89 109.26 107.61
g2

ρ 36.681 28.795 20.804 15.335
gδ2 28.739 25.170 — —
bσ 0.0043852 0.0033779 0.0044388 0.0035745
cσ -0.0052045 -0.0037762 -0.0052076 -0.0039753
cω -0.0001421 -0.001050 -0.00003851 -0.0007753
ΛV 0.10647 — 0.34805 —
χ2/N 2.05 3.80 5.85 6.89
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Figure 13: Density dependence of binding energy per baryon as resulted from
the fit (represented by lines) to DBHF calculations of Huber et al. [147] (sym-
bols). Solid and dotted lines correspond to parametrizations Hu95A and Hu95B,
respectively (see Tab. 8). The fits were performed for five different asymmetries
ranging from symmetric matter (Z/A=0.5) to pure neutron matter (Z/A=0.0).

coupling of δ meson to nucleons. In this work, furthermore, there has been tested

also momentum dependence of self-energies, however, due to momentum inde-

pendence of mean-field theory coupling constants, the momentum independent

results were chosen to fit.

Parametrizations obtained from these fits are listed in Tab. 8. Unlike in the

previous cases we decided to test quaternion of sets: the first Hu95A is full

parametrization which contains both VCI and δ meson, the second one Hu95B

is without VCI but includes δ meson. The third parametrization on the con-

trary excludes δ meson while it simultaneously incorporates VCI, and finally the

quaternion closes with parameter set Hu95D that takes into account neither VCI

nor δ meson degrees of freedom.

Starting DBHF data for energy density per baryon together with calcula-

tion results are with the same notation as in the previous subsections plotted in
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Fig. 13. Five different asymmetries taken into account range from pure neutron

matter to symmetric matter. All of the asymmetries are reproduced well within

whole fitting density region, with relatively small difference of VCI inclusion or

exclusion. However, at higher density these differences cause significant change of

energy density behavior, especially for high isospin asymmetry. This is evoked by

softening of nuclear matter equation of state that is a direct VCI effect - nuclear

matter is less resistant against compression (incompressibility is reduced from 297

MeV to 232 MeV, and this effect is only slightly influenced by δ meson - in that

case reduction is from 284 MeV to 232 MeV). Also in the previous two DBHF sets

this effect should appear. Its intensity is smaller in Le98A and B parametrization

set - reduction is from 317 MeV to 302 MeV. Ma92A and B set gives very small

and opposite difference from 342 MeV to 347 MeV. This is due to not fitting in-

termediate asymmetries and thus relatively less accurate reproduction of energy

density for symmetric matter which was improved by VCI inclusion. Thus, this

effect is discussed here where the physically natural consequence of VCI-induced

softening of nuclear matter equation of state is mostly distinct.

Fig. 14 shows us the second part of fitted quantities - symmetric isoscalar

potentials. There is nothing surprising in this figure, fit reproduces DBHF results

very well. Above-mentioned proton and neutron scalar and vector potentials

which enable fitting also δ meson coupling to nucleons are drawn in Fig. 15, for

proton fraction equal to 12.5%. We can see that neutron feels stronger both scalar

and vector meson field. All of DBHF potentials are closely followed by calculated

fit results. Difference caused by VCI is evident mostly in neutron vector potential.

Interesting evaluation of δ and VCI influence on nuclear symmetry energy is

possible from Fig. 16. Influence of the cross interactions is relatively independent

on presence of δ meson, while δ meson effect is smaller and opposite in VCI

presence. It contributes positively to symmetry energy if VCI are present and

negatively in their absence. However, at higher densities (see inset Fig. 16) it

appears that while positive contribution of δ meson rises with density, negative
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Figure 14: Density dependence of scalar and vector meson potentials in symmetric
matter, notation is the same as in the previous Fig. 13.
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Figure 15: Proton and neutron scalar and vector potentials for asymmetry
Z/A=0.125, notation is the same as in previous figures.
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contribution (in VCI presence) turns into positive at higher densities, though

both still remaining close to each other. Thus, in this case VCI eliminates δ

meson contribution to the symmetry energy, indicating that change in its isovector

Lorentz structure caused by cross interaction of ρ meson is sufficient, and there

is only a weak need for isovector scalar meson introduction. Nevertheless, the

general trend of the symmetry energy density dependence shape supports results

of the previous two parametrization sets.

An interesting progress has been achieved during recent years in experimental

knowledge of the symmetry energy density dependence and due to new facilities

it may be expected to continue. Density dependence of the symmetry energy at

low energies is closely connected to, e.g., thickness of finite nuclei neutron skin

[149] (since its slope is related with a pressure that pushes neutrons out against

the surface tension of the nucleus). It is also well known that the π+/π− ratio in

heavy-ion collisions depends strongly on the isospin asymmetry of the reaction

system, and is uniquely determined by the high density behavior of the symmetry
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Figure 16: Density dependence of symmetry energy calculated from four different
parametrizations Hu95A - D. Higher density region is shown in the inset figure.
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energy [150]. Also neutron and proton collective flow measurements seem to

represent a very nice exploration of asymmetry properties of matter [151]. Thus,

study of neutron distributions in n-rich nuclei (stable and unstable), experiments

with heavy ion collisions at intermediate energies (dissipative mechanisms, fast

nucleon emission, collective flows) and high-energy radioactive beams are very

efficient tools for probing the density behavior of the symmetry energy. Other

possibilities are, e.g., assessment of drip-line stabilities [152].

Thus, also the theory tries to describe better the symmetry energy behavior.

The results can be roughly classified into two groups, one where symmetry en-

ergy rises (Asy-stiff), and one in which it falls with increasing density (Asy-soft)

[153]. A general problem of conventional mean-field models is overestimating

of the symmetry energy value at higher densities in comparison with realistic

non-relativistic potentials and DBHF calculations [154]. An implementation of

isovector degrees of freedom has improved the situation, as it follows also from the

results of this work. However, also different approaches successfully deal with this

problem, like models incorporating a point coupling [155] or density dependent

Hartree-Fock [138].

The influence of δ meson on symmetry energy density dependence within rela-

tivistic mean-field theory has been recently examined also in Ref. [156]. Authors

obtained the same results for higher densities - isovector scalar meson makes the

symmetry energy more repulsive. This is a consequence of a different Lorentz

structure - similarly as in the isoscalar sector there is a natural cancellation be-

tween isovector scalar and vector meson fields. This cancellation is less effective at

higher densities, with the repulsive ρ meson gaining more importance. With this

pure relativistic mechanism the inclusion of δ field makes the symmetry energy

more repulsive at higher densities. Similar results are given also by a nonlinear

Hartree model [157, 158].
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6 Hyperon Matter in β Equilibrium

Incorporation of hyperons into the model is straightforward - one only needs

appropriate additional terms in lagrangian density, as it was done in Eq. (39).

However, there also appear additional couplings which need to be determined

or at least constrained satisfactorily that means in concordance with available

experimental data.

6.1 Finding Hyperon Couplings

As it was mentioned in the theoretical section of this work, due to poor experi-

mental data in the field of hypernuclei and hyperon-nucleon and hyperon-hyperon

interaction we have constrained couplings of hyperons to vector and isovector

mesons by quark model (41).

Contemporary experimental knowledge of hypernuclei and double-hypernuclei

enables us to determine rough value of potential depth felt by hyperons in nucle-

onic matter (42) and hyperonic matter (43).

Table 9: Hyperon-scalar meson couplings for Ma92A and B parametrizations (see
Tab. 6) and for Le98A and B parametrizations (see Tab. 7) resulting from the fit
to hypernuclear potentials (42,43). Hyperon-vector (isovector) meson couplings
ensue directly from (41).

Ma92A Ma92B Le98A Le98B

gσΛ(Σ)/gσN 0.6072 0.6041 0.6078 0.6062
gσ∗Λ(Σ)/gσN 0.7851 0.7852 0.7533 0.7541

Table 10: Hyperon-scalar meson couplings for Hu95A - D parametrizations (see
Tab. 8) resulting from fit to hypernuclear potentials (42,43).

Hu95A Hu95B Hu95C Hu95D

gσΛ(Σ)/gσN 0.6120 0.6065 0.6123 0.6076
gσ∗Λ(Σ)/gσN 0.7601 0.7635 0.7603 0.7624
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To meet this constraints, we have performed fit of the relevant couplings for

each of parametrizations listed in Tab. 6, Tab. 7 and Tab. 8. Results of these

fits are listed in Tab. 9 and Tab. 10. For all of the parametrizations we can see

very close values of gσΛ(Σ)/gσN equal roughly 0.61, arisen from similar balance of

isoscalar potentials near the saturation density. Inclusion of VCI has only minor

effect on this value that also applies to the fraction of couplings gσ∗Λ(Σ)/gσN .

However, in this case there is some difference between particular parametrization

sets, the values are approximately 0.79, 0.75, and 0.76 for Ma92A and B, Le98A

and B, and Hu95A-D parameter sets, respectively. This is also a consequence

of lower values of strange meson potentials in hyperonic matter compared to

isoscalar potentials and thus it is needed a more distinct shift of coupling values

to maintain the constrain (43).

6.2 Hyperon Matter Properties

Hyperonic matter in β equilibrium is characterized chiefly by its composition, i.e.,

by density dependence of relative abundance of its particular components, and

by meson potentials. Also some other quantities, such as an electron chemical

potential, can be interesting and important. They will be analyzed in the next

subsections.

6.2.1 Composition of Hyperon Matter

Density dependence of relative abundance of particles of which the hyperonic

matter consists, is the result of self-consistent simultaneous calculation of all of

the meson potential equations and equilibrium equations. We have considered

β-stable hyperonic matter consisting of protons, neutrons, Σ−, Λ0 hyperons, elec-

trons and muons. We didn’t take into account other types of hyperons, because

the heaviest ∆
+

0
,++ seem to be suppressed [159, 110], and also other baryons

(Σ
0

,Ξ
0

) due to their electric charge or higher rest mass may appear only at very

high densities or may not appear at all [160]. Since our parametrization sets
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result from fit up to densities around 0.33 fm−3, reliability of the extrapolation

to such a high density is less approved. Moreover, it seems that at least some

important matter properties are more affected by total hyperonization than by

hyperon subtypes themselves which is indicated, for example, by very similar

influence of hyperons on electron chemical potential with presence or with total

exclusion of Σ− (due to its possible strong repulsion in nuclear medium) which

can be compensated by Ξ− [125]. Therefore, particular abundance of heavier

baryon species is not very important [126].
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Figure 17: Particle populations in β stable hyperonic matter calculated for
parametrizations Ma92A (solid lines, with VCI) and Ma92B (dotted lines, with-
out VCI), listed in Tab. 6 and Tab. 9. Protons, neutrons, Λ0, Σ− hyperons,
electrons and muons were used in calculations.

In Fig. 17 the results for parametrizations Ma92A and B are shown. Starting

from almost pure neutron matter with increasing total baryon density the nuclear

matter is enriched by protons and consequently due to charge neutrality also by

electrons. Subsequently, the electron chemical potential is rising, and when it

reaches value of the rest mass of muon, it becomes possible to turn electron into

muon. This happens already closely below the saturation density at ρB = 0.14
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fm−3, and causes also a slight growth of the proton fraction increase. With

further rise of density it turns up energetically favorable to turn nucleons with

high kinetic energy into heavier baryon resonances. The first hyperon appearing

is Σ− at density 0.35 fm−3, for instance, through reaction

n+ e− −→ Σ− + νe . (68)

In spite of that Σ− is not the lightest hyperon, due to its negative electric

charge and zero isospin of the lightest Λ0, it appears before Λ0 - the electron

chemical potential together with ρ meson field affecting Σ− is higher than Σ− and

Λ0 effective mass difference. Thus, Λ0 occurs at densities just above 0.49 fm−3.

However, we have to note that quantitative value of threshold densities depends

strongly on poorly known nucleon-hyperon coupling constants and their better

knowledge will improve correspondence of the theory with reality. In any case

onset of hyperons has distinct influence on nucleon and lepton populations. Neg-

atively charged Σ− heightens proton fraction following by fall of number of both

leptons in order to hold charge neutrality of the matter. The lepton population

reduction is consequence of local non-conservation of lepton number (neutrinos

from Eq. (68) escape from matter). These general characteristics of density de-

pendence of β stable hyperon matter are qualitatively in accordance with other

works (e.g., [125, 126, 160, 161, 162]), they differ only quantitatively.

For examination of vector cross interactions, results for parametrization with-

out them (Ma92B) are drawn in the same plot by dotted lines. Since VCI are

softening equation of state of nuclear matter, they generally enforce neutron pop-

ulation to the prejudice of protons, with slight shift of muons onset to lower

densities and that of Σ−,Λ0 to higher densities - without VCI muons appear at

0.16 fm−3, Σ− at 0.36 fm−3 and Λ0 at 0.47 fm−3.

Another noteworthy matter of fact is that proton fraction also affects the

thermal evolution of a star to considerable extent. If its value in the core of star

is higher than some critical threshold xUrca, it is possible to turn up direct Urca



6 HYPERON MATTER IN β EQUILIBRIUM 65

process [163]:

n −→ p+ e− + ν̄e ,

p+ e− −→ n+ νe . (69)

This process strongly enhances neutrino emission from protoneutron star and

thus its cooling rate. The critical proton fraction ranges between 11–15% [163]. In

this case the threshold of 11% is exceeded at density 0.36 fm−3 and proton fraction

converges to 21% at high densities. Without VCI this values are changed only

slightly - the threshold is surpassed at 0.34 fm−3 and proton fraction converges

to 22% at high densities. Thus, due to threshold surpassing roughly at double

of saturation density, there is high probability that direct Urca process occurs in

protoneutron star core significantly affecting its cooling rate. This is in accordance

also with other works [125, 126, 160, 161, 162].
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Figure 18: Particle populations in β stable hyperonic matter calculated for
parametrizations Le98A (solid lines, with VCI) and Le98B (dotted lines, without
VCI), listed in Tab. 7 and Tab. 9.
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General features of hyperon matter mentioned above are supported also by

results for parametrization sets Le98A and Le98B, drawn in Fig. 18. Here the

muons appear at 0.14 fm−3 (0.16 fm−3), Σ− at 0.32 fm−3 (0.32 fm−3) and Λ0 at

0.44 fm−3 (0.41 fm−3), values in the brackets being for non-VCI case. The main

difference in comparison with previous parameter sets is lower hyperon thresholds

and generally richer hyperonization of matter. While in Ma92A and B set the

total hyperonization of matter at density ρB = 0.6 fm−3 is 22.5% (22.7%), in

Le98A and B results it is 32.0% (35.2%). This is a natural consequence of harder

EOS in the second parametrization set. Proton fraction behavior is similar to

previous parametrizations - 11 % level for Urca process is surpassed at density

0.33 fm−3 (0.31 fm−3 without VCI) and converges to 21 % at high densities (for

both parametrizations). Thus, also here one can observe possible Urca process

starting up at double of saturation density with slight effect of VCI.

Next parametrizations Hu95A-D give outcome plotted in Fig. 19 and Fig. 20.
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Figure 19: Particle populations in β stable hyperonic matter calculated for
parametrizations Hu95A (solid lines, involved both VCI and δ meson), Hu95B
(dotted lines, without VCI and with δ meson), listed in Tab. 8 and Tab. 10.
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Figure 20: Particle populations in β stable hyperonic matter calculated for
parametrizations Hu95A (solid lines, with VCI and δ meson), and Hu95D (dotted
lines, neither VCI nor δ meson were involved), listed in Tab. 8 and Tab. 10.

Solid line in both figures denotes particle population density dependence with

inclusion of both δ meson and VCI (Hu95A). The influence of VCI absence with

simultaneous δ meson inclusion is seen from dotted lines in Fig. 19 (Hu95B), while

analogical situation in δ meson absence we can see from dotted lines in Fig. 20

(Hu95D). The VCI effect is more distinct than in previous two parameter sets.

First, in a density range roughly from one to two times of the saturation density

there is a strong shortage of protons when VCI are present, independently on δ

meson. This has strong influence on Urca process start up - without VCI the

threshold density is surpassed at 0.35 fm−3 with VCI inclusion, but only 0.24

fm−3 if they are excluded. Nevertheless, the high density behavior is similar,

saturating at fraction of 24% in both cases. The medium density range proton

fraction behavior is thus strongly VCI-dependent.

Second important point is distinct shift of Λ0 threshold to higher densities from

0.37 fm−3 to 0.46 fm−3 with δ meson or from 0.38 fm−3 to 0.44 fm−3 without it.
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Consequently, the third effect of VCI is more rapid deleptonization of matter -

muons are completely extinct already at density 0.50 fm−3 with δ mesons or 0.58

fm−3 without them. It is clear that VCI play an important role in the equilibrated

matter, and it is indispensable physical degree of freedom, supporting conclusions

from the previous section.
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Figure 21: Pure effect of δ meson: particle populations in β stable hyperonic mat-
ter calculated for parametrizations Hu95A (solid lines, with VCI and δ meson),
and Hu95C (dotted lines, with VCI but without δ meson).

For additional confirmation of this account in Fig. 21 there are drawn particle

populations again, both VCI including and explicitly with (solid lines, Hu95A)

and without (dotted ones, Hu95C) δ meson. One can conclude that the role of

δ meson is of secondary importance, and it doesn’t have serious effect on the

properties of hyperon matter even at high densities. This is in full agreement

with conclusions from Ref. [162]. Finally, as it was already mentioned, VCI

soften EOS, in their absence there is higher hyperonization of matter - including

(excluding) the isovector-scalar field it is 50.2 % (46.9 %), compared to 37.7 %

(38.4 %) at ρB = 0.6 fm−3 if they are switched on.
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Figure 22: Influence of strange mesons: particle populations in β stable hyper-
onic matter calculated for parametrizations Hu95A where also (hidden) strange
mesons σ∗ and φ are involved (solid lines), with couplings listed in Tab. 8 and
Tab. 10, and for the same parametrizations but without inclusion of these mesons
(dotted lines).

In the next Fig. 22 there is examined role of hyperon-hyperon interaction

mediated by strange σ∗ and φ mesons. As they did not couple to nucleons,

their effect started up above Σ− threshold density (which is not affected), and is

contradictory to VCI influence, however, of smaller magnitude, thus making the

VCI-induced shift of Λ0 threshold to higher density not so hard. Another effect

of strange mesons is stabilization of matter at very high densities. For Le98A and

B negative nucleon effective masses appear above 1.89 fm−3 (1.76 fm−3) which

are changed to positive value if σ∗, φ are introduced. Though there doesn’t occur

also negative electron chemical potential, this is in accordance with results from

Ref. [162].
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6.2.2 Meson Potentials

Each of the mesons intermediating strong interaction between baryons generates

correspondent potential. These potentials we can see in Fig. 23. There are plotted

all isoscalar, isovector and strange meson potential as resulted from calculation

with parametrization Ma92A (solid lines) and Ma92B (dotted lines). Isoscalar σ

and ω potentials are of several times higher magnitude than the others, so for

practical purposes they were divided by a factor 10. Their large values clearly

indicate that they remain the main contribution to baryon-baryon interaction,

thus mostly affecting also balance between scalar and vector meson fields. The

secondary vector contribution is isovector ρ potential which is several ten times

smaller than its isoscalar counterpart.

Due to self-consistency of the calculations, there is some balance between

increasing baryon density and rapid drop of neutron abundance and thus also

isospin asymmetry of matter. This balance results in attenuation of isovector ρ
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Figure 23: Meson potentials in β stable hyperonic matter, calculated for
parametrizations Ma92A and Ma92B (Tab. 6+Tab. 9). Isoscalar scalar σ and
vector ω meson potentials are for clarity divided by a factor 10.
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potential. When VCI are switched on, they additionally weaken isovector po-

tential which comes to saturation and doesn’t exceed 31 MeV at any density.

Other meson fields are not so influenceable, although since ω field cross interacts

with ρ field, it also exhibits decrease, however, due to much weaker ρ field does

not lead to saturation. Strange meson potentials naturally appear just above

the first hyperon onset, and have relatively quick rise when reach already about

10% of isoscalar potential values at density 0.6 fm−3. Scalar and vector strange

potentials have opposite signs similarly to isoscalar potentials, thus balancing at-

tractive scalar and repulsive vector part of strange interaction. However, scalar

σ∗ potential softly exceeds its vector counterpart, hence ensuring experimentally

observed strong hyperon-hyperon interactions. After an acute onset their rise

begins to deescalate, though remaining relatively high. Thus, at higher densi-

ties strange meson potentials contribute recognizably to scalar-vector potential

balance.
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Figure 24: Meson potentials in β stable hyperonic matter, calculated for
parametrizations Le98A and Le98B (Tab. 7+Tab. 9). Isoscalar scalar σ and
vector ω meson potentials are for clarity divided by a factor 10.
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Figure 25: Meson potentials in β stable hyperonic matter, calculated for
parametrizations Hu95A and Hu95B (Tab. 8+Tab. 10). Isoscalar scalar σ and
vector ω meson potentials are for clarity divided by a factor 10.

In Fig. 24 we can see similar situation for parametrizations Le98A (solid lines)

and Le98B (dotted lines). The only differences are slightly higher values of ω

potential and lower values of ρ potential, and smaller difference between VCI

inclusion and exclusion for strange φ potential.

More interesting appears Fig. 25 where meson potentials for parametrizations

Hu95A and Hu95B are plotted which means that also isovector scalar potential

appears in addition to previous figures. All above described features of potentials

remain, except stronger ρ meson field - though in VCI presence it also reaches

saturation, the saturation value is about two times higher then in δ meson ab-

sence, namely 61 MeV. This is due to opposite effect of isovector scalar and vector

mesons which are in this way partially balanced. Weak changes support our pre-

vious conclusion and conclusion from Ref. [162] of small δ meson influence. Lower

δ meson field in VCI absence is given partially by lower coupling of δ meson to

nucleons (g2
δ/g

2
δVCI = 0.88) needed for proper reproduction of DBHF calcula-
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tions as well as by richer proton and Λ0 and poorer neutron and Σ− populations,

thus resulting in more isospin symmetric matter. As it was already mentioned,

VCI soften EOS, in their absence there is higher hyperonization of matter and a

natural consequence are stronger strange fields.

6.2.3 Effective baryon masses

A characteristic feature of the mean-field theory is that it describes many-body

system as consisting of pseudobaryons with certain effective masses, moving in

mean-field potential well. These masses are shifted by value of scalar (isoscalar,

isovector as well as strange) meson fields.
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Figure 26: Baryon effective masses in β stable hyperonic matter resulting from
parametrizations Ma92A (solid lines) and Ma92B (dotted lines) (Tab. 6+Tab. 9).

Fig. 26 shows density dependence of the effective masses of nucleons, Λ0 and

Σ− hyperons for parametrizations Ma92A (solid lines) and Ma92B (dotted lines).

We can see that they are quickly descending from starting rest masses. The

decrease of hyperon effective masses is smaller than that of nucleons which is

consequence of weaker strength of hyperon couplings (see Tab. 6). Behavior of
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hyperon masses stops being smooth after hyperon onset, due to arising of strange

scalar σ∗ potential which begins to fortify already softening decrease of hyperon

effective masses, hence creating a hump and resulting in diminishing difference

between nucleons and hyperons. It can be also seen that VCI have only very

mild effect on behavior of effective masses. This can be explained by the fact

that the largest contribution to effective mass creates isoscalar scalar potential

that is fitted to reproduce the original DBHF calculations.
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Figure 27: Baryon effective masses in β stable hyperonic matter resulting from
parametrizations Le98A (solid lines) and Le98B (dotted lines) (Tab. 7+Tab. 9).

Fig. 27 demonstrates the same situation, but for parametrizations Le98A

(solid lines) and Le98B (dotted lines). All qualitative features are identical, how-

ever, there is some difference in the effective mass values which are all smaller.

Nucleon, Λ0, and Σ− effective masses are 25%, 53%, and 56% of rest mass value

at 0.6 fm−3, respectively, compared to 37%, 61%, and 64% in sets Ma92A and B

(VCI influence is smaller than 1%). This is the consequence of smaller σ DBHF

potential of Ma92A and B compared to Le98A and B which naturally emerges

also in β stable hyperon matter.
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Figure 28: Baryon effective masses in β stable hyperonic matter resulting from
parametrizations Hu95A (solid lines) and Hu95B (dotted lines) (Tab. 8+Tab. 10).

Besides a not very strong effect of δ meson on composition of β-stable matter,

due to its isospin vector nature it has an impact on effective masses of baryons

with non-zero isospin. This one of its most important features is demonstrated

in Fig. 28. Unlike in the previous parametrizations, here we can observe clear

splitting of proton and neutron effective masses. Additionally, even stronger

influence of δ meson is felt also by Σ− baryon (due to two times larger coupling

constant) which is sufficient to cross Λ0 effective mass at density 0.22 fm−3 which

is not affected by δ meson (gΛ0δ = 0). However, δ potential saturates around 0.5

fm−3, hence causing a slow decline of neutron-proton and Λ0-Σ− mass difference.

Here we can see also stronger impact of VCI where weaker δ field leads to crossing

of Λ0-Σ− at higher density (0.44 fm −3), and still remaining close to each other.

6.3 Chemical Potential of Electrons

Hyperon matter equilibrium conditions besides the electric charge neutrality and

baryon density sum contains a set of equations for chemical potentials of the
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Figure 29: Density dependence of chemical potential of electron calculated for
parametrization Ma92A (solid lines, VCI included) and Ma92B (dotted lines,
VCI excluded).

particles considered. Electron chemical potential is of a special interest due to its

role in kaon condensate appearance, as it will be shown in this section.

Fig. 29 demonstrates main features of electron chemical potential behavior

in β stable hyperon matter. Results for parametrization Ma92A (solid line) and

Ma92B (dotted line) are plotted. As we can see, with a rising density and abun-

dance of electrons in matter there is also a significant grow of their chemical

potential. However, this trend is interrupted when hyperons appear - and this is

also one of their important features. Thus, the distinct drop of electron Fermi

momentum and concentration in matter after hyperonization is almost immedi-

ately followed by a drop of chemical potential which has serious consequences for

kaon condensation occurence, as it was first pointed out in Ref. [110]. Vector

cross interaction affects both maximum value of the chemical potential and its

slope of declining. VCI causes also immediate reduction of chemical potential,

while in their absence there is even mild raise after hyperon onset. With VCI the
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Figure 30: Density dependence of the chemical potential of electron calculated
for parametrization Le98A (solid lines, VCI included) and Le98B (dotted lines,
VCI excluded).

electron chemical potential saturates at value about 175 MeV and density 0.36

fm−3 and the downtrend is roughly continuous till high densities, otherwise sat-

uration point is about 186 MeV at 0.47 fm−3, and the downtrend has tendency

to vanish. This difference is directly connected with deleptonization process -

the more rapid deleptonization, the more distinct decrease of electron chemical

potential.

When we look at parametrizations Le98A and Le98B (solid line and dotted

line in Fig. 30, respectively) situation is even more clear. The break of chemical

potential is more definite, being 173 MeV at 0.33 fm−3 in VCI presence and 178

MeV at 0.35 fm−3 in their absence. Also the decline in both cases is more rapid

which is a consequence of the stronger deleptonization of matter, and while VCI

influence is not strong at the breakpoint density and chemical potential saturation

value, they keep their impact on steepness of further decrease.

Even after incorporation of δ meson situation retains qualitatively unchanged,
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Figure 31: Density dependence of the chemical potential of electron calculated
for several degrees of freedom used, represented by parametrization Hu95A - D,
listed in Tab. 8 and Tab. 10. Additionally, Hu95A with strange mesons exclusion
is also plotted.

as we can see from Fig. 31 where results for all quaternion of parametrization sets

are plotted. Without VCI (Hu95B) the electron chemical potential saturates at

value about 196 MeV at 0.36 fm−3 and δ meson has only a weak effect (about

3 MeV, Hu95D), otherwise saturation value is around 166 MeV at 0.33 fm−3

(Hu95C) and even 158 MeV at 0.31 fm−3 with δ meson (Hu95A). For comparison

also a strange meson influence is demonstrated by result for Hu95A but without

them. Due to almost zero strange meson fields at the breakpoint, they have no

influence on saturation value, and for higher densities they mildly fortify VCI

influence on the electron chemical potential.

As it was already said, the electron chemical potential coheres with kaon

condensation onset. This can be more clear from Fig. 32 where two of the previous

parametrizations (Hu95A and Hu95B) together with recent effective kaon mass

resulting for nuclear matter [164] and neutron matter [165] are plotted. However,

its value is continually a current topic of research, and at least for neutron matter
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Figure 32: Density dependence of electron chemical potential for two of the
parametrization sets from the previous Fig. 31 (Hu95A and Hu95B), together
with density dependence of effective kaon mass in nuclear matter (taken from
Ref. [164]) and neutron matter (taken from Ref. [165]) are drawn. Filled area
denotes possible kaon effective mass in an extreme case of its density dependence,
when m∗

K− = 200 MeV at treble of the saturation density. For comparison elec-
tron chemical potential in the case of hyperon exclusion for parameter set Hu95B
is also plotted (dotted lines).

it may be even lower (around 200 MeV at three times of saturation density), as a

recent analysis [166] of experimental data [167] suggests. Thus, all possible values

of kaon effective mass are plotted as a filled area. If the electron chemical potential

reaches effective kaon mass the kaon condensation occurs. Nevertheless, as it can

be expected, the electron chemical potential stops rising after hyperonization

(otherwise it would continually increase as it shows the dotted line) and starts to

decline with increasing density. Vector cross interactions thus lessen probability

of kaon condensation at higher densities.
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7 Summary

In this thesis the relativistic mean field theory was used to obtain an effective

parametrization of the properties of asymmetric nuclear matter calculated by

more fundamental Dirac-Brueckner-Hartree-Fock theory. The energy per nu-

cleon together with the symmetric isoscalar potentials for three different DBHF

sets were fitted, together with proton and neutron scalar and vector potentials.

Isoscalar σ, ω mesons with their self-interactions, and isovector ρ, δ mesons with

ρ-ω cross interaction were used as the degrees of freedom and parameters of the

fit. Generally, a good reproduction of both the energy and the potentials was

reached and thus the parameter sets are representing an effective DBHF descrip-

tion of asymmetric nuclear matter at normal baryon densities applicable for the

calculation of finite nuclei properties as well. The cross interaction between ρ and

ω mesons turned out to improve reproduction of properties of asymmetric nuclear

matter. Additionally, it increases symmetry energy rise in common nuclei density

region, i.e., bellow saturation density, and decreases its grow above the satura-

tion point. It has consequences for properties of finite nuclei, especially with large

isospin asymmetry, and also for description of nuclear matter at higher densities,

relevant in high energy nuclear collisions and several astrophysical processes and

phenomena (e.g., neutron star properties and supernovae explosions). Isovector

δ meson also improves quality of the mean-field model but without such a strong

impact on density dependence of symmetry energy. These results imply that

ρ− ω cross interaction is very useful and important tool for a better description

of nuclear matter and finite nuclei with high isospin asymmetry.

Due to extreme isospin asymmetries reached in recent high energy ion colli-

sions and also due to higher accuracy observations of astrophysical phenomena

enabling us to constraint some properties of nuclear matter, it is inevitable to

examine proper extrapolations to higher density regions. One of the possibilities

is considering of hyperon and lepton presence through modelling hyperon matter



7 SUMMARY 81

in β-equilibrium. Their influence on composition of equilibrated hyperon matter

and electron chemical potential is studied. Supporting previous conclusions, the

results indicate that VCI is an important degree of freedom with distinct impact

on both composition of matter and electron chemical potential. Since they soften

nuclear equation of state, especially in δ meson presence they reduce hyperoniza-

tion of matter and strengthen population of neutrons, thus making the neutron

star matter more neutron-rich. Notwithstanding, they simultaneously strongly

support hyperons in their role of kaon condensation reduction factor, resulting in

lower saturation value of the electron chemical potential and also in its steeper

downtrend after the hyperon onset, thus shifting kaon condensation appearance

to even higher densities, and thus making neutron star matter more neutron-rich

also from this point of view.
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8 Outlook

A natural application of obtained parametrizations sets is calculation of finite

nuclei properties that would offer further information about quality of the results

and about their connection to experimentally verifiable reality.

Apart from that, in order to enable description of neutron star matter and

matter in high energy collisions, it was inevitable to extrapolate calculations to

higher density region. That has been performed by an inclusion of hyperons

which are very likely to abound in neutron star cores as well as take part in high

energy dynamics.

One of the next natural steps is an application of the results to calculation of

neutron star properties, and thus obtaining additional constraints on mean-field

parameters. Calculation of neutron star properties requires to have at our disposal

the nuclear matter pressure which is directly following from energy density as its

derivative with reflection to baryon density:

p = ρ2
B

∂

∂ρB

(

ε

ρB

)

. (70)

Next it is necessary to use the general relativity equation. Under condition of

non-rotating neutron star with isotropic mass distribution (spherical symmetry)

its structure is given by Tolman–Oppenheimer–Volkov (TOV) equations [168]

∂p(r)

∂r
= −

G[ρ(r) + p(r)/c2][m(r) + 4πr3p(r)/c2]

r2[1 −−2Gm(r)/rc2
, (71)

m(r) =
∫ r

0
4πr,2ρ(r,)dr, , (72)

where p(r) is pressure and m(r) is gravitational mass inside radius r and G is

gravitational constant. Starting at some central density ρc these equations have

to be numerically integrated till r = R is reached where the pressure is zero, thus

obtaining star radius R and gravitational mass of the star M = m(R).

Another interesting quantity directly observable and thus employable into
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nuclear matter description improvement is the gravitational red shift on the star

surface [169]:

z = [1 − 2MGG/Rc
2]

−1/2
− 1 , (73)

where MG is gravitational mass of the star given by Eqs. (71) and (72).

As it was already mentioned in the Introduction, these astrophysical quantities

would provide additional empirical constraints on nuclear equation of state and

parameters of the models, realizing thus interesting connection between micro-

scopic world of the field theories and macroscopic world of the general relativity

controlled phenomena, or virtually, a connection of entire quaternion of the fun-

damental forces known. This interesting topic has remained under development.
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