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Faculty of Mathematics, Physics, and Informatics

Abstract
Philosophiae Doctor

Behavior of the running fine-structure constant in
the space-like and time-like regions and other

applications of the Unitary and Analytic model

Lukáš Holka

The first part of this thesis presents an introduction to some topics
of the analytic structure of scattering amplitudes and related objects
in quantum field theory. These techniques are necessary both in the
construction of the Unitary and Analytic model, and in the study of
the running of the fine structure constant. Then, in the second part,
electromagnetic form factors and their Unitary and Analytic model are
introduced. The last part of the thesis consists of a review of certain
properties of the running fine structure constant and a summary of
results that were achieved during my doctoral study. A detailed proof
of the reality of the fine structure constant in the space-like region is
given, and the relation between the imaginary part of that running
constant in the time-like region and the total cross section for the
electron–positron annihilation is reviewed. The thesis concludes with
the summary of several results that I have achieved in collaboration
with my colleagues. In particular, we have described the hadronic
contribution to the running of the fine structure constant using the
Unitary and Analytic model, and used that description to evaluate
the leading hadronic contribution to the muon’s magnetic anomaly.
I also present our investigation of the damped oscillatory structures
that were observed in the effective form factor of the proton, and of
the anomaly in the charged to neutral yield ratio for the decay of the
ϕ(1020) resonance into kaon pairs.
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Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky, a informatiky

Abstrakt
Philosophiae Doctor

Správanie bežiacej konštanty jemnej štruktúry v
priestorupodobnej a časupodobnej oblasti a iné

aplikácie Unitárneho a analytického modelu

Lukáš Holka

Táto dizertačná práca začína úvodom do analytickej štruktúry am-
plitúd rozptylu a príbuzných veličín v kvantovej teórii poľa. Tieto
techniky sú potrebné ako na uvedenie Unitárneho a analytického mod-
elu, tak i na štúdium bežania konštanty jemnej štruktúry. V druhej
časti práce sú potom prezentované elektromagnetické form faktory a ich
Unitárny a analytický model. Posledná časť práce obsahuje prehľad vy-
braných vlastností bežiacej konštanty jemnej štruktúry a súhrn výsled-
kov dosiahnutých počas môjho doktorského štúdia. Je v nej uve-
dený podrobný dôkaz toho, že v priestorupodobnej oblasti je beži-
aca konštanta jemnej štruktúry reálna. Tiež je prezentovaný vzťah
medzi imaginárnou časťou bežiacej konštanty v časupodobnej oblasti a
totálnym účinným prierezom elektrón pozitrónovej anihilácie. Práca
je zakončená zhrnutím niekoľkých výsledkov, ktoré som dosiahol v
spolupráci so svojimi kolegami. Predovšetkým sa nám podarilo popísať
hadrónový príspevok do bežania konštanty jemnej štruktúry pomocou
Unitárneho a analytického modelu, a za použitia tohoto popisu vyhod-
notiť vedúci príspevok hadrónov do magnetickej anomálie miónu. Tiež
je prezentovaná naša štúdia tlmených oscilácií, ktoré boli pozorované
v efektívnom form faktore protónu, a anomálie v pomere rozpadových
šírok rezonancie ϕ(1020) na nabité a neutrálne kaóny.
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Preface

The main aim of this thesis is to introduce the Unitary and Analytic (U&A)
model of electromagnetic form factors of hadrons, as well as some of its
applications on which I have worked on during my doctoral study. The
U&A model is based on particular analytic properties which form factors
are believed to possess. Before we introduce the model, we will therefore
need to first discuss some topics of analyticity in particle physics.

The thesis is divided into three parts. In the first part, which is com-
prised of chapters 1 and 2, we will discuss what appears to be the most
important way in which analyticity enters into particle physics. From the
point of view of this thesis, this is important in order to introduce the U&A
model, but also to establish some results which are going to be needed later
in the final, third part of the thesis. These aims have to a large extent in-
formed the selection of topics that are covered in this first part of the thesis.
But analytic properties of amplitudes constitute an important and fascinat-
ing topic in high energy physics and their implications reach far beyond any
single phenomenological model, such as the U&A model, or specific applica-
tions, such as those presented in this thesis. For this reason I have allowed
myself to mention also some topics which are only adjacent to our present
goals, but which I still found important to introduce from a more general
point of view. In fact, I hope that the first part of this thesis can serve quite
independently from the rest of the work as a gentle introduction to the topic
of analyticity in high energy physics.

The second part consists of chapters 3 and 4. We will introduce the
general concept of form factor and mention the analytic properties that it
is usually assumed to posses in the chapter 3, which in turn will allow us to
introduce the U&A model in the chapter 4. The main purpose of the chap-
ter 3 is to make the thesis more self-contained. The U&A model describes
electromagnetic form factors of hadrons, and it is therefore appropriate to
present first the general notion of form factor. This will also come handy
later when we will discuss the magnetic anomaly of the muon. Considering,
however, that the topic of form factors is quite large, in order to keep the
volume of the thesis manageable I decided to present this topic in a manner
that is somewhat less comprehensive than the first part of the thesis. The
chapter 4, on the other hand, is very thorough and introduces the U&A

xix



xx CONTENTS

model in quite a detail. Even though the model itself is not new, the style
of the presentation to large extent is. I have tried to clearly describe the
structure and principles behind the construction of the model, and I hope
that this chapter will prove useful to any researcher who wishes to under-
stand how the model works, and how to build or modify it for their own
purposes.

The last, third part of the thesis is then concerned with some of the
results that I have obtained in collaboration with my colleagues during my
doctoral study. In the chapter 5 I discuss some aspects of the running of
the fine structure constant, including its significance for the evaluation of
the magnetic anomaly of the muon. I describe how its imaginary part can
be obtained from measurements of the total cross section in the time-like
region, and I present a proof that the constant is real in the space-like region.
Afterwards I also mention some other, more particular results, including the
contribution of the hadronic vacuum polarization into the magnetic anomaly
of the muon. The thesis is then concluded by chapter 6, in which I describe
two other applications of the U&A model on which I collaborated.

Lukáš Holka
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An introduction to the study
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This first part of the thesis discusses some features of the analytic struc-
ture of scattering amplitudes. My aim was mainly to introduce the concepts
and explain why it might be reasonable to assume certain analytic proper-
ties of various quantities, and I did not attempt to provide rigorous proofs
or a complete treatment of this topic. For practical reasons I have partly
limited the scope towards issues that were necessary for the introduction of
the U&A model, but I have also tried to provide quite a general overview
of this field, or, at least, of some of its main principles. I hope that Part 1
will be useful also for a reader who is not interested in the remaining two
parts of the thesis. Nonetheless, for a more thorough treatment the reader is
advised to consult other literature, and I will now briefly recommend some
sources that the reader may find interesting.

A classic textbook for these topics is The Analytic S-Matrix written by
Eden, Landshoff, Olive, and Polkinghorne [1]. I do not know of any single
modern treatment that would fully substitute for this book. However, one
disadvantage of the book is that at the time of its writing some issues covered
there were not yet properly understood and the book therefore contains
many subtle mistakes.

A good review of the analyticity in the context of strong coupling physics
was published by S. Mandelstam in 1962 [2]. This review was published dur-
ing the times when the S-matrix program was very popular, and provides
some insight into that historical period. Similarly to [1] it is not fully up-
to-date, but it is very well-written and offers a lot of value even today.
Let me, however, add one comment. At the time when [2] was written it
was generally assumed that the condition of renormalizability constraints
the physically admissible set of field theories. It was believed that non-
renormalizable theories should be discarded as unphysical. This played a
role in the plausibility argument for the main goal of the S-matrix program,
which was to fully determine the S-matrix just from a small set of math-
ematical properties (causality, unitarity, and crossing-symmetry) up only
to a finite number of constants, the values of which could be measured by
experiments. Today the view on non-renormalizability is more complex.

There is an excellent treatment by H. Nussenzveig: Causality and disper-
sion relations [3]. It is mathematically much more precise than the above-
mentioned references. Its limitation is that it does not venture beyond non-
relativistic quantum mechanics. Nevertheless, I would highly recommend
this book to anyone who wishes to study the related mathematics, as well
as some of the physics, to a greater depth.

I also highly recommend the recently published review by S. Mizera [4],
which is a modern and very readable introduction to the subject of analytic-
ity in quantum physics. Although it is meant to serve as an introduction to
the subject and is therefore by design not very detailed or complete, it cov-
ers a larger ground than most other sources and also mentions some modern
topics and recent results.
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A very authoritative source for an important subset of the results is the
classic book PCT, Spin and Statistics, and All That by R. Streater and
A. Wightman [5]. One can find there a precise mathematical formulation
of the relation between distributions whose support is limited to a cone and
analyticity and boundedness properties of their Laplace transforms. This
relation is the main pillar which supports much of what we are going discuss
in this thesis.



Chapter 1

Causality, analyticity, and
dispersion relations

Our first aim is to introduce the relation between causality and analyticity
in one of its most elementary forms. Roughly speaking, the mechanism
is as follows. We consider some function, or more generally a tempered
distribution, that vanishes on a suitable subset of its domain. A simple
case of this would be a function f of a single variable x that is zero for all
x < 0. As we will see later, this can be further generalized to a distribution
whose support vanishes outside of some cone. The property that f(x) = 0
for x < 0 then translates into particular constraints on the Fourier transform
of f . Those constraints are that the Fourier transform is the boundary value
of an analytic function with certain asymptotic properties. Later, we will
present this statement in a greater detail, but for now our goal is only to
introduce the concept and build some basic intuition. For that reason we
will begin by considering the simple example of a harmonic oscillator.

1.1 Classical harmonic oscillator

A traditional introductory example (see e.g. [3, 4]) is that of a classical
damped harmonic oscillator subjected to an external force. The position x
of such an oscillator, when considered as a function of time t, satisfies the
following differential equation,

ẍ(t) + 2λẋ(t) + ω2
0x(t) = f(t). (1.1)

As usual, the dots above x correspond to time derivatives, and the parame-
ter λ governs the damping of oscillations. The set of physical values of λ is
λ ≥ 0. Such values correspond to the oscillations being damped rather than
amplified. The corresponding homogeneous equation has two independent
solutions, in the familiar form x(t) ∝ exp(−iωt). After we plug this into the

5



6 CHAPTER 1. CAUSALITY AND ANALYTICITY

homogeneous version of (1.1) we find the following two solutions for ω:

ω± = −iλ±
√
ω2

0 − λ2. (1.2)

In order to find a solution of the inhomogeneous equation (1.1) it is
convenient to inspect the Fourier transform of the equation.

First, however, we need to fix our notation. For a function h(t) we will
define its Fourier transform h̃(ω) as

h̃(ω) = F [h](ω) =
∫ +∞

−∞
dt h(t)eiωt. (1.3)

The inverse Fourier transform is then

h(t) = F−1[h̃](t) = 1
2π

∫ +∞

−∞
dω h̃(ω)e−iωt. (1.4)

Now we can express x(t) and f(t) as inverse Fourier transforms

x(t) =F−1[x̃](t) = 1
2π

∫
dω x̃(ω)e−iωt, (1.5)

f(t) =F−1[f̃ ](t) = 1
2π

∫
dω f̃(ω)e−iωt. (1.6)

The equation (1.1) is then equivalent to the condition(
−ω2 − 2iλω + ω2

0

)
x̃(ω) = − (ω − ω+) (ω − ω−) x̃(ω) = f̃(ω). (1.7)

The solution is therefore

x̃(ω) = −1
(ω − ω+) (ω − ω−)

f̃(ω) = g̃(ω)f̃(ω), (1.8)

where we denoted g̃(ω) = −1/ (ω − ω+) (ω − ω−). The full solution is then
F−1[x̃(ω)](t), where x̃ is given by (1.8), plus a linear combination of the
two independent solutions exp(−iω+t) and exp(−iω−t) of the homogeneous
equation. Any solution of the homogeneous equation, however, blows up
for t → −∞. Such solutions are therefore sensible only when considering
the evolution on a time interval that is bounded from below. This is not
our case. In fact, we are interested only in the response of the oscillator to
the external force. Therefore, for our purposes, the full solution is just the
inverse Fourier transform of (1.8).

Let us now take a step back and consider how causality and analyticity
enter into this picture. Our system is that of an oscillator reacting to an
external force. A reasonable criterion of causality therefore seem to be to
demand that the oscillator, if being at rest initially, remains at rest until the
force starts acting on it. In other words, its response to the external force
must not precede the action of the force.
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ω = −ω0 ω = +ω0

ω = −iω0

Figure 1.1: The poles of g̃(ω) as a function of λ. From (1.2) we see that
for λ = 0 the two poles are at the points ω = −ω0 and ω = +ω0 on the
real axis and as λ increases they move below the real axis along the circle
|ω| = ω0. They meet at ω = −iω0 for λ = ω0. Afterwards, one of the poles
continues along the imaginary axis downwards to the infinity while the other
one continues along the imaginary axis upwards towards ω = 0.

Does our solution satisfy this property? Notice, that if we define

g(t) = F−1[g̃](t) = 1
2π

∫
dω g̃(ω)e−iωt, (1.9)

then we can write

x(t) = 1
2π

∫
dω g̃(ω)f̃(ω)e−iωt

= 1
2π

∫
dω g̃(ω)

[∫
dt′f(t′)eiωt′

]
e−iωt =

∫
dt′g(t− t′)f(t′), (1.10)

where in the second equality we wrote f̃(ω) as the Fourier transform of f(t),
and then assumed that it is possible to change the order of integration.
From this equation we see that the response of the oscillator to the force
acting at time t0 is given by the Green’s function g as g(t− t0). (Formally, if
f(t) = δ(t− t0) then x(t) = g(t− t0).) Hence, the above-mentioned criterion
of causality1 translates to the condition

g(t) = 0 for t < 0. (1.11)

Notice now, that for λ > 0 the function

g̃(ω) = −1
(ω − ω+) (ω − ω−)

(1.12)

has poles only in the lower half-plane of ω. [The poles are at ω+ and ω−
and from (1.2) we can calculate their positions as a function of λ. See also
Fig. 1.1.]

1Formally, the criterion stated that if f(t) = 0 for t < t0 then x(t) = 0 for t < t0.
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This allows us to use the following argument to show that g(t) = 0
for t < 0. If t < 0 the exponent in (1.9) is +iω|t|, which means that the
factor exp(−iωt) provides an exponential suppression of the integrand when
ℑ(ω) > 0. In other words, there is an exponential suppression when ω is in
the upper half-plane. We can therefore close the contour of integration using
a large semicircle in the upper half-plane, and use the asymptotic properties
of |g̃| for large |ω| to show that when the contour is stretched all the way
to infinity the integral over this whole contour has the same value as the
original integral (1.9). However, since g̃ is analytic in the upper half-plane,
the integral over the whole contour vanishes by the Cauchy’s theorem, which
implies that (1.9) is also zero. Hence, if t < 0 then g(t) = 0.

[Since a similar technique will be employed over and over again through-
out this work, let us take a time and spell out this argument more carefully.
Instead of (1.9) consider

g(t) = 1
2π

∫ +R

−R
dω g̃(ω)e−iωt, (1.13)

for some R > 0. The integral (1.9) is then recovered in the limit of R → +∞.
Now, for a fixed R define the contour of integration C(R) as going along the
real axis from −R to +R and then upwards along a semicircle in the upper
half-plane until we close the contour at the point −R (see Fig. 1.2). Now,
since g̃ is analytic in the whole upper half-plane, it is analytic inside the
region enclosed by C(R) for any R > 0 and the Cauchy’s theorem implies
that

1
2π

∫
C(R)

dω g̃(ω)e−iωt = 0 (1.14)

for any R > 0. Next, let us denote by U(R) the semicircle part of C(R). In
other words, U(R) = C(R) − [−R,+R]. The integral

1
2π

∫
U(R)

dω g̃(ω)e−iωt (1.15)

satisfies the inequality∣∣∣∣ 1
2π

∫
U(R)

dω g̃(ω)e−iωt

∣∣∣∣ ≤ 1
2π

∫
U(R)

|dω| |g̃(ω)|, (1.16)

because in the upper half-plane the modulus of exp(−iωt) is less than 1.
Hence, we can use the property that |g̃(ω)| = O

(
|ω|−2) as |ω| → ∞ to show

that the absolute value of the integral over U(R) is O
(
R−1) as R → ∞.

Sending R → ∞ in (1.14) leads to the equation

0 = lim
R→∞

(∫ +R

−R
dω g̃(ω)e−iωt +

∫
U(R)

dω g̃(ω)e−iωt

)
, (1.17)
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0−R +R

ω− ω+

Figure 1.2: To show that g(t) = 0 for t < 0 one can consider the integral
(1.14) along the contour C(R) depicted above. The contour starts at −R,
continues along the real axis to +R, and then it returns back to −R along
the semicircle in the upper half-plane. The singularities of g̃(ω) at ω = ω+
and ω = ω− are restricted to the lower half-plane. By the Cauchy’s theorem
the integral over the whole C(R) vanishes for all R > 0. In the limit R → ∞
the integral over the semicircle goes to zero and the integral from −R to +R
approaches (1.9).

and since the second integral goes to zero, so does the first one. This shows
that the integral (1.9) vanishes when t < 0.

Let us note that since we had |g̃(ω)| ∝ |ω|−2 for |ω| → ∞ it was easy
to show that the integral over U(R) vanishes. We could show that the
integral over U(R) vanishes even if only a weaker bound |g̃(ω)| = O

(
|ω|−1)

for large |ω| was available, but a more detailed argument would then be
necessary. In such cases one needs to make use of the fact that there is an
exponential suppression in the upper half-plane, instead of relying only on
the boundedness of the exponential factor. It is then necessary to suitably
divide the path U(R) into several segments and consider them separately.
For example, we could divide U(R) into the path starting at −R and going
upwards along the contour for a distance proportional to

√
R, a similar

path but starting at +R, and the rest of U(R). The absolute value of the
integral over the two segments attached to +R and −R goes as O(R−1/2)
for R → ∞, and the absolute value of the integral over the rest of U(R)
decreases at least as exp(−

√
R|t|) for large R.]

We can use a similar technique to calculate g(t) for t > 0. The exponen-
tial factor now becomes large for ℑ(ω) > 0, and we need to close the contour
in the lower half-plane. Using the same argument as before we can again
show that the integral over the large semicircle goes to zero as the contour
is stretched to infinity. This time, however, the function g̃ is not analytic
in the region enclosed by the contour: there are two poles at ω = ω+ and
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ω = ω− in that region. The theorem of residues then yields

g(t) = − 2πi
∑

p∈{ω+,ω−}
Res

{ 1
2π
g̃(ω)e−iωt; p

}

= i

(
e−iω+t

ω+ − ω−
+ e−iω−t

ω− − ω+

)
= e−λt

sin
(√

ω2
0 − λ2 t

)
√
ω2

0 − λ2
, (1.18)

for t > 0. Here, Res{f(z), a} stands for the residue of f(z) at z = a, and
the sum of residues is multiplied by −2πi because we integrate along the
contour in the clockwise direction. Altogether, we have obtained the result

g(t) =
sin
(√

ω2
0 − λ2 t

)
√
ω2

0 − λ2
e−λtθ(t), (1.19)

where θ stands for the Heaviside step function, which equals zero for negative
values of its argument and one for positive values of the argument,

θ(t) =
{

0 if t < 0,
1 if t > 0.

(1.20)

As we can see from (1.19) the oscillator responds to a brief impulse of force
by damped oscillations with lifetime 1/λ. The step function factor in (1.19)
ensures that the response obeys our causality criterion: oscillations appear
only after the force acts, no earlier.

Let us now take a step back and discuss our findings. In the context
of the harmonic oscillator we formulated the causality condition in terms of
the Green’s function g(t − t0) as the condition that g(t − t0) = 0 if t < t0.
To show that g(t) satisfies this property we started from considerations of
its Fourier transform g̃(ω). As we saw, the causality condition followed from
the fact that g̃ was analytic in the upper half-plane and that it had suitable
asymptotic properties for large |ω|.

In fact, this argument can be reversed: if g(t) = 0 for t < 0 then g̃(ω)
is analytic in the upper half-plane and has certain asymptotic properties.
This is because for such functions g(t) we have

g̃(ω) =
∫ +∞

−∞
dt g(t)eiωt =

∫ +∞

0
dt g(t)eiωt, (1.21)

since for t < 0 the integrand vanishes. But for positive values of t the
exponential factor exp(iωt) = exp(iℜ{ω}t) exp(−ℑ{ω}t) serves to improve
the integral’s convergence when ℑ{ω} > 0, and as a consequence the function
g̃(ω) is analytic in the upper half-plane. In following sections we will slightly
generalize our findings and state the results in a more precise form.
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Let us mention one last thing in relation to the harmonic oscillator. The
observation that g̃(ω) was analytic in the upper half-plane relied on the
condition that λ > 0. It was necessary that the oscillations were damped,
or, in other words, that the system was dissipating energy. But what about
the cases when λ < 0? When λ < 0, the system on its own (absent the
external force) is unstable. If the external force does not act, any non-zero
value of x at time t0 results in arbitrarily large oscillations at times t > t0.
To obtain a finite solution the force must therefore act to suppress those
oscillations. For example, if the external force was a short delta-function-
like impulse, the finite solution would consist of exponentially increasing
oscillations followed by the short burst of force acting to set the oscillator
to rest. In other words, the force follows the oscillations, not the other way
around. A simple way to think about this is to notice that the solutions for
λ < 0 are the same as those for −λ after we reverse the flow of time, t → −t.

1.2 A simple generalization

The discussion of the previous section applies to a much larger set of systems.
Let us now present a very simple generalization so that we can more clearly
see which aspects do not depend on the specific form of the differential
equation for the harmonic oscillator.

Consider an abstract system which reacts to an input f(t) with a re-
sponse x(t), corresponding respectively to the external force and the posi-
tion of the oscillator in the previous section. Let us now make the following
assumptions about this system:

1. Let the response of the system be linear in the input. This corresponds
to the property that

x(t) =
∫
dti g(t, ti)f(ti), (1.22)

where g(t, ti) is the response at t to the input of the form f(t) =
δ(t− ti).

2. Let the system be time-translation invariant. This implies that g(t, ti)
depends only on the difference between t and ti:

g(t, ti) = g(t− ti). (1.23)

In this case we find that the response of the system is the convolution of the
input f and the Green’s function g

x(t) = (g ∗ f)(t) =
∫
dti g(t− ti)f(ti). (1.24)
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Recall now that the Fourier transform of a convolution a ∗ b is the product
of the Fourier transforms F [a] and F [b]:

F [a ∗ b] (ω) =
∫
dt (a ∗ b)(t)eiωt =

∫
dt

∫
dt′ a(t− t′)b(t′)eiωt

=
∫
dt′
∫
dt
[
a(t− t′)eiω(t−t′)

] [
b(t′)eiωt′]

=
∫
dt′
∫
d(t− t′)

[
b(t′)eiωt′] [

a(t− t′)eiω(t−t′)
]

=
∫
dt′ b(t′)eiωt′

∫
dt a(t)eiωt = F [a] (ω) F [b] (ω). (1.25)

Therefore, in terms of x̃ = F [x], f̃ = F [f ], and g̃ = F [g], the equation (1.24)
reads

x̃(ω) = g̃(ω) f̃(ω). (1.26)

Thus, we see that for any linear time-translation-invariant system we recover
the general structure of the previous section.

Just as before, a reasonable condition of causality is

g(t) = 0 for t < 0. (1.27)

This condition is sometimes called the primitive causality condition. Minor
modifications are often necessary, as for example requiring that g(t) = 0 for
all t < t0 for some constant t0 instead of (1.27), especially if the input and
the response are measured at different locations in space.

The condition (1.27) on g then translates to the property that its Fourier
transform g̃ is analytic in the upper half-plane and satisfies certain asymp-
totic properties. Such functions are sometimes called causal transforms and
in the following sections we will present this statement in greater detail. We
will also introduce another useful property that characterizes causal trans-
forms: they satisfy equations known as dispersion relations.

1.3 Analytic continuation from a set of measured
data

Let us now approach the same problem from another direction. Recall the
following result from complex analysis. Consider a region G and two analytic
functions f , g defined on G. Then, if the set A = {z ∈ G : f(z) = g(z)}
contains a limit point, the two functions are identical everywhere on G,
that is, A = G. As a consequence, if a function is defined and analytic on
G, it is fully determined by its values on any subset of G that contains a
limit point, and in particular by its values on any interval2. Hence, if we

2To avoid any confusion, one should not forget that this kind of continuation is unique
only as long as G remains fixed. It may be possible to further extend the definition domain
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knew that some quantity f(t) is an analytic function on the real axis (or,
more precisely, in some neighborhood of the real axis), we could attempt
to determine f everywhere just from measurements in some small interval
of t. At first sight, this may appear to be a sensible plan, considering the
uniqueness of such a continuation. However, that is wrong. The problem
is that realistic measurements have only finite precision, and the analytic
continuation is generally unstable. As an example, consider some analytic
function f(t) and another one defined by g(t) = f(t) exp(iat), where the
parameter a is real and very small. For any fixed interval (t1, t2) and a
fixed measurement precision there exists a sufficiently small value of a such
that the functions g and f are indistinguishable on that interval given the
measurement precision. However, when continued to the lower half-plane,
the factor exp(iat) grows exponentially with −ℑ(t), and the two functions
eventually become measurably different.

There are ways to address this issue and devise methods of analytic
continuation that are more suitable for real world applications. Consider
the situation where f(z) is analytic in some simply connected region G and
continuous on its closure. (At this point it becomes useful to specify what is
meant under the term ‘region’. We define a region to be an open connected
subset of the complex plane. A simply connected region is a region without
any holes: any closed path in such a region can be contracted continuously
to a single point. Here we invoked the simple connectedness just for the sake
of simplicity.) For any z0 ∈ G the Cauchy’s integral formula yields

f(z0) = 1
2πi

∫
∂G
dz

f(z)
z − z0

, (1.28)

where we integrate over the boundary ∂G of G in the counterclockwise
direction. This method allows us to continue from the boundary into the
whole region, and it is easy to see that it does not suffer from instabilities
such as those observed in the previous paragraph: if the function values on
the boundary are shifted from f(z) to f(z)+∆(z), the effect this has on the
value of f(z0) given by (1.28) is bounded from above by maxz∈∂G |∆(z)|.
[When the boundary values change from f(z) to f(z) + ∆(z), the left hand
side of (1.28) changes from f(z0) to f(z0) + ∆(z0), where

∆(z0) = 1
2πi

∫
∂G
dz

∆(z)
z − z0

, (1.29)

because the right hand side of (1.28) is linear in f . A simple manipulation

of the function to some larger set G′ ⊃ G, but in that case it is not guaranteed that the
continuation is unique. If there are two such continuations, one onto a set G1 ⊃ G and
the other one onto a set G2 ⊃ G, then there might be points in G1 ∩ G2 where the two
continuations differ. In other words, the analytic continuation is generally path dependent.
We will return to this issue later in the chapter, but for now we can ignore this possibility.
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then yields for its modulus |∆(z)| the inequality

|∆(z0)| =
∣∣∣∣ 1
2πi

∫
∂G
dz

∆(z)
z − z0

∣∣∣∣ ≤ 1
2π

∫
∂G

|dz| |∆(z)|
|z − z0|

. (1.30)

We can parameterize the integration over the boundary by the angle ϕ
formed by the intersection of the line from z0 to z and some fixed refer-
ence line passing through z0. Denoting |z − z0| = r(ϕ) we obtain

|∆(z0)| ≤ 1
2π

∫
∂G

|dz| |∆(z)|
|z − z0|

= 1
2π

∫ 2π

0
r(ϕ)dϕ |∆ (z(ϕ)) |

r(ϕ)
≤ max

z∈∂G
|∆(z)|,

(1.31)
which demonstrates the stability of this method of continuation.]

The function continued by the formula (1.28) from the boundary values
is sometimes called the Cauchy transform. The stability of this method of
continuation is closely linked to another result concerning analytic functions,
the maximum modulus theorem. This theorem states3 that the modulus of
an analytic function defined on a region G assumes its maximum value on
the boundary ∂G.

When one attempts to make use of formulas such as (1.28) in physical
applications, the following inconvenience may easily occur: one wishes to
consider a form of (1.28) where the region G is very large or unbounded.
(Unbounded regions are dealt with in the usual manner of considering a
suitable limit in which a bounded region is stretched to infinity.) In order to
apply (1.28) one then needs to know the values of f on distant parts of the
boundary, which can be a problem. However, there is an important class
of cases for which this issue disappears. These are when the modulus of f
decreases sufficiently fast so that the integral over the distant part of the
boundary is zero. We next limit our attention to these cases and derive the
so-called dispersion relations.

3The proof of this theorem is very simple if we assume validity of another key result
of complex analysis: the open mapping theorem, which states that non-constant analytic
functions map open sets onto open sets. Hence, if f is an analytic function defined on a
region G and f is not constant, then the set f(G) = {f(z) : z ∈ G} is open, and this means
that for any point ξ ∈ f(G) there is an open ball B(ξ; r) = {o : |o − ξ| < r} (for some
r > 0) contained in f(G): B(ξ; r) ⊂ f(G). But B(ξ; r) contains points of larger modulus
than ξ, and since B(ξ; r) ⊂ f(G), so does f(G). This shows that there is no point ξ in
f(G) such that |f(z)| ≤ |ξ| for all z ∈ G. On the other hand, if f is continuous on the
closure of G then its modulus must assume its maximal value somewhere on it. If f is
not constant, the previous argument then implies that this maximal value of the modulus
must be assumed on the boundary ∂G. When f is constant, the maximum modulus is
assumed everywhere, including the boundary, which concludes the proof. Observe that in
a similar way we can prove analogous statements for the real component of f instead of
the modulus, or for the imaginary component, or for the projection onto any fixed line.
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1.4 Causal transforms and dispersion relations
There are various ways to obtain dispersion relations. For now, we will
stick to the approach that, as we will see, corresponds to the condition that
g(t) = 0 for t < 0. There is also the question of what class of functions or
distributions should we consider. We will need to require certain asymptotic
properties. Our main goal is to explore the elementary concepts and build
some intuition, so for now we will limit our attention to the relatively simple
case of functions that are square integrable.

A square integrable function g(t) satisfies∫ +∞

−∞
dt |g(t)|2 = C, (1.32)

for some finite constant C. These functions can be Fourier transformed and
the Parseval’s theorem then states that the Fourier transform F [g](ω) =
g̃(ω) is also square integrable. Although in this chapter I try to state some
of the results precisely, I do not attempt to be mathematically rigorous
in their derivation (if derivations are offered at all). Under these relaxed
standards we can obtain the integral of |g̃|2 as follows∫

dω |g̃(ω)|2 =
∫
dω dt dt′

[
g(t)eiωt

] [
g(t′)∗e−iωt′]

=
∫
dt dt′ 2πδ(t− t′)g(t)g(t′)∗ = 2πC. (1.33)

If g(t) also satisfies the primitive causality condition (1.27), then if we con-
sider a complex ω = α + iβ, and integrate over the line β = const > 0 in
the upper half-plane, we obtain∫ ∞

−∞
dα |g̃(α+ iβ)|2 =

∫ ∞

0
dt

∫ ∞

0
dt′ 2πδ(t− t′)g(t)g(t′)∗e−β(t+t′) < 2πC,

(1.34)
because for β > 0 the factor exp(−β(t+ t′)) provides an additional suppres-
sion of the integrand. Hence, in this case the function g̃(α + iβ) is square
integrable when considered as a function of α with β fixed at any positive
value — in other words, it is square integrable along any line in the upper
half-plane and parallel to the real axis — and all such integrals satisfy a
common bound. Furthermore, it can be shown rigorously that g̃(ω) is an-
alytic in the upper half-plane. Functions with these properties are called
causal transforms, and we will focus on them for the rest of this section.

To summarize, we consider a function f(z) that has the following prop-
erties:

• f(z) is analytic in the upper half-plane;

• f(x+ iy), when considered as a function of x, is square integrable for
any y ≥ 0;
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z = 0

z = z0

−X +X

X + iY−X + iY

Figure 1.3: An integration contour suitable for the application of the
Cauchy’s integral formula to square integrable functions analytic in the up-
per half-plane. Both X and Y are eventually send to +∞.

• there exists a common bound 2πC such that
∫
dx|f(x + iy)|2 ≤ 2πC

for any y ≥ 0.

Note that the square integrability property implies

f(x+ iy) → 0 when |x| → ∞, (1.35)

for any y ≥ 0.
We will now apply the Cauchy’s integral formula (1.28) with a suitably

chosen integration contour that will make it convenient to exploit these
properties. Fix a point z0 = x0 + iy0 with y0 > 0. Consider the following
rectangular contour of integration (depicted in Fig. 1.3): for some values of
X, Y both real and positive, start at the point −X, go along the real axis
to the point +X, then parallel to the imaginary axis to X + iY , then along
the horizontal line to −X+ iY , and then vertically back to −X. The values
of X and Y must be chosen such that −X < x0 < X and 0 < y0 < Y , i.e.,
that the point z0 is in the region enclosed by the contour of integration.

We now proceed in steps to consider the integral (1.28) consecutively
along each side of this rectangular contour. The integral from X to X + iY
can be expressed as

1
2πi

∫ Y

0
idy

f(X + iy)√
(X − x0)2 + (y − y0)2 ,

and its modulus can be bounded by the following expression

1
2π

max
0≤y≤Y

{|f(X + iy)|}
∫ Y

0
dy

1√
(X − x0)2 + (y − y0)2 . (1.36)

We now consider the behavior of this integral as we send X to the infinity.
For a fixed value Y the maximum max0≤y≤Y {|f(X+ iy)|} of |f(z)| over the
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right side of the rectangle goes to zero as X → ∞, because of the prop-
erty (1.35). Furthermore, for large X the integral in (1.36) is approximately
equal4 to Y/X, and this factor also vanishes with X → ∞. Hence, in the
limit of X → ∞ the integral over the right side of the rectangle vanishes. By
an entirely similar argument, the integral over the left side of the rectangle
vanishes when we send −X → −∞.

Putting these two results together we see that

f(x0 + iy0) = 1
2πi

∫ +∞

−∞
dx

f(x)
x− (x0 + iy0)

+ 1
2πi

∫ −∞

+∞
dx

f(x+ iY )
(x+ iY ) − (x0 + iy0)

, (1.37)

for any Y > y0. The second integral on the right-hand side corresponds to
the integration over the upper side of the rectangle whose left and right sides
were moved to the minus infinity and the plus infinity, respectively. We can
show that this integral vanishes using the Schwarz inequality, which yields

∣∣∣∣ ∫ +∞

−∞
dx

f(x+ iY )
(x− x0) + i(Y − y0)

∣∣∣∣ ≤
[∫ +∞

−∞
dx|f(x+ iY )|2

]1/2

×
[∫ +∞

−∞
dx

1
(x− x0)2 + (Y − y0)2

]1/2
. (1.38)

Now, the first integral on the right hand side is bounded by 2πC and the
second one equals π/(Y − y0). [We can calculate this integral for instance
by closing the contour of integration using a large semicircle in one of the
half-planes and picking up the contribution of the pole that lies in that
half-plane.] This provides us with the bound∣∣∣∣ ∫ +∞

−∞
dx

f(x+ iY )
(x− x0) + i(Y − y0)

∣∣∣∣ ≤
√

2π2C

Y − y0
, (1.39)

which vanishes with Y → +∞. In fact, except for this integral no other
term in (1.37) depends on the value of Y , which means that the integral

4Alternatively, we could also use the substitution
√
a2 + y2 = t− y, which leads to

dy√
a2 + y2

= dt

t
,

and evaluate the integral explicitly:∫ Y

0
dy

1√
(X − x0)2 + (y − y0)2

=
[
ln
(
y − y0 +

√
(X − x0)2 + (y − y0)2

)]y=Y

y=0
= ln

Y − y0 +
√

(X − x0)2 + (Y − y0)2

−y0 +
√

(X − x0)2 + y2
0

.
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z = 0
integration direction

z-plane z = z0

Figure 1.4: A natural way to deform the integration contour to avoid the
singularity at z = z0 as z0 approaches the real axis. For this to be valid
the integrand must be analytic not only in the upper half-plane but also
in some neighborhood below the real axis. While z0 is still in the upper
half-plane the integrals over the original contour (that is, the real axis) and
the deformed contour are the same, because during the deformation the
contour did not cross any singularity. Hence, the integral over the deformed
contour defines an analytic continuation of the original integral (considered
as a function of z0) to z0 on the real axis.

itself is also Y -independent. Thus it must be actually equal to zero for all
Y > y0.

Altogether, we have found that for functions f that satisfy the three
properties enumerated right above the equation (1.35) we can use the inte-
gral formula (1.28) to obtain

f(z0) = 1
2πi

∫ ∞

−∞
dx

f(x)
x− z0

, (1.40)

for any z0 with positive imaginary part. This kind of equation is sometimes
also called a dispersion relation, but strictly speaking there is one aspect
still missing. To obtain full dispersion relations we need to move the point
z0 from the upper half-plane to the real axis. This is not trivial because
in the original formula (1.28) the point z0 must not lie on the boundary
of G. However, after we resolve the ensuing issues we obtain a formula of
great value. First of all, in physical applications we are often interested
primarily in real values of z0. But there is also another, less obvious utility
of that formula. What is now the denominator in (1.40) will become real,
and this, combined with the fact that the integration contour is the real
axis, will allow us to nicely separate the formula into its real and imaginary
components and it turns out that either one of those equations contains the
full information on the other one.

In the equation (1.40) the point z0 lies in the upper half-plane. If we
kept the contour as it is and just moved z0 onto the real axis, the integral
on the right-hand side would become ill-defined because the denominator
would vanish for x = z0. A natural and very useful approach in situations
such as this one is to try to deform the contour of integration away from the
singularity of the integrand, as is depicted in Fig. 1.4. Unfortunately, in this
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specific case we cannot do so, because we do not assume that the function
f(z) is analytic below the real axis.

Nevertheless, since this kind of approach is of tremendous utility in high
energy physics let us now take a short detour and describe this technique a
little bit better. Consider a situation such as the one depicted in Fig. 1.4
but assume for now that the function f is analytic everywhere. That means
that there is only one singularity of the integrand f(z)/(z − z0) in (1.40):
the simple pole at z = z0. We start with z0 in the upper half-plane, which
means that the integral is regular everywhere on the real axis, the original
contour of integration. Denote the value of the integral by I(z0). It is an
analytic function of z0 that is well-defined for all z0 with positive imaginary
part. For z0 on the real axis, however, the integral (1.40) becomes ill-defined.
But just because the function I(z0), as given by (1.40), is defined only for
z0 from the upper half-plane, we cannot exclude the option that I(z0) can
be analytically continued into a larger region. In fact, from the figure 1.4
it is easy to see how to think about such a continuation. With z0 still in
the upper half-plane, the integral over the original contour — the real axis
— and the integral over the contour depicted by the thick line have the
same value. This is a consequence of the Cauchy’s theorem: the difference
between the two contours is the small half-disk protruding into the lower
half-plane and since the integrand is analytic on that half-disk, the integral
over its boundary vanishes. But the integral over this boundary equals the
difference between the integral over the original contour and the integral
over the deformed contour. So both the integrals give the same result while
z0 is in the upper half-plane. However, when z0 moves onto the real line, as
indicated in the figure by an arrow, the original integral becomes ill-defined,
but the second integral avoids the singularity and remains perfectly finite.
In this way we can explicitly define continuations of (1.40) as integrals over
deformed contours. As long as we can deform the contour away from all the
singularities, the integral remains finite.

There are a few ways in which the above procedure may fail. We will
now illustrate one such a case. Suppose that in addition to z0, which we now
consider as a parameter, there is also another singularity at the point z1. For
simplicity, let us assume that z1 is a function of z0 and that z1 = z∗

0 . (The
star indicates complex conjugation.) Hence, the singularities at z0 and z1
approach the real axis together, one from above the integration contour and
the other one from below. This is illustrated in Fig. 1.5. As the singularities
reach the real axis the integral becomes ill-defined and we would like to
deform the contour in a way that avoids both of them. However, this not
possible. Any deformation that avoids one of the singularities necessarily
crosses the other one. (For instance, if we tried to deform the contour to
avoid z0 as we did in Fig. 1.4, we would cross the singularity at z1.) If this
happens we say that the integration contour is pinched by those singularities.

Pinches of integration contours are very important in the analysis of
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z = 0

z-plane z = z0

z = z1

Figure 1.5: An illustration of a pinch. The singularities at z0 and z1 move
towards each other and they meet near the integration contour, as indicated
by the arrows. We would like to deform the contour away from the singular-
ities, but there is no deformation that avoids both of them. For instance, we
could try to avoid the singularity at z0 deforming the contour as was done
in Fig. 1.4, but in doing so we would cross the singularity at z1.

z = 0 z = z0−X +X

X + iY−X + iY

Figure 1.6: An integration contour that is suitable for the derivation of
dispersion relations for square integrable functions. The values of X and Y
are taken to ∞.

analytic properties of Feynman graphs and scattering amplitudes. In this
context they usually give rise to branch points. One can determine possible
locations of such pinches using the so-called Landau conditions. More in-
formation about these methods can be found for instance in [1], and we will
briefly return to this topic later in the section 2.5. (For some issues with the
treatment presented in [1] as well as in other standard references, see [6].)
Another important application of these techniques is in the Libby-Sterman
analysis of zero-mass singularities in Feynman graphs. This analysis identi-
fies regions with dominant contributions in the high-energy limit, which in
turn leads to factorization theorems. (For a textbook treatment of this and
other aspects of perturbative QCD, see [7].)

Let us now return to our main task, which is to derive a version of (1.40)
for real values of z0. If the function f was analytic in some neighborhood
below the real axis, we could just deform the contour to avoid the singular-
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ity5, but since we only assume that f is analytic in the upper half-plane we
need to devise a different approach. We proceed similarly as we did in the
derivation of (1.40) but instead of the contour depicted in Fig. 1.3, which is
suitable only when ℑ{z0} > 0, we modify the contour to accommodate for
the case of real z0. This modified contour is depicted in Fig. 1.6. Note that
this time the integral over the whole contour vanishes because the region
enclosed by it contains no singularities. Now, by the same argument as be-
fore, the integrals over the two vertical sides of the rectangle vanish in the
limit ±X → ±∞. Our previous consideration of the integral over the upper
side of the rectangle also remains valid: in the limit |X| → ∞ this integral
vanishes (for any Y > 0).

Hence, altogether we find that the integral over the bottom part of the
contour of integration, depicted in Fig. 1.7, is zero. We will now divide this
contour into two parts and consider the corresponding integrals separately.
The first part is the integral over the semicircle S(ϵ) that lies in the upper
half-plane and goes from x0 − ϵ to x0 + ϵ. When we express this integral in
terms of the angular variable ϕ defined by the substitution z = x0+ϵ exp(iϕ),
we obtain

1
2πi

∫
S(ϵ)

dz
f(z0)
z − x0

= 1
2πi

∫ 0

π
d
(
x0 + ϵeiϕ

) f(x0 + ϵeiϕ)
ϵeiϕ

= − 1
2π

∫ π

0
dϕf(x0 + ϵeiϕ), (1.41)

for any ϵ > 0. We now take the limit ϵ → 0, which allows us to use the
continuity of f(z) in the upper half-plane6 to get

lim
ϵ→0+

1
2πi

∫
S(ϵ)

dz
f(z0)
z − x0

= − 1
2π

lim
ϵ→0+

∫ π

0
dϕf(x0 + ϵeiϕ) = −1

2
f(x0). (1.42)

5We could just rewrite (1.40) as

f(x0) = 1
2πi lim

ϵ→0+

∫ ∞

−∞
dx

f(x)
x− x0 − iϵ

,

and using the contour deformation as in Fig. 1.4 we would in effect obtain the distribution-
theoretic identity

lim
ϵ→0+

1
x− iϵ

= P
( 1
x

)
+ iπδ(x),

which then leads to the final result

f(x0) = 1
2f(x0) + 1

2πiP
∫ ∞

−∞
dx

f(x)
x− x0

.

We will discuss this later in this and the next section.
6Actually, we need f to be continuous on the closure of the upper half-plane, that is,

on the union of the upper half-plane and the real axis. We did not specify this explicitly,
but have assumed it throughout this section. Note that the functions specified around the
equations (1.32)-(1.34) satisfy this property.
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The other part of the integral is

1
2πi

(∫ x0−ϵ

−∞
dx+

∫ +∞

x0+ϵ
dx

)
f(x)
x− x0

. (1.43)

Taking the limit ϵ → 0 then gives

1
2πi

P
∫ +∞

−∞
dx

f(x)
x− x0

, (1.44)

where the symbol P in front of the integral denotes the so-called Cauchy’s
principal value. This can be nicely defined in distribution-theoretic terms,
but it is also appropriate to think of it simply as the limit ϵ → 0+ of the
previous equation: we integrate over the whole integration region except
that we skip a small interval around the pole, and consider the limit when
this interval contracts to length zero.

Combining our results we obtain

0 = −1
2
f(x0) + 1

2πi
P
∫ +∞

−∞
dx

f(x)
x− x0

, (1.45)

or, in a nicer form,

f(x0) = 1
iπ

P
∫ +∞

−∞
dx

f(x)
x− x0

. (1.46)

We can see that both the integral measure and the denominator of the inte-
grand are real. As promised earlier, this allows us to conveniently separate
the real and imaginary part of this equation. Taking the real part yields

ℜ{f(x0)} = 1
π

P
∫ +∞

−∞
dx

ℑ{f(x)}
x− x0

. (1.47)

Taking instead the imaginary part leads to

ℑ{f(x0)} = − 1
π

P
∫ +∞

−∞
dx

ℜ{f(x)}
x− x0

. (1.48)

The equations (1.47) and (1.48) are the dispersion relations that we were
looking for. As a consequence of the factor of i in the equation (1.46) they
relate the real part of f to its imaginary part.

1.5 Sokhotski-Plemelj identities

Before we continue our discussion of dispersion relations and causal trans-
forms let us take a closer look at a useful mathematical result that we
encountered.
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x0x0 − ϵ x0 + ϵ

z-plane

Figure 1.7: Taking the limit |X| → ∞ with the contour depicted in Fig. 1.6
we find that the integral over the contour depicted here is zero. The contour
starts on the real axis at −∞ and goes along the axis to the point x0 − ϵ.
Then it describes a semicircle of radius ϵ in the upper half-plane and returns
to the real axis at the point x0 + ϵ. It continues along the real axis all the
way to +∞. The value of ϵ is arbitrary positive.

In the previous section we considered the integral of f(z)/(z−z0), where
f(z) was a function analytic in the upper half-plane (and continuous on its
closure), over the contour depicted in Fig. 1.7. We showed how to decompose
this integral into two parts: one which corresponds to the principal value
of that integral and the other one — stemming from the integral over the
small semicircle — that contributes the value −f(x0)/2. We can depict this
schematically as in Fig. 1.8. That picture attempts to convey the following
reasoning. The leftmost diagram corresponds to the integration over the real
axis, with the black dot depicting the position of the pole of the integrand
just below the real axis. That is, the denominator is of the form z−(x0 −iϵ),
where ϵ is a small positive quantity. What we are really interested in is
the limit ϵ → 0. Since the integrand is assumed to be analytic in the
upper half-plane, we are allowed to deform the contour so that it avoids
the pole at z0 = x0 − iϵ as ϵ is taken to zero. This is depicted in the
middle diagram. The rightmost diagram then shows the decomposition of
this deformed contour into two parts, exactly as in the previous section.
The first term corresponds to the principal value, while the second term
contributes with half the residue multiplied by −2πi. [It is half the residue
because we integrate over a semicircle rather than the full circle. We multiply
by −2πi because we integrate in the clockwise direction. In the previous
section we demonstrated that this is correct by an explicit calculation.] If
we interpret this result as the distribution 1/(x− (x0 − iϵ)) acting on a test
function f(x) we obtain

lim
ϵ→0+

1
x− x0 + iϵ

= P
x− x0

− iπδ(x− x0), (1.49)

where we have assumed that f(x) is the boundary value of a function analytic
in the upper half-plane.

If, on the other hand, we assume that f(x) is the boundary value of
a function analytic in the lower half-plane, we may consider a schematic
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= = +

Figure 1.8: A schematic corresponding to the Sokhotski-Plemelj identity for
a function analytic in the upper half-plane.

= = +

Figure 1.9: A schematic corresponding to the Sokhotski-Plemelj identity for
a function analytic in the lower half-plane.

depicted in Fig. 1.9, and this corresponds to the equation

lim
ϵ→0+

1
x− x0 − iϵ

= P
x− x0

+ iπδ(x− x0). (1.50)

The sign in front of the delta function has been reversed because now the
semicircle around the pole is traversed in the counterclockwise direction.
These two results are called Sokhotski-Plemelj identities and can be derived
by distribution theoretic-methods without explicit restrictions on the ana-
lyticity of test functions. (See, e.g., [3].)

We close this section by providing a simple, less rigorous derivation.
Assuming that both terms on the right hand side are well-defined, we can
write

lim
ϵ→0+

1
x± iϵ

= lim
ϵ→0+

x

x2 + ϵ2
∓ lim

ϵ→0+

iϵ

x2 + ϵ2
. (1.51)

When considered as a function of x, the first term on the right hand side
equals 1/x for x ̸= 0 and 0 for x = 0. When considered as a distribution,
it can be shown to correspond to P/x. The second term, when considered
simply as a function, is zero everywhere except for x = 0 where it diverges.
However, for any ϵ > 0 we have∫

dx
ϵ

x2 + ϵ2
=
∫
dy

1
y2 + 1

= [arctan(y)]+∞
−∞ = π, (1.52)

so as a distribution the second term corresponds to ∓iπδ(x). Altogether,
we have obtained

lim
ϵ→0+

1
x± iϵ

= P
x

∓ iπδ(x). (1.53)

1.6 Hilbert transforms
We now return to our discussion of dispersion relations (1.47) and (1.48).
In this section we will show that either one of them implies the other.

Before we proceed, however, let us first mention several other results,
which we will prove useful in our investigation of dispersion relations.
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Recall, first, the very useful expression for the Heaviside step func-
tion θ(t), which is defined in (1.20), in terms of its Fourier transform:

θ(t) = lim
ϵ→0+

1
−2πi

∫ +∞

−∞
dω

e−iωt

ω + iϵ
. (1.54)

To prove the validity of this formula, consider separately the cases of the
positive t and of the negative t. First, if t < 0 we can close the contour
of integration using a large semicircle in the upper half-plane. In the limit
of the infinitely large semicircle the integral over this semicircle vanishes.
Then, as a consequence of the fact that the integrand is analytic in the
upper half-plane, it follows that for t < 0 the integral is zero. If, on the
other hand, t > 0, we are forced to close the contour in the lower half-plane
and pick up the contribution of the residue at ω = −iϵ. The value of the
integral is therefore −2πi, which shows that the right hand side equals 1 for
t > 0, completing our proof of (1.54). Using our earlier notation, we may
write (1.54) also as

θ(t) = iF−1
[ 1
ω + iϵ

]
(t), (1.55)

where on the right hand side it is now implicitly assumed that we are con-
sidering the limit ϵ → 0+. (Note also that θ(−t) = −iF−1

[
1

ω−iϵ

]
(t).)

It will be convenient to explicitly consider also the function ϵ(t), defined
by

ϵ(t) =
{

−1 if t < 0,
+1 if t > 0.

(1.56)

Using (1.55) and the Sokhotski-Plemelj identities (1.53) we can write

ϵ(t) = θ(t) − θ(−t) = iF−1
[ 1
ω + iϵ

]
(t)

−
(

−iF−1
[ 1
ω − iϵ

]
(t)
)

= 2iF−1
[P
ω

]
(t). (1.57)

More explicitly, this reads

ϵ(t) = i

π
P
∫ +∞

−∞
dω

e−iωt

ω
. (1.58)

We can verify this equation with the help of contour integration. We consider
the original contour as going from −∞ to −ϵ and then from +ϵ to +∞ (and
eventually we take the limit ϵ → 0+). If t > 0, we close the contour by
two circular paths: a large semicircle in the lower half-plane, and a small
semicircle from −ϵ to +ϵ, also in the lower half-plane (see Fig. 1.10). The
overall integral is zero, as well as the integral over the large semicircle. The
integral of exp(−iωt)/ω over the small semicircle, in the limit ϵ → 0, is equal
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ω = 0−ϵ +ϵ−R +R

Figure 1.10: An integration contour that can be used to verify the validity
of (1.58) for t > 0. The integral over the whole contour is zero for all
0 < ϵ < R. The correspondence with (1.58) is obtained in the limit R → ∞
and ϵ → 0+. In this limit the integral over the horizontal segments is equal
to the integral (1.58), the integral over the large semicircle vanishes, and the
integral over the small semicircle contributes 2πi times half the residue.

to πi. This means that the integral over the original contour equals −πi,
and the right hand side of (1.58) is indeed +1 for t > 0. For t < 0 we use a
similar argument, but with semicircles in the upper half-plane.

We will also need to use the well-known results regarding Fourier trans-
forms of products and convolutions. In their core, these results state that
products are transformed into convolutions and convolutions into products,
but there are additional factors of 2π, which complicate this issue. In partic-
ular, they depend on the definition of the Fourier transform. We used (1.3),
but some definitions contain an extra factor of (2π)−1/2 or (2π)−1. Let us
therefore state these results explicitly. Earlier, we have already derived the
result (1.25) for the Fourier transform of a convolution

F [a ∗ b] = F [a] F [b] . (1.59)

This implies
F−1

[
ãb̃
]

= F−1 [ã] ∗ F−1
[
b̃
]
, (1.60)

where we employed our usual notation F [f(t)](ω) = f̃(ω). For the inverse
Fourier transform of a convolution we find

F−1
[
ã ∗ b̃

]
(t) = 1

2π

∫
dω (ã ∗ b̃)(ω)e−iωt

= 1
2π

∫
dω

∫
dω′

[
ã(ω − ω′)e−i(ω−ω′)t

] [
b̃(ω′)e−iω′t

]
= 2π

∫
dω

2π

∫
dω′

2π

[
ã(ω)e−iωt

] [
b̃(ω′)e−iω′t

]
= 2πF−1 [ã] (t) F−1

[
b̃
]

(t).

(1.61)
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And finally, applying F to both sides of (1.61) we get

F [ab] = 1
2π

F [a] ∗ F [b] . (1.62)

Now we are ready to turn our attention to the dispersion relations (1.47)

ℜ{f(x0)} = 1
π

P
∫ +∞

−∞
dx

ℑ{f(x)}
x− x0

,

and (1.48)

ℑ{f(x0)} = − 1
π

P
∫ +∞

−∞
dx

ℜ{f(x)}
x− x0

.

Notice that these equations have the form of a convolution of P/x with
ℜ{f(x)} or ℑ{f(x)}. For instance, starting from (1.47) we can write

ℜ{f(x0)} = − 1
π

P
∫ +∞

−∞
dx

ℑ{f(x)}
x0 − x

= − 1
π

[ P
x0

]
∗ [ℑ{f(x0)}] , (1.63)

where we have written the denominator x−x0 as −(x0 −x) to obtain a form
directly corresponding to convolution. Applying now the inverse Fourier
transform and using (1.61) we find

F−1 [ℜ{f(x0)}] = − 1
π

2πF−1
[ P
x0

]
F−1 [ℑ{f(x0)}] , (1.64)

and, by the virtue of (1.57), this reads

F−1 [ℜ{f}] (t) = iϵ(t)F−1 [ℑ{f}] (t). (1.65)

This equation is the inverse Fourier transform of the dispersion relation (1.47).
Note, however, that ϵ(t)2 = 1. [We are interested only in the properties of
ϵ(t)2 as a distribution, which means that we do not care about its value at
t = 0, which is a set of measure zero.] Hence, multiplying by ϵ(t) both sides
of the equation (1.65), we find that

F−1 [ℑ{f}] (t) = −iϵ(t)F−1 [ℜ{f}] (t). (1.66)

This equation, in turn, is the inverse Fourier transform of the dispersion
relation (1.48), as we will now show. We apply F to both sides of (1.66)
and use (1.62) to obtain

ℑ{f} = −i
2π

F [ϵ] ∗ ℜ{f}. (1.67)

But (1.57) implies that F [ϵ] (ω) = 2iP/ω, and we recover (1.48).
In a similar way, one can start from the dispersion relation (1.48) and

using the same methods derive the dispersion relation (1.47). Hence, we
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have shown that either one of those dispersion relations implies the other
one. The proof relied on the application of the inverse Fourier transformation
to those equations, leading to their counterparts (1.65) and (1.66), for which
the equivalence is apparent. [One could say that we have transformed the
problem from a momentum representation to a coordinate representation.
This kind of a change of representation is often helpful. A result that seems
puzzling in one representation may become more transparent in another.]

Notice that nowhere in our derivation of the equivalence of the dispersion
relations (1.47) and (1.48) have we relied on the fact that ℜ{f} and ℑ{f}
are the real and imaginary parts of the same function. The result is in fact
quite general, and the equations (1.47) and (1.48) are just an instance of
so-called Hilbert transforms. The Hilbert transform of a function a(ω) is
defined as its convolution with P/(πω)

H [a] (ω) = 1
π

P
∫
dω′ a(ω′)

ω − ω′ , (1.68)

and, as we have shown in this section, its inverse H−1 is provided by the
convolution with −P/(πω)

H−1 [b] (ω) = − 1
π

P
∫
dω′ b(ω′)

ω − ω′ . (1.69)

The dispersion relations (1.47) and (1.48) therefore state that ℑ{f} is the
Hilbert transform of ℜ{f}.

1.7 Titchmarsh’s theorem
In the previous section we applied the inverse Fourier transform to the dis-
persion relations (1.47) and (1.48) to obtain the equations (1.65)

F−1 [ℜ{f}] (t) = iϵ(t)F−1 [ℑ{f}] (t),

and (1.66)
F−1 [ℑ{f}] (t) = −iϵ(t)F−1 [ℜ{f}] (t),

respectively. This allowed us to see that the two equations are in fact equiv-
alent.

If we also use the fact that ℜ{f} and ℑ{f} are the real and imaginary
parts of the same function f , we can use (1.65) and (1.66) to show that
F−1[f ] satisfies the primitive causality condition (1.27). For instance, using
(1.65) we may write

F−1 [f ] (t) = F−1 [ℜ{f}] (t) + iF−1 [ℑ{f}] (t)
= i(ϵ(t) + 1) F−1 [ℑ{f}] (t) = 2iθ(t) F−1 [ℑ{f}] (t). (1.70)
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Similarly, we can use (1.66) and find

F−1 [f ] (t) = 2θ(t) F−1 [ℜ{f}] (t). (1.71)

In either case, we see that F−1[f ](t) = 0 for t < 0.
Let us summarize what we have found so far in this and previous sections.

We started from a square integrable function g(t) that satisfied the primitive
causality condition (1.27). We argued that this implied that its Fourier
transform g̃(ω) was a boundary value of a function analytic in the upper
half-plane and square integrable along any line parallel to the real axis lying
in the upper half-plane. This, in turn, implied that g̃(ω) satisfied dispersion
relations (1.47) and (1.48). And now we have shown that these dispersion
relations imply that g = F−1[g̃] satisfies the primitive causality condition.
This means that we have returned full circle to the original starting point
of the argument.7

If stated and proven more rigorously this collection of results corresponds
to what is known among physicists as the Titchmarsh’s theorem (see [8],
pages 125–129):

Theorem 1 (Titchmarsh’s theorem) Let g̃ : R → R be a square inte-
grable function. The following statements are equivalent:

1. The inverse Fourier transform g(t) = F−1[g̃](t) satisfies the condition

g(t) = 0 if t < 0.

2. There exists a constant C > 0 and a function G : C → C analytic in
the upper half-plane, such that∫ +∞

−∞
dω |G(ω + iη)|2 < C, for any η > 0,

and G satisfies
lim

η→0+
G(ω + iη) = g̃(ω)

for almost all ω.

3. The function g̃ satisfies

ℜ{g̃(ω)} = 1
π

P
∫ ∞

−∞
dω′ ℑ{g̃(ω)}

ω′ − ω
.

7To connect this to our brief discussion of Hilbert transforms, these results also show
that for any square integrable real function a(x), the complex function f(x) = a(x) +
iH[a](x) is the boundary value of a function f(z) analytic in the upper half-plane and
square integrable along any line parallel to the real axis (in the upper half-plane).
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4. The function g̃ satisfies

ℑ{g̃(ω)} = − 1
π

P
∫ ∞

−∞
dω′ ℜ{g̃(ω)}

ω′ − ω
.

In other words, during our investigation of square integrable functions
of a single real variable we learned that for such functions the primitive
causality condition (1.27)

g(t) = 0 if t < 0,

is equivalent to the property that the Fourier transform g̃(ω) = F [g](ω)
is the boundary value of a function analytic in the upper half-plane that
satisfies certain boundedness properties. Furthermore, it is also equivalent
to g̃(ω) satisfying either one of the dispersion relations (1.47) and (1.48).

This concludes our introduction of the link between the causality and
analyticity. The restriction to square integrable functions of a single variable
is, however, quite significant and it is not at all straightforward to connect
the results that have been presented so far to applications in non-relativistic
quantum mechanics and quantum field theory. We will concern ourselves
with those issues in the next chapter. The rest of the present chapter will
instead be devoted to a brief discussion of several disconnected topics in the
elementary dispersion theory.

1.8 Propagation of light in a medium

In this section we shall remain in the context of classical physics and briefly
discuss some aspects of the propagation of light in a dielectric medium. It
was in this context that the first known dispersion relation was recognized
and it would be shame if we did not at least mention it here. There are
also other reasons to consider this case. First of all, some of the terminology
traces its origin to the propagation of light in a medium. Second, we will
encounter a simple generalization of the primitive causality condition (1.27)
and a common technique that will allow us to use Titchmarsh’s theorem to
obtain analyticity of g̃ even if that function may not be square integrable.
And lastly, we will be able to present a very intuitive argument for why the
condition of causality demands that the real and imaginary parts of g̃ be
not independent.

A full treatment of this topic, although entirely within our reach, would
take us too far from our main line of interest. For this reason I will just
state the parts relevant to our exposition and skip most of the details and
derivations. A proper textbook treatment can be found in sections 1.4, 1.5,
1.9 and 1.10 of [3], the notation of which we are going to more or less follow.
(A very condensed review of this topic can be also found in [4].)
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A

B

δ

z

Figure 1.11: A thick layer of a dielectric material is positioned horizontally.
The thickness of the slab is δ. A monochromatic plane wave travels along
the z-axis vertically and approaches the material form below. We measure
the incident electric field Ein at the point A and the outgoing electric field
Eout at the point B.

Consider a monochromatic plane wave propagating in the z-direction. If
the light propagates in the vacuum the electric field satisfies

E(z, t) = E(0, 0)ei(kz−ωt) = E(0, 0)eiω(z/c−t).

In this section we can interpret E as either corresponding to the vector
of the electric field or to any of its components. As usually, the symbols
k and ω represent the angular wave number and the angular frequency,
respectively. In this formalism, in order to ensure that the field is real,
we would need to actually consider frequencies ω and −ω always together
in a superposition E(0, 0)eiω(z/c−t) + E(0, 0)∗ei(−ω)(z/c−t), but to simplify
notation we will usually consider complex fields here.

To describe the propagation in a dielectric medium we need to introduce
the complex refractive index n′ and write

E(z, t) = E(0, 0)e
iω

(
z n′

c
−t

)
. (1.72)

The real part of n′ is the real refractive index n that determines the phase
velocity of the wave. The imaginary part corresponds to the absorption and
scattering of the wave. If we define

n′ = n+ i
cβ

2ω
, (1.73)

the equation (1.72) becomes

E(z, t) = E(0, 0)eiω(z n
c

−t)e− βz
2 . (1.74)

The quantity β is therefore called the extinction coefficient. (The intensity
decreases in proportion to exp(−βz).)

Consider now the following arrangement (see Fig. 1.11). A thin layer of
a dielectric medium is placed perpendicularly to the z-axis. Let us denote
its width by δ. The layer extends from z = 0 to z = δ and the plane wave
travels in the empty space in the z-direction from the region of negative z
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until it reaches the front face of the slab. Denote the value of the electric field
at z = 0 and time t by Ein(t). The plane wave then propagates through the
medium and exits the slab at z = δ. Let us denote the value of the electric
field at z = δ and time t by Eout(t). In the terminology of the section 1.2 Ein
is the input and Eout(t) the output of the system. The primitive causality
condition (1.27) would then correspond to us demanding that if Ein(t) = 0
for t < 0 then also Eout(t) = 0 for t < 0. (Note that the system is time
translation invariant, so we are free to single out the time t = 0 in the
statement of the causality condition.) However, the present system is an
example of when the primitive causality condition is not fully appropriate.
No signal can travel from one side of the layer to the other with velocity
greater than the speed of light c. A stronger condition therefore applies:
Ein(t) = 0 for t < 0 implies that Eout(t) = 0 for t < δ/c. If we write

Eout(t) =
∫ +∞

−∞
dt′g(t− t′)Ein(t′), (1.75)

this condition reads
g(t) = 0 for t < δ/c. (1.76)

A condition of this kind, that no signal can propagate faster than the speed
of light, is sometimes called the relativistic causality condition.

Let us now introduce a simple method that is often very helpful. When
we stated the Titchmarsh’s theorem the notation indicated that the function
whose properties the theorem determined was a Green’s function g. That
is certainly how we often want to use it, but the theorem is applicable to
any square integrable function that satisfies the causality condition. In the
present case of the propagation of light we have not provided any argument
for why the function g of (1.75) should be square integrable. We only know
that it satisfies (1.76) and therefore also the (weaker) primitive causality
condition (1.27). This is, however, already enough for us to be able to employ
the Titchmarsh’s theorem and say something useful about the analyticity
properties of g.

The argument goes as follows. Although we do not know if g is square
integrable, we certainly can arrange for the incoming wave to be such that
Ein(t) is square integrable, and that Ein(t) = 0 for t < 0.8 We can also use
the conservation of energy to argue that∫ +∞

−∞
Eout(t)2 ≤

∫ +∞

−∞
Ein(t)2,

8Strictly speaking, for a monochromatic plane wave we cannot arrange either of those
things. A plane wave is not localizable in space or time, and |Ein(t)| = const for such a
wave. Hence, neither the condition of causality nor the condition of square integrability
can be satisfied by such Ein(t). What we really have in mind, however, is a suitable
superposition of plane waves: a wave packet that occupies a restricted region in space and
time, and which can satisfy both the conditions. We rely on the linearity of the system
when passing back and forth between the consideration of monochromatic plane waves
and that of localizable wave packets.
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which means that if all the components of Ein are square integrable so
are those of Eout. Furthermore, the causality condition implies that also
Eout(t) = 0 for t < 0. Hence, both Ein and Eout satisfy the conditions of
Titchmarsh’s theorem and both are therefore boundary values of functions
analytic in the upper half-plane. Now, the equation (1.75) implies

Ẽout(ω) = g̃(ω)Ẽin(ω), (1.77)

for ω real. This allows us to define g̃ in the upper half-plane as Ẽout/Ẽin,
where Ẽout, Ẽin now stand for the continuations of those functions into the
upper half-plane. One can see that g̃ so defined is analytic in the upper
half-plane except possibly for the points where Ẽin has zeros. [Note, how-
ever, that we may consider various different functions Ẽin so in general the
possibility of such poles can be excluded.]

Let us now describe the relation between Ein(t) and Eout(t) in terms of
n′(ω). The propagation of light equation (1.72) implies that for a monochro-
matic wave we have

Eout(t) = Ein(t)eiωn′ δ
c , (1.78)

which means that g̃ of (1.77) is related to n′ by9

g̃(ω) = eiωn′ δ
c , (1.79)

where n′ is a function of ω. The relativistic causality condition (1.76) then
implies that

g̃(ω) = eiωn′ δ
c =

∫ ∞

δ/c
dt g(t)eiωt, (1.80)

or, in other words,

eiω(n′(ω)−1) δ
c =

∫ ∞

0
dt g(t+ δ/c)eiωt. (1.81)

We already know that the left-hand side is analytic in the upper half-plane
of ω, but this equation allows us to proceed even further. If the medium is an
insulator, it is possible to show (see [3]) that n′(ω)−1 is a causal transform.
We can therefore formulate dispersion relations (1.47) and (1.48) for n′ − 1.
In particular, using ℑ{n′} = cβ/2ω, we may write (1.47) as

n− 1 = c

2π
P
∫ +∞

−∞

dω′

ω′
β(ω′)
ω′ − ω

. (1.82)

9This may seem slightly confusing. We formulated the equation of the propagation
of light (1.72) for monochromatic waves only, which means that Ein(t) and Eout(t) of
that equation are inverse Fourier transforms of functions Ẽin(ω′) and Ẽout(ω′) which are
proportional to the delta function δ(ω′ − ω). That explains why g̃(ω) can be extracted
from (1.78) directly as the ratio Eout(t)/Ein(t).
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If we further use the reality condition n′(−ω) = n′(ω)∗, which implies that
β(−ω) = β(ω), we can write this dispersion relation in the form

n− 1 = c

π
P
∫ ∞

0
dω′ β(ω′)

ω′2 − ω2 . (1.83)

This equation is known as the Kramers–Kronig relation, after Ralph Kronig
and Hendrik A. Kramers, who derived this equation independently in 1926
and 1927. Historically, it was the first known dispersion relation and the
name ‘dispersion relations’ originates from this context. Furthermore, the
real part of g̃ is often called the refractive part, and the imaginary part is
called the absorptive part, in reference to the physical interpretation of the
real and imaginary parts of n′.10

We close this section by introducing an intuitive argument for why
causality implies that there must be some relation between the imaginary
and real parts of n′(ω). For the argument’s sake, suppose that the refrac-
tive and absorptive part of n′ − 1 are completely independent and imagine
that we could design a material that has the real refractive index n equal
to 1 for all ω, and the extinction coefficient β(ω) such that the material
is fully transparent for almost all ω except for a very small interval of fre-
quencies near some ω0, where β sharply becomes very large. That is, sup-
pose that the extinction coefficient corresponds roughly to a delta function,
β(ω) ≈ δ(ω − ω0). Such a material would let nearly all frequencies pass un-
touched, except for essentially an infinitesimal interval of frequencies near
ω0, which would instead be completely removed from the incoming wave.

The causality requires that if a localized wave packet of light travels
towards the material, the outgoing wave does not appear until the in-
cident wave packet reaches the material: Eout(t) = 0 at least as long
as Ein(t) = 0. As we will now explain, the material described in the
previous paragraph would violate this condition. A monochromatic plane
wave of angular frequency ω moving in the z-direction has electric field
E(z, t) = Eω exp{iω(z/c − t)} where Eω is a complex constant. At this
point it will be better to consider real plane waves, in which case we con-
sider a suitable superposition of plane waves of angular frequencies ω and
−ω and obtain

E(z, t) = A sin (ω(z/c− t) + α) , (1.84)

where A and α are now some real constants. Therefore, we cannot localize
such a wave: it is almost everywhere almost all the time. To obtain a wave
packet that is localized in some restricted region we must consider a suit-
able superposition of such plane waves that cancel each other everywhere

10The term absorptive part is nevertheless very fitting in many applications in quantum
physics, where g̃ often corresponds to the scattering amplitude. The imaginary part of the
scattering amplitude is related to the total cross section by the optical theorem — both
in quantum scattering theory and in optics.
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except for that restricted region. Now, if the incident wave is such a local-
ized wave packet, the field Ein(t), which is measured at the front face of the
slab, remains zero until the wave packet arrives. The outgoing wave, mea-
sured at the other side of the slab is determined by applying (1.78) to each
monochromatic component of the incoming wave separately. But in the case
of our imagined material this would correspond to leaving the incoming wave
unchanged except for removing frequencies that are infinitesimally near to
ω0. This roughly corresponds to removing a plane wave of the form (1.84)
at the frequency ω0 from that wave packet, and that is the same as adding
minus that monochromatic wave to the incoming wave packet. But since
the incoming wave packet is localized, once we add a monochromatic wave
to it the resulting superposition cannot be localized: everywhere except for
the region to which the original wave packet was restricted the resulting
superposition is of the form (1.84). The outgoing wave would manifestly
violate causality.

We can therefore see why dispersion relations, such as the Kramers–
Kronig relation (1.83), are necessary. If we remove or suppress some com-
ponents in a localized wave packet — which is governed by the function
β(ω) — we must adjust the phases of the remaining components – this is
governed by n(ω) — to ensure a suitable cancellation in distant regions and
make the resulting wave packet localized.

1.9 Subtractions

There is an important technical issue that needs to be discussed, and that
is the topic of subtracted dispersion relations. As we have already men-
tioned on several occasions, not every analytic function satisfies dispersion
relations. In order for us to be able to write down dispersion relations for a
function, in addition to being analytic that function must also satisfy certain
asymptotic properties. This was suggested already by the formulation of the
Titchmarsh’s theorem where the requirement for g̃ to be a causal transform
was not only that g̃(ω + iη) be an analytic function of ω + iη, but also that
when considered as a function of ω, the function g̃(ω + iη) must be square
integrable for any fixed value of η > 0. Furthermore, we also saw that there
must exist a common constant C that provides an upper bound for integrals∫
dω|g̃(ω + iη)|2 for all values of η > 0.

Although the Titchmarsh’s theorem does not correspond to the most
general situation that we need to consider, asymptotic properties of g̃ con-
tinue to play an important role also in those more general circumstances.
One often encounters the situation in which g̃ is a function of several complex
variables, is analytic in a certain region, and can be bounded by a polyno-
mial. To formulate for it some kind of a dispersion relation we need to make
sure that the part of the integral that goes over the distant boundary van-
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ishes. Because of that, we cannot directly formulate dispersion relation for
g̃ of polynomial growth, and must proceed in a more subtle way by consid-
ering a suitable function that is related to g̃ but has appropriate asymptotic
properties. In fact, we have already encountered an example of this when
we stated the Kramers–Kronig relation (1.83), which was formulated for
n′ − 1 instead of n′. This is because for large values |ω| the complex re-
fractive index n′ approaches the value 1, which means that n′ is not square
integrable. To obtain a causal transform we needed to subtract from it the
constant 1. This illustrates the general case: to obtain dispersion relations
we might need to carry out steps that result in so-called subtractions. As
far as I know, this is an entirely technical issue, without deeper physical
or mathematical consequences, so I am not going to discuss it in any great
detail. Instead, I will simply present two different methods of how can one
think about subtractions. In both cases I will limit my consideration to a
function f of a single complex variable z that is O(|z|n) for large |z| and
some integer n ≥ 0.11

Let us now describe the first approach. Suppose that f(z) = O(|z|n) for
some n ≥ 0. Then, for any polynomial P (z) of order n + 1 or higher the
function f(z)/P (z) is O(|z|−1). This introduces new poles so we usually do
not want to apply the Titchmarsh’s theorem for square integrable functions.
Instead, we can obtain dispersion relations by simply closing the integration
contour using a large semicircle in the upper half-plane or by some other
suitable path. The integrand f(z)/[(z − z0)P (z)] is now O(|z|−2), so the
integral over the distant boundary vanishes. For our applications we usually
need P (z) to be real on the real axis and to not have any zeros there. This
implies that zeros of P are placed symmetrically with respect to complex
conjugation, both above and below the real axis. The integral over the
whole closed contour does in general not vanish, because the integrand is
not analytic in the enclosed region, which normally contains both the pole
at z = z0 and some of the poles that are located at zeros of P (z). For each
zero of P (z) that is inside the integration contour we pick up a contribution
from its residue. Note that if ai is a simple zero of P (z) then we can write

P (z)
z − ai

= dP (z)
dz

∣∣∣∣
z=ai

.

Hence, if all the zeros of P (z) are simple then the residue theorem says that
the integral of f(z)/[(z − z0)P (z)] over the contour closed by an infinitely

11Recall that in this context f(z) = O(g(z)) means that the modulus of f grows at most
as fast as that of g for large |z|. More precisely, it means that there exists a constant C
such that

|f(z)|
|g(z)| < C,

for all large enough |z|.
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large semicircle in the upper half-plane equals

2πi

 f(z0)
P (z0)

+
k∑

ai=1

f(ai)
(ai − z0)dP (z)

dz

∣∣
z=ai

 , (1.85)

where we assumed that z0 is in the upper half-plane (otherwise the first
term would be absent) and where we denoted the zeros of P (z) in the upper
half-plane by a1, ..., ak. The sum over the zeros of P (z) corresponds to the
subtractions. Note that each subtraction depends on the value of f(z) at
some zero ai of P (z). We will see a simple case of this method later in the
section 5.5, where we will discuss the spectral representation of the photon
propagator.

The other method that we are going to consider in this section is much
less general but avoids the explicit introduction of new poles and can be
used in conjunction with the Titchmarsh’s theorem. It is, however, appli-
cable only if the boundary value f(x) of f(z) on the real axis is sufficiently
differentiable.

Let us consider the case when f(z) = O(1) for large |z|. Then we cannot
assume that the function is square integrable. We can, however, work with
the function f(z)/(z − x0), for some real constant x0. This function has
already suitable asymptotic properties, but now the problem is its pole at
z = x0. To deal with this issue, we can consider yet another function

f1(z) = f(z) − f(x0)
z − x0

, (1.86)

which is regular at z = x0 where it assumes the value f1(x0) = df(x0)/dz.
The function f1(x) is therefore square integrable. Unfortunately, that does
not automatically mean that f(z) is a causal transform, but putting in some
more work12 one can show that when the function f corresponds to a Green’s
function satisfying the primitive causality condition then f1 in fact really is
a causal transform. We can then formulate dispersion relations for f1, and
from those one can obtain the dispersion relation for f of the form

f(x) = f(x0) + x− x0
πi

P
∫ +∞

−∞

dx′

x′ − x

f(x′) − f(x0)
x′ − x0

. (1.87)

The first term on the right hand side is the subtraction term. In this case it
is the value of f(x) at x = x0. Accordingly, this kind of dispersion relation
is called once subtracted dispersion relation. If the function f had worse
asymptotic properties than O(1) one could proceed similarly to regularize
the function f(z)/(z − x0)n for some suitably large n and obtain dispersion

12It is not completely straightforward to obtain these results. One can find the detailed
argument in the section 1.7 of [3].
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relations with n subtractions. Details of this procedure can be found for
instance in the section 1.7 of [3].

In general, each subtraction adds one free parameter to the dispersion
relation: we need to provide the value of the function f or its derivatives
at some fixed point. For this reason it is often best to use dispersion rela-
tions with the lowest possible number of subtractions. Nevertheless, there
are some cases when one might prefer to proceed differently. As we add
subtractions, we trade the number of free parameters for better asymptotic
properties. Sometimes this is an advantageous trade-off. For instance, in
phenomenological applications when high energy data are imprecise or miss-
ing it may be helpful to use the extra powers of 1/(ω−ω0) in the dispersion
integral to suppress contributions from higher energies — which correspond
to high values of ω — even if that means that one must supply values of f
at some additional low energy subtraction points.



Chapter 2

Analyticity in quantum
theory

We will now proceed to discuss the relation between causality and analyticity
in quantum mechanics and quantum field theory. This is a large subject,
which is not even completely understood, and we will not attempt to address
it fully. Instead, our aim will only be to present a rough overview of the topic,
and provide some basic understanding and hints of how the material that
has been presented so far applies to the cases of non-relativistic quantum
mechanics and relativistic quantum field theory. We will also introduce some
of the foundational results that will be needed later.

2.1 Quantum scattering and causality

The paradigmatic setup in which the relation between causality and ana-
lyticity is studied in quantum theory is that of a scattering system. Let us
illustrate this on a simple example provided by the scattering of a classical
scalar field ϕ(x, t) by a spherically symmetric potential V (r). We consider
the case of a finite-range potential. This means that we assume that there
is some finite radius a > 0 beyond which the potential vanishes,

V (r) = 0 for r > a. (2.1)

This is sometimes described by saying that the interaction is local, because
the field ‘feels’ the scatterer only when it is less than distance a away from its

39
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center.1 We suppose that for r > 0 the field satisfies the free wave equation

ϕ̈ = v2∇2ϕ, (2.2)

with v standing for the velocity of the field propagation. To make use of
the spherical symmetry of the potential we decompose the solution into
spherical harmonics. The simplest such a component is of course the s-
wave component, which is proportional to the spherical harmonic of angular
momentum 0. This solution is therefore spherically symmetric, ϕ(x, t) =
ϕ(r, t). Recalling that in spherical coordinates the Laplacian is

∇2 = 1
r

∂2

∂r2 r + 1
r2 sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1
r2 sin2 θ

∂2

∂ϕ2 , (2.3)

we see that the free wave equation (2.2) applied to an s-wave reads[
∂

v∂t

]2
[rϕ(r, t)] =

[
∂

∂r

]2
[rϕ(r, t)] . (2.4)

Outside the scatterer, for r > a, the general s-wave solution is therefore

ϕ(r, t) = 1
r

∫ +∞

−∞
dk
[
A(k)e−ik(r+vt) +B(k)eik(r−vt)

]
. (2.5)

Here the first term corresponds to the incoming wave and the second term to
the outgoing wave.2 When focusing our attention only the region r > a the
coefficient functions A(k) and B(k) might seem to be independent. In gen-
eral, however, they are not, because the solution (2.5) of the equation (2.2)
applies only in the region r > a and must be connected to an appropriate
solution for r < a. The solution for r < a satisfies the analog of the free
wave equation (2.2) for non-zero potential. Furthermore, it must be finite
at r = 0, and this constraint is inherited by the continuation of the solu-
tion into the region r > a in the form of a relation between the coefficient
functions of the incoming and outgoing waves in (2.5).

1Treatment of non-local interactions is far more complicated. If the potential is not
restricted to a finite radius but decreases sufficiently fast, as do for example Yukawa-
like potentials with V (r) ∝ r−1 exp(−mr), the usual machinery of scattering theory still
applies, even though some qualitatively new features may appear in the solutions. Such
potentials are sometimes also referred to as being local. On the other hand, once we include
genuine long-range forces, for which V (r) ∝ r−1, some parts of the usual scattering theory
begin to break down. A common symptom of these issues is the appearance of infrared
divergences. In fact, if long-range forces are present it is not even clear how to define
asymptotic states and the S-matrix.

2Some comments for the reader’s convenience: The signs of ∓ik in the exponents are
just a convention, and were chosen such that the time evolution factor is in both terms
exp(−iωt), where ω = kv. As for which wave is incoming and which outgoing, we can
see directly from the factors r ± vt in the exponents that the phase velocities are ∓v.
Furthermore, the group velocity dω/dk is in this case the same as the phase velocity ω/k.



2.1. QUANTUM SCATTERING AND CAUSALITY 41

Since we are dealing with the second order differential equation, to sew
the solution for r < a to the solution (2.5) for r > a we must make sure
that the function ϕ and its first derivatives are continuous everywhere. Note
that we can do this for each Fourier component (each value of k) separately.
This should therefore result in a relation between A(k) and B(k), inherited
from the region r < a.

Let us provide a simple example. If there is no scattering at all then
V (r) = 0 for all r and the free wave equation (2.2) holds in the whole space.
The solution (2.5) therefore applies all the way to r = 0, where it must be
finite. Because of the factor 1/r in front of the integral this translates to the
condition that the expression inside the square brackets in (2.5) vanishes at
r = 0. Thus, we find that B(k) = −A(k). If V was not identically zero
the relation between A(k) and B(k) would become more complicated, but
because of the linearity we would still expect it to be of the form

B(k) = −S(k)A(k). (2.6)

The function S(k) defined by the equation (2.6) corresponds to the scattering
matrix, or the S-matrix. (In our simple case of an elastic s-wave scattering
it is just a function.) Note the explicit minus sign on the right hand side
of the definition (2.6). The reason that we put it there is that we want the
S-matrix to be identically 1 if there is no scattering.

We can now turn our attention to the question of how to connect all of
this to our earlier findings regarding the link between causality and analyt-
icity. Recall our earlier considerations of linear causal systems, for which we
identified the input f(t), the Green’s function g(t), and the output x(t), and
how those functions were related by a convolution (see (1.24)). The Fourier
transform of that convolution then led to the equation (1.26)

x̃(ω) = g̃(ω)f̃(ω).

In our classical s-wave scattering problem we instead had the incoming and
the outgoing waves and their Fourier transforms with respect to time were
basically3 the coefficient functions A(k) and B(k). Hence, there is an anal-
ogy between the coefficient functions A(k) and B(k) of the incoming and
outgoing waves, and the Fourier transforms f̃(ω) and x̃(ω) of the input and
the output. Furthermore, our present definition of the S-matrix, the equa-
tion (2.6), is of the same form as the equation (1.26) that we quoted above.

3More precisely, if we denote by ϕin the incoming wave r−1 ∫ +∞
−∞ dk A(k)e−ik(r+vt) and

by ϕout the outgoing wave r−1 ∫ +∞
−∞ dk B(k)eik(r−vt), we obtain

Ft [ϕin] (ω) = 2π
r
A(ω/v)e−i ω

v
r,

Ft [ϕout] (ω) = 2π
r
B(ω/v)e+i ω

v
r.
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This implies that the S-matrix corresponds roughly to the Fourier trans-
form of the Green’s function. Of course, the correspondence just outlined
is not exact and one needs to be careful when deriving precise results, but
the analogy is correct. In particular, we can formulate a causality condition
in a similar fashion as we did before, although we need to make a minor
modification. Suppose that we are measuring the wave at some fixed radius
r0 > a. A direct application of the primitive causality condition (1.27) would
be to demand that the outgoing field at r0 is zero as long as the incoming
field is zero. In fact, a stronger condition applies. After the incoming field
reaches the radius r0, it must still travel (with velocity v) at least to the
radius r = a until it can start being scattered by the potential, and the
outgoing wave must then travel from r = a back to r = r0 in order for us
to measure it. Hence, the appropriate condition is to demand that if the
incoming field appeared only at t = t0 then the outgoing field is zero at least
until the time t0 + 2(r0 − a)/v. It is possible to show that this condition
implies that the function S(k) exp(2ika) must be analytic and bounded in
the upper half-plane. (For details, see [3, 4].)

Now that we have seen an indication of how to relate a classical scattering
system to our earlier findings, let us turn our attention to a simple example
in non-relativistic quantum mechanics. We will consider the scattering of a
single spinless particle in a local potential V (x). Instead of the classical wave
equation, the wave function ψ(x, t) now solves the Schrödinger equation

iℏ
∂

∂t
ψ(x, t) =

(
− ℏ2

2µ
∇2 + V (x)

)
ψ(x, t). (2.7)

Here µ is either the mass of the particle if we consider a scattering in an
external potential V (x), or the reduced mass µ = m1m2/(m1 + m2) if we
consider a system of two particles of masses m1 and m2. In the latter case
the variable x corresponds to the relative separation of the two particles.

As is well known, one of the important differences between the classical
wave equation (2.2) and the Schrödinger equation (2.7) is that the classi-
cal wave equation is a differential equation of second order in time, while
the Schrödinger equation involves only the first time derivative of the wave
function. Consequences of this difference turn out to be important also for
our purposes.

Let us illustrate this again on the case of the s-wave scattering in a finite-
range spherically symmetric potential. The full solution is again a function
of only the radius r and time t, but as a consequence of there being only the
first time derivative in the equation (2.7) the vacuum solution is now

ψ(r, t) = 1
r

∫ +∞

−∞
dp
[
A(p)e

i
ℏ (−pr−Et) +B(p)e

i
ℏ (pr−Et)

]
, (2.8)

where p is the momentum, related to the wave number k by p = ℏk, and
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where the energy E equals

E = p2

2µ
. (2.9)

As a consequence, the energy is non-negative, E ≥ 0. This is very different
from the classical solution (2.5) which contained components of both positive
and negative angular frequency ω.

The fact that the solution (2.8) contains only positive frequencies makes
it much more difficult to formulate a causality condition. The primitive
causality condition (1.27), or its straightforward modifications such as the
relativistic causality condition (1.76) or the condition that we formulated
earlier in this section for the scattering of a classical field, are all very intu-
itive but they are meaningful only if it is possible to consider situations in
which the input f(t) is identically zero until some time t0. But in quantum
mechanics that is impossible to achieve. If the incoming wave vanishes dur-
ing any interval of time then it is zero always. This is a consequence of there
being only positive frequencies in the solutions of Schrödinger equation. At
a fixed radius r the incoming wave of the solution (2.8) is of the form

f(t; r) = ψin(r, t) =
∫ ∞

0
dE K(E) e−iEt/ℏ, (2.10)

where
K(E) = Ae−ipr

r

dp

dE
= µ

p(E)
A (p(E)) e−ip(E)r/ℏ, (2.11)

and p(E) =
√

2µE. The fact that the integral in (2.10) is only over positive
values of E means that f(t; r) is a boundary value of a function F (t) analytic
in the lower half-plane.4 But an analytic function that vanishes over any
interval is zero everywhere, and this translates to the same property for the
boundary value f(t; r).

To summarize, we found that in the context of quantum mechanics it
is impossible to use any straightforward variation of the primitive causal-
ity condition. The incoming wave is almost all the time non-zero near the
scatterer. (However, this does not mean that the wave packet cannot be lo-
calized. The incoming wave far away from the center of the wave packet must
only be non-zero, but can be very small, as for instance being suppressed
exponentially with the distance from the wave packet center.) This is an
important observation about quantum theory, but we will not explore it here
any further. Let us just mention that in order to obtain analyticity proper-
ties people have suggested and used various formulations of causality. Some
of these are described in detail in [3]. One of them is the Schützer–Tiomno
causality condition, which requires that the outgoing wave at a radius r0
and time t0 cannot depend on the incoming wave at the same radius r0 and

4Mathematical results concerning properties such as this one will be stated more care-
fully in the section 2.3.
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later times t > t0. Perhaps better known is the Van Kampen’s causality con-
dition which states that if the incoming wave packet in the limit of t → −∞
represents a single particle, then the total probability of finding the particle
outside the scatterer (that is, for r > a) can never exceed 1. Another impor-
tant approach is the usage of the Wigner’s causal inequality regarding time
delays, which are related to phase shifts. (We won’t discuss these concepts
here. In the context of causality they are treated, for instance, in [4, 3].)

There is one last issue that I would like to mention before we close this
brief discussion of scattering in non-relativistic quantum mechanics. In this
section we have been considering only s-wave scattering. A general scat-
tering process, however, is not spherically symmetric. Even if we limit our
attention only to spherical potentials V (x) = V (r), we still need to be able
to treat incoming waves that contain components of higher angular momen-
tum. Once we include higher angular momenta, we are in effect considering
the angular dependence of the scattering. In particular, if the incoming wave
is a plane wave it contains all integer values l ≥ 0 of angular momentum. For
an incoming plane wave traveling in, say, the z-direction the scattering am-
plitude5 f(p, θ) is a function of both the magnitude of the three-momentum
p and the scattering angle θ. We have seen that causality implies certain
analytic properties with respect to the variable p, but causality on its own
does not allow us to say anything about the analyticity in the variable θ.
Nevertheless, it can often be shown that the scattering amplitude f(p, θ)
indeed is analytic in a certain region, but this kind of analyticity follows
from the locality of interactions rather than from causality. In particular,
for finite-range potentials it is possible to show that partial wave ampli-
tudes decrease asymptotically for large values of the angular momentum l
as exp(−2l log l), and this implies the analyticity of f(p, θ) as a function of
cos θ in the whole complex plane.6 For Yukawa-like potentials the region
of analyticity is restricted to an ellipse. For further details the reader is
again referred to [4] or [3]. Note that in quantum field theory this distinc-
tion between the analyticity in the energy being related to causality and the
analyticity in the scattering angle to locality becomes somewhat blurred as

5The scattering amplitude is closely related to the S-matrix, and is usually defined by
the equation

ψp
out(x) → f(p, θ) eipr

r

for |x| → ∞, possibly up to some constant factors. Here ψp
out is the outgoing wave

corresponding to the incoming plane wave of momentum p in the z-direction, with the
time dependence stripped away (or just evaluated at t = 0).

6This follows from the Neumann’s theorem, which states that if f(z) =
∑∞

l=0 clPl(z),
where Pl are the Legendre polynomials, and if asymptotically the coefficients cl decay as
a−l or faster (for some a > 1) then the function f(z) is analytic within the ellipse centered
at the origin and with the major semi-axis oriented along the real axis and of the length
(a2 + 1)/2a and the minor semi-axis of the length (a2 − 1)/2a. For finite-range potentials,
cl ∝ l−2l, so f(z) is analytic everywhere.
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a result of crossing symmetry.
In quantum field theory it becomes even less clear how to formulate a

condition that would correctly capture the physical property of causality. In
fact, people encountered difficulties trying to formulate and use generaliza-
tions of the primitive causality condition (1.27) that would be applicable in
relativistic settings. Instead, a somewhat different approach turned out to
be useful. We postulate that

[ϕl(x), ϕm(y)]± = 0 for x− y spacelike, (2.12)

where ϕl and ϕm are any local fields,7 and [A,B]± corresponds to the com-
mutator AB−BA if either one of A or B is bosonic and the anti-commutator
AB+BA if they are both fermionic. The condition (2.12) is called the condi-
tion of microscopic causality or microcausality. Sometimes it is also referred
to as local commutativity, especially in the context of axiomatic field theory.
Roughly speaking, this condition expresses the idea that no signal propa-
gates faster than with the speed of light. Of course, this condition is just an
assumption, or a postulate, and it is not clear that it must hold, especially
for very small separations of x and y.

To get some idea of how to obtain analytic properties from the condition
of microscopic causality (2.12), consider matrix elements of time-ordered
products of field operators, such as

(ΨB,T {ϕ1(x1) . . . ϕN (xN )} ΨA) . (2.13)

Matrix elements of this kind figure prominently in quantum field theory,
and we will discuss two important contexts in which they appear in the
next section.

The operation T{· · · } that appears in (2.13) denotes the time ordering
of operators, which is defined by

T {O1 (x1)O2 (x2) . . . ON (xN )}

=
∑

π

θ
(
x0

π(1) − x0
π(2)

)
. . . θ

(
x0

π(N−1) − x0
π(N)

)
×Oπ(1)

(
xπ(1)

)
Oπ(2)

(
xπ(2)

)
. . . Oπ(N)

(
xπ(N)

)
, (2.14)

where the sum is over all permutations π of the indices 1, . . . , N , and x0
j is

the time component of the four-vector xj . For instance, if N = 2 then (2.14)
reads

T {O1 (x1)O2 (x2)} = θ
(
x0

1 − x0
2

)
O1 (x1)O2 (x2)

+ θ
(
x0

2 − x0
1

)
O2 (x2)O1 (x1) . (2.15)

7These are operator fields, or, more precisely, operator-valued distributions.
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In the definition (2.14) and the example (2.15) we assumed that operators
Oj(x) were all bosonic. Fermionic operators satisfy anti-commutation rather
than commutation relations, and if they are present, we include a factor of
−1 for each interchange of two fermionic operators. In particular, if all the
operators O1, ..., ON are fermionic, then instead of (2.14) we obtain

T {O1 (x1)O2 (x2) . . . ON (xN )}

=
∑

π

sgn(π)
[
θ
(
x0

π(1) − x0
π(2)

)
. . . θ

(
x0

π(N−1) − x0
π(N)

)
×Oπ(1)

(
xπ(1)

)
Oπ(2)

(
xπ(2)

)
. . . Oπ(N)

(
xπ(N)

) ]
, (2.16)

where sgn(π) = ±1 is the sign of the permutation π. For instance, when O1
and O2 are both fermionic we get

T {O1 (x1)O2 (x2)} = θ
(
x0

1 − x0
2

)
O1 (x1)O2 (x2)

− θ
(
x0

2 − x0
1

)
O2 (x2)O1 (x1) . (2.17)

Now we are ready to indicate how to obtain analytic properties from
the microscopic causality condition (2.12). We will limit our attention to
the simple case of (2.15), but with both the operators O1 and O2 standing
for a bosonic field ϕ. To proceed, one needs to re-write the time ordered
product T {ϕ(x)ϕ(y)} in terms of the commutator [ϕ(x), ϕ(y)] and explicit
time-ordering step functions in either one of the following two forms

T {ϕ(x)ϕ(y)} = ϕ(x)ϕ(y) − θ(y0 − x0)[ϕ(x), ϕ(y)]−
= ϕ(y)ϕ(x) + θ(x0 − y0)[ϕ(x), ϕ(y)]−. (2.18)

We will now focus on the terms containing the commutator.8 As a conse-
quence of the condition of microscopic causality (2.12), these commutator
terms are identically zero outside of the null cone of x − y. They also con-
tain explicit time-ordering step functions, which restrict their support even
further. The end result is that the term θ(y0 − x0)[ϕ(x), ϕ(y)]− must be
zero unless x − y is past-pointing and either null or time-like. Similarly,
θ(x0 − y0)[ϕ(x), ϕ(y)]− must be zero unless x − y is future-pointing and
either null or time-like. This directly translates into certain analytic prop-
erties of the momentum-space representation of the corresponding matrix
elements. We will discuss the mathematics of this in Section 2.3.

8The fixed-order terms must be dealt with in some other way. We will see an example
of this much later, in the section 5.5, where we discuss the spectral representation of the
photon propagator. Note also that as we will see in Section 2.3, vacuum expectation values
of fixed-order terms possess certain analytic properties already as functions of x and y.
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2.2 Perturbation theory for the S-matrix and time-
ordered Green’s functions

In the previous section we suggested a strategy for proving analytic proper-
ties of momentum-space Green’s functions from the condition of microscopic
causality (2.12). This strategy can be applied to matrix elements of time-
ordered products of coordinate-space fields, that is, to matrix elements of
the form (2.13). Such matrix elements play a prominent role in quantum
field theory.

This is actually a good place to take a short detour and introduce two
important contexts in which matrix elements of this kind appear. One of
those is the interaction picture Dyson series for S-matrix elements. This
series consists of terms whose form is similar to (2.13), with ΨA and ΨB

representing the appropriate free-particle states, but where the operators
ϕj(x) all stand for the interaction part of the Hamiltonian expressed in the
interaction picture. They depend only on the time component of x. This
is a well-known topic and our presentation will be very concise. We will
introduce some of the concepts and notation. We will also mention some
problems of that approach. This will lead us to the second topic that we
wish to discuss, which is the topic of time-ordered Green’s functions, and
of their perturbation series as given by the Gell-Mann–Low formula. I will
discuss this second topic in a greater detail because most textbooks do not
cover it appropriately.

2.2.1 Dyson series for the S-matrix

The Dyson series for the S-matrix is formulated in the interaction picture.
This picture is based on the decomposition of the Hamiltonian H into the
free Hamiltonian H0 and the interaction V ,

H = H0 + V. (2.19)

Interaction-picture operators, including free fields, evolve according to the
free Hamiltonian,

AI(t) = eiH0tA(0)e−iH0t, (2.20)
where we used the subscript I to indicate that AI(t) is the interaction-
picture operator. This is different from the time evolution of operators in
the Heisenberg picture, which is governed by the equation that is of the
same form but with H0 replaced with the full Hamiltonian H,

A(t) = eiHtA(0)e−iHt. (2.21)

The goal is to calculate (at least approximately) the S-matrix, whose
element Sβα is defined as the scalar product

Sβα =
(
Ψ−

β ,Ψ
+
α

)
(2.22)
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of the asymptotic “out” state Ψ−
β containing particles denoted by the multi-

index β and the asymptotic “in” state Ψ+
α containing particles denoted

by the multi-index α. These asymptotic states are eigenstates of the full
Hamiltonian H and are supposed to appear as states containing separate
non-interacting particles when observed at a distant past (t → −∞, this is
for the “in” states) or at a distant future (t → +∞, this is for the “out”
states). We label these states according to their particle content, which is
discernible either at t → −∞ or at t → +∞. For each such a state, the
multi-indices therefore determine the number of particles, and their types,
spin, and three-momenta — all those quantities as they would be observed
at the appropriate asymptotic time. For instance, if the state vector Ψ+

α

corresponds to a physical state that for t → −∞ appears as containing two
particles, then α = p1, σ1, n1; p2, σ2, n2, where p1 is the three-momentum of
the first particle, σ1 stands for its spin z-component or its helicity, and n1
denotes the type of that particle, all as observed at t → −∞. Notice that
n1 determines also the total spin and the mass of the particle. The labels
p2, σ2, and n2 carry the same kind of information but with respect to the
particle 2.

In order to obtain the Dyson series for the S-matrix it is convenient to
first define the S-matrix operator S by

Sβα = (Φβ, SΦα) , (2.23)

where Φβ and Φα are the corresponding free-particle states. Free-particle
states are eigenstates of the free Hamiltonian H0, and our approach assumes
that in the limit t → −∞ the free-particle state Φα appears to be the same
as the “in” state Ψ+

α , and that in the limit t → +∞ the free-particle state
Φβ appears to be the same as the “out” state Ψ−

β . In this statement the free-
particle states are meant to be evolved using the free-particle Hamiltonian
H0 and asymptotic “in” and “out” states are meant to be evolved using the
full Hamiltonian H. Note also that none of these states, when considered
on their own, are localized in space or time. So for the above asymptotic
conditions to make any sense one needs to consider suitable wave packets.

One then defines the evolution operator U(t2, t1) as

U(t2, t1) = eiH0t2e−iH(t2−t1)e−iH0t1 , (2.24)

and observes — as we will see later, somewhat incorrectly — that the S-
operator is the limit of U(t2, t1) for t1 → −∞ and t2 → +∞. The evolution
operator U satisfies the differential equation

d

dt
U(t, t0) = −iVI(t)U(t, t0), (2.25)

and the initial condition U(t0, t0) = 1. From this one can obtain the integral
equation

U(t2, t1) = U(t1, t1) +
∫ t2

t1
dt
dU(t, t1)

dt
= 1 − i

∫ t2

t1
dt VI(t)U(t, t1). (2.26)
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This gives an implicit solution for U(t2, t1) — a solution that is expressed in
terms of an integral of U(t, t1) at times t < t2. One can express the operator
U(t, t1) on the right-hand side in terms of this solution, which leads to the
equation

U(t2, t1) = 1 − i

∫ t2

t1
dt VI(t) + (−i)2

∫ t2

t1
dt VI(t)

∫ t

t1
dt′ VI(t′)U(t′, t1).

(2.27)
By iterating this procedure one arrives at the infinite series

U(t2, t1) = 1 + (−i)
∫ t2

t1
dt VI(t) + (−i)2

∫ t2

t1
dt

∫ t

t1
dt′ VI(t)VI(t′)

+ (−i)3
∫ t2

t1
dt

∫ t

t1
dt′

∫ t′

t1
dt′′ VI(t)VI(t′)VI(t′′) + . . . . (2.28)

Notice that in this series the interaction operators are always time-ordered.
For instance, in the term of the third order in VI the time values t, t′, and
t′′ satisfy t2 ≥ t ≥ t′ ≥ t′′ ≥ t1. Recalling that the interaction V is a bosonic
operator, we can rewrite this time-ordered series using the time-ordered
product operator in the following manner

U(t2, t1) = 1+(−i)
∫ t2

t1
dt T {VI(t)}+ (−i)2

2!

∫ t2

t1
dt

∫ t2

t1
dt′ T

{
VI(t)VI(t′)

}
+ (−i)3

3!

∫ t2

t1
dt

∫ t2

t1
dt′

∫ t2

t1
dt′′ T

{
VI(t)VI(t′)VI(t′′)

}
+ . . . , (2.29)

where all the time variables are now integrated from t1 to t2. This extension
of the integration region is where the combinatorial factors 1/N ! come from.
To see this, let us for the sake of simplicity focus only on the term of the
second order in VI and consider two values ta, tb of time, satisfying t2 >
tb > ta > t1. Then, in the time-ordered integral

∫ t2
t1
dt

∫ t
t1
dt′ VI(t)VI(t′)

these values appear only once, when the integrand is VI(tb)VI(ta). In the
integral

∫ t2
t1
dt
∫ t2

t1
dt′ T {VI(t)VI(t′)}, however, they appear twice: when the

integrand is T {VI(tb)VI(ta)} and when it is T {VI(ta)VI(tb)}.
We can now rewrite the series (2.29) as

U(t2, t1) = T
{

exp
(∫ t2

t1
dt VI(t)

)}
, (2.30)

and if we also take the limit t1 → −∞ and t2 → +∞ (assuming that it
exists) we obtain the Dyson series for the S-matrix operator

S = T
{

exp
(∫ +∞

−∞
dt VI(t)

)}
. (2.31)

In order to obtain manifestly Lorentz-covariant S-matrix or Green’s func-
tions, we usually work with Hamiltonians of the form

H(t) =
∫
d3x H(x, t), (2.32)
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where H(x, t) is the Hamiltonian density. The interaction density V(x) is
defined similarly, and we can write

V(x) = H(x) − H0(x), (2.33)

where H0(x) is the density of the free Hamiltonian. The Dyson series for
the S-matrix operator then reads

S = T
{

exp
(∫

d4x VI(x)
)}

, (2.34)

or, more explicitly,

S = 1 + (−i)
∫
d4x1 VI(x1) + (−i)2

2!

∫
d4x1

∫
d4x2 T {VI(x1)VI(x2)}

+ (−i)3

3!

∫
d4x1

∫
d4x2

∫
d4x3 T {VI(x1)VI(x2)VI(x3)} + . . . . (2.35)

Instead of integrating only over the time variable, which of course depends
on the frame of reference, as we did in (2.31), we have now obtained a series
in which we integrate with the Lorentz-invariant measure d4x over the whole
space-time. We can see that this expression is manifestly Lorentz covariant,
provided that:

• The interaction density is a Lorentz scalar.

• For xi − xj space-like, [VI(xi),VI(xj)] = 0. (This is because for space-
like separations the time-ordering of events is frame-specific. But if
the interaction density operators commute for such separations, this
frame-specificity of the time-ordered product has no consequences and
we obtain a Lorentz invariant result. Please also note that while this
commutativity condition is sufficient for the S-operator to be Lorentz
invariant, it is not necessary.)

Here we have encountered another context in which one wishes to impose the
condition of microscopic causality (2.12). Let us also note that the first con-
dition, that the interaction density is a Lorentz scalar, is quite problematic
and does not always apply.9 This is related to the fact that the Hamiltonian
formalism singles out a specific time coordinate and the canonical quantiza-
tion often leads to non-covariant terms in the Hamiltonian, even if one starts
with a Lorentz invariant Lagrangian density. Nevertheless, in the context of
the canonical formalism it is possible to show that if the Lagrangian density
is Lorentz invariant, then the S-matrix must be Lorentz-covariant. Effects

9In fact, in some circumstances the interaction density is not even a local function of
the fields. A well-known example of this is the Coulomb term that appears in the canonical
quantization of classical electrodynamics in the Coulomb gauge.
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of those terms in the interaction density that are not Lorentz scalars are
exactly canceled by non-covariance of propagators. It is therefore usually
possible to drop all these non-covariant terms, both in the interaction and
in propagators, and formulate the corresponding Feynman rules in terms
of covariant quantities. (Another — and usually much more convenient —
way to show the Lorentz-covariance of the S-matrix and formulate covari-
ant Feynman rules is to use path-integral methods.) A further discussion of
both the derivation of the Dyson series for the S-matrix and of the issues of
Lorentz covariance in the canonical formalism can be found, for instance, in
chapters 3, 6 and 7 of [9].10

To calculate S-matrix elements one needs to sandwich the S-matrix op-
erator in between two free-particle states. The series (2.35) then yields

Sβα = δ(β − α) + (−i)
∫
d4x1 (Φβ,VI(x1)Φα)

+ (−i)2

2!

∫
d4x1

∫
d4x2 (Φβ,T {VI(x1)VI(x2)} Φα) + . . . . (2.36)

Recall that the multi-indices α and β contain information on numbers and
types of the particles, and their spin and three-momenta components. The
delta function δ(β−α) is accordingly an abbreviation for a product of three-
momentum-conservation delta functions and Kronecker delta symbols cor-
responding to discrete labels in the multi-indices. (In fact, it represents a
particular sum of such products for all possible permutations of indistin-
guishable particles.) As we can see, each term of (2.36) does indeed contain
a factor of the form (2.13).

2.2.2 Gell-Mann–Low formula

Although the derivation of the perturbation series for the S-matrix presented
above may look convincing, and although it is satisfactory in non-relativistic
quantum mechanics, when one attempts to apply it in the context of rela-
tivistic quantum field theory serious problems appear.11 One issue is pre-
sented by the Haag’s theorem [12], which for our purposes can be roughly
stated as saying that if a relativistic quantum field theory has a well-defined
interaction picture, then it must be a theory of non-interacting free fields.
In other words, as Streater and Wightman [5] put it, the interaction picture

10I should mention that the treatment of the perturbation theory derived in the operator
formalism for the S-matrix that was just presented here, as well as the treatment of the
same topics in [9], are flawed, and although the discussion in [9] is very readable and
informative, it should be not considered as entirely correct. The book [9] does not discuss
those problems at all. Its treatment of the topics related to the canonical formalism, on
the other hand, is in my opinion excellent.

11I base these remarks mainly on my reading of an unfinished version of [10], which
provides a discussion of many of these issues, but has not been published yet. Another
place where discussion of some of these issues can be found is [11].
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exists only if there is no interaction. Another issue — which appears to be
quite independent of the complications associated with the Haag’s theorem
— is that the asymptotic states of a full theory never really cease to “feel”
the interaction. Particles in those states, even when being far apart from
each other, always continue to self-interact. It is therefore not possible to say
that such particles, in some asymptotic regime, appear as if they were free,
at least not in the straightforward way that works in non-relativistic quan-
tum mechanics. In fact, as a consequence of this self-interaction, each such a
particle represents a superposition of free-particle states of various numbers
of particles. Hence, to define a valid correspondence between the asymp-
totic states and the free-particle states is not nearly as simple as presented
in many introductory treatments of the perturbation theory for S-matrix,
such as the one that we sketched above.12

It seems that one way to avoid these problems is to focus not directly
on the S-matrix but to instead consider time-ordered Green’s functions

(Ψ0,T {ϕ1(x1) . . . ϕN (xN )} Ψ0) , (2.37)

where the fields ϕj(x) are Heisenberg-picture operators in the full theory.
The state vector Ψ0 corresponds to the true vacuum and is normalized to
unity

(Ψ0,Ψ0) = 1. (2.38)

If we knew how to evaluate or approximate the vacuum expectation val-
ues (2.37), we could then obtain matrix elements between any asymptotic
states — and, in particular, also the S-matrix — by the application of the
Lehmann–Symanzik–Zimmermann reduction formula (LSZ formula). (The
original reference for the LSZ formula is [13], and it is presented in many
textbooks of quantum field theory, including [14, 9]. A modern treatment of
this topic, including a discussion of some limitations of the usual approaches,
can be found in [11].)

It turns out that the vacuum expectation values (2.37) can be calculated

12There is one more issue that probably should be mentioned at this point, and that is
that it is not even clear how to define an S-matrix if there are massless particles present
in the theory.



2.2. PERTURBATION THEORY 53

perturbatively according to the Gell-Mann–Low formula13 (GML formula)

(Ψ0,T {ϕ1(x1) . . . ϕN (xN )} Ψ0)

= lim

(
Ψfree

0 ,T
{
ϕI 1(x1) . . . ϕI N (xN )e−i

∫
d4x VI(x)

}
Ψfree

0

)
(
Ψfree

0 ,T
{

e−i
∫

d4x VI(x)
}

Ψfree
0

) . (2.39)

This remarkable formula deserves some explanation. First, notice that while
on the left-hand side there are Heisenberg-picture fields ϕj , which evolve
according to the full Hamiltonian as in (2.21), and the vacuum Ψ0 is the
true vacuum state, on the right-hand side only corresponding free-field or
interaction-picture quantities appear. The fields ϕI are free fields that evolve
according to the interaction-picture evolution equation (2.20), and the state
Ψfree

0 is the free-particle vacuum. In the exponential there is the integral
over the whole space-time of the interaction Hamiltonian density expressed
in the interaction picture. Neither the numerator, not the denominator of
the expression on the right-hand side are well-defined on their own. Instead,
we need to consider their ratio in a certain limit, in which their respective
singularities cancel out. (This limit will be specified below.)

Since this topic is not adequately treated in many of the standard text-
books, let us now present a derivation of the GML formula (2.39). To make
sense of the factors on its right-hand side we first put the system in a box
of a finite volume and restrict its time evolution to a finite interval of time
that begins at some initial time T+ and ends at some final final time T−.
The size of the box and the time interval must be chosen such that all the
coordinate variables x1, ..., xn fall inside that region of space-time. The
numerator factor is now(

Ψfree,box
0 ,T

{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt
∫

box d3x VI(x)
}

Ψfree,box
0

)
.

(2.40)
Our next goal will be to express this amplitude in terms of Heisenberg-
picture quantities. To make the notation more compact, let us write

∫
box

d3x VI(x, t) = VI(t).

13I do not know the original reference. If one is looking for a textbook presentation, the
formula is discussed, for instance, in [14]. That book also presents a derivation of that
formula, but with some important issues ignored. Some aspects of the GML formula and
their derivation are also explained in [9], where the formula itself is used quite extensively
(especially in Chapter 9 in the context of path-integral methods), but where it is never
properly introduced. The presentation given here is based mainly on the unpublished
text [10] by J. Collins.
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The time-ordered product in (2.40) then reads

T
{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt VI(t)

}

=
∞∑

K=0

(−i)K

K!

∫ T−

T+
dt1· · ·

∫ T−

T+
dtKT {ϕI 1(x1) . . . ϕI N (xN )VI(t1) . . . VI(tK)}

(2.41)

Let us denote by u1, . . . , uN the time values x0
1,..., x0

N but ordered so
as to satisfy u1 ≥ · · · ≥ uN . Recall also that the values T− and T+ were
chosen such that T− > u1 and uN > T+. Consider now a single term in
the series (2.41); in other words, consider a fixed value of K. Each of the
variables of integration t1, ..., tK , as we integrate it between T+ and T−,
passes through each of the intervals (T+, uN ), (uN , uN−1), ..., (u1, T−). At
each point of the integration over these variables, there will be some number
K0 ≥ 0 of them that fall into the interval (u1, T−), some number K1 ≥ 0 of
them that fall into the interval (u2, u1), etc., and these non-negative integers
K0, ..., KN satisfy the condition K0 + · · · +KN = K. (We ignore the set of
measure zero when some of the variables t1, ..., tK appear in the boundary of
any of the intervals.) Furthermore, as the variables t1, ..., tK are integrated
from T+ to T−, all possible values of K0, ..., KN (that is, all non-negative
values that add up to K) will be covered. Hence, for a given value of K, we
can separate the integral into several terms, one for each permissible list of
values K0, ..., KN . In each such a term we integrate only over that subset
of the total integration volume in which K0 of the integration variables fall
into the interval (u1, T−) , K1 of them fall into (u2, u1), etc. For each such a
term we rename the variables as t(m)

l where m denotes the interval to which
those variables belong and l distinguishes between the variables inside a
single interval. In the interval m there are Km variables, which means that
l can assume values l = 1, . . . ,Km. Changing to these new variables results
in a new combinatorial factor, because there are K!/(K0!K1! . . .KN !) ways
in which we can assign K variables into N + 1 groups, such that there are
K0 of them in the first group, K1 of them in the second group, etc. Hence,
we can write∫ T−

T+
dt1· · ·

∫ T−

T+
dtKT {ϕI 1(x1) . . . ϕI N (xN )VI(t1) . . . VI(tK)}

=
∑

K0+···+KN =K

K!
K0! . . .KN !

[ ∫ T−

u1
dt

(0)
1 · · ·

∫ T−

u1
dt

(0)
K0

T
{
VI(t(0)

1 ) . . . VI(t(0)
K0

)
}

× ϕI(u1)
∫ u1

u2
dt

(1)
1 · · ·

∫ u1

u2
dt

(1)
K1

T
{
VI(t(1)

1 ) . . . VI(t(1)
K1

)
}
ϕI(u2) . . .

× ϕI(uN )
∫ uN

T+
dt

(N)
1 · · ·

∫ uN

T+
dt

(N)
KN

T
{
VI(t(N)

1 ) . . . VI(t(N)
KN

)
} ]
, (2.42)
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where the sum is over all permissible lists of K0, ..., KN . (For simplicity,
we also dropped the index label from the field operators.) K! from the
combinatorial factor in (2.42) cancels with the 1/K! factor in (2.41), and we
can therefore write

T
{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt VI(t)

}
=

∞∑
K=0

∑
K0+···+KN =K

[
(−i)K0

K0!

∫ T−

u1
dt

(0)
1 · · ·

∫ T−

u1
dt

(0)
K0

T
{
VI(t(0)

1 ) . . . VI(t(0)
K0

)
}
ϕI(u1)

× (−i)K1

K1!

∫ u1

u2
dt

(1)
1 · · ·

∫ u1

u2
dt

(1)
K1

T
{
VI(t(1)

1 ) . . . VI(t(1)
K1

)
}
ϕI(u2)

× . . . ϕI(uN )(−i)KN

KN !

∫ uN

T+
dt

(N)
1 · · ·

∫ uN

T+
dt

(N)
KN

T
{
VI(t(N)

1 ) . . . VI(t(N)
KN

)
} ]
.

(2.43)

Notice now that instead of summing over all values of K from 0 to ∞ and
then for each such K summing over all non-negative values of K0, ..., KN

satisfying the constraint K0 + · · · +KN = K, we can just as well sum over
each K0, ..., KN independently from 0 to ∞. This results in

T
{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt VI(t)

}
=

[ ∞∑
K0=0

(−i)K0

K0!

∫ T−

u1
dt

(0)
1 · · ·

∫ T−

u1
dt

(0)
K0

T
{
VI(t(0)

1 ) . . . VI(t(0)
K0

)
} ]
ϕI(u1)

×
[ ∞∑

K1=0

(−i)K1

K1!

∫ u1

u2
dt

(1)
1 · · ·

∫ u1

u2
dt

(1)
K1

T
{
VI(t(1)

1 ) . . . VI(t(1)
K1

)
} ]
ϕI(u2)

×. . . ϕI(uN )
[ ∞∑

KN =0

(−i)KN

KN !

∫ uN

T+
dt

(N)
1 · · ·

∫ uN

T+
dt

(N)
KN

T
{
VI(t(N)

1 ) . . . VI(t(N)
KN

)
} ]
.

(2.44)

The sums in the square brackets of (2.44) correspond to the series (2.30) for
the evolution operators between the endpoints of their respective intervals.
We can therefore write

T
{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt VI(t)

}
= U(T−, u1)ϕI(u1)U(u1, u2)ϕI(u2) . . . ϕI(uN )U(uN , T+). (2.45)

We will now show that the right-hand side of (2.45) is nearly the same as
the product of the corresponding Heisenberg-picture operators. To see this,
notice first that using the equation (2.20) for the time evolution of operators
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in the interaction picture, and the equation (2.21) for the time evolution in
the Heisenberg-picture, one can find the following relation between those
two pictures

A(t) = eiHte−iH0tAI(t)eiH0te−iHt = Ω(t)AI(t)Ω(t)†, (2.46)

where Ω(t)† stands for the Hermitian conjugate of Ω(t). The operator Ω(t1)
is a unitary operator, and when applied to some Heisenberg-picture state
vector (that is, the Schrödinger-picture state vector evaluated at t = 0),
it evolves the state according to the free Hamiltonian from time t = 0 to
time t = t1 and then according to the full Hamiltonian in the opposite time
direction from t1 to 0. If the limits t1 → ±∞ existed, the operators Ω(−∞)
and Ω(+∞) would transform free-particle states into their asymptotic “in”
and “out” counterparts. (That is, we would have Ψin

α = Ω(−∞)Ψfree
α and

Ψout
α = Ω(+∞)Ψfree

α .) Our system is, however, placed inside a finite box,
which makes the time evolution to a distant past or to a distant future com-
plicated. If we removed the box the Haag’s theorem would apply, and we
would encounter problems already in the stage of interpreting the transfor-
mation (2.46). For that reason, we remain in the box and consider only
finite time arguments, T+ ≤ t ≤ T−, in the equation (2.46).

In terms of the operator Ω we see from its definition (2.24) that the
evolution operator U(t2, t1) can be expressed as

U(t2, t1) = Ω(t2)†Ω(t1). (2.47)

But this means that we can write (2.45) as

T
{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt VI(t)

}
=

Ω(T−)†
[
Ω(u1)ϕI(u1)Ω(u1)†

] [
Ω(u2)ϕI(u2)Ω(u2)†

]
. . .

×
[
Ω(uN )ϕI(uN )Ω(uN )†

]
Ω(T+)

= Ω(T−)†ϕ(u1)ϕ(u2) . . . ϕ(uN )Ω(T+), (2.48)

where in the third line we used (2.46) to express the product in terms of
the corresponding Heisenberg-picture operators. If we reinstate the time-
ordering operator (and return field labels), this reads

T
{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt VI(t)

}
= Ω(T−)†T {ϕ1(x1)ϕ2(x2) . . . ϕN (xN )} Ω(T+), (2.49)

which is a very useful result on its own.
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Similarly, from (2.30) and (2.47) (or directly from (2.49)) we see that
the time-ordered operator in the denominator on the right-hand side of the
GML formula is simply

T
{

e
−i
∫ T−

T+
dt VI(t)

}
= Ω(T−)†Ω(T+). (2.50)

The whole ratio (with the system still in the box and limited to a finite time
interval)(

Ψfree,box
0 ,T

{
ϕI 1(x1) . . . ϕI N (xN )e

−i
∫ T−

T+
dt
∫

box d3x VI(x)
}

Ψfree,box
0

)
(

Ψfree,box
0 ,T

{
e

−i
∫ T−

T+
dt
∫

box d3x VI(x)
}

Ψfree,box
0

)
(2.51)

therefore reads(
Ψfree,box

0 ,Ω(T−)†T {ϕ1(x1) . . . ϕN (xN )} Ω(T+)Ψfree,box
0

)
(
Ψfree,box

0 ,Ω(T−)†Ω(T+)Ψfree,box
0

) . (2.52)

If we were working in the context of non-relativistic quantum mechanics
with the interaction becoming effectively irrelevant when the particles are
far apart, we could make sense of the limits of Ω(t) for t → ±∞. We could
also remove the box, and the operator Ω(−∞) would transform free-particle
states into their corresponding “in” states and the operator Ω(+∞) would
transform free-particle states into their corresponding “out” states. In that
case we could directly take the limit T+ → −∞ and T− → +∞ in (the
“box-less” version of) (2.52) and obtain(

Ψ−
0 ,T {ϕ1(x1) . . . ϕN (xN )} Ψ+

0

)
(
Ψ−

0 ,Ψ
+
0

) . (2.53)

Here we have denoted the “in” vacuum by Ψ+
0 and the “out” vacuum by Ψ−

0 .
Both these vacua, as well as (what we called) the true vacuum Ψ0, should all
correspond to the same physical state. They might, however, differ by phase
factors. Let us therefore write Ψ−

0 = eiα−Ψ0, and Ψ+
0 = eiα+Ψ0, for some

real numbers α−, α+. Substituting these expressions into (2.53) we can see
that the phase factors cancel between the numerator and the denominator,
and after we also use the normalization condition (2.38)

(Ψ0,Ψ0) = 1,

we recover the left-hand side of the Gell-Mann–Low formula (2.39).
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In quantum field theory, however, particles never stop interacting, and we
cannot easily use the above argument. Instead, we proceed in the following
steps. First, we use the fact that H0Ψfree

0 = 0 to remove the appearance of
the free Hamiltonian in the Ω-operators in (2.52). This leads to(

Ψfree,box
0 , e−iHT−T {ϕ1(x1) . . . ϕN (xN )} eiHT+Ψfree,box

0

)
(
Ψfree,box

0 , e−iH(T−−T+)Ψfree,box
0

) . (2.54)

Next, we continue (2.54), as a function of T− and T+, to complex values of
T− and T+ of the form

T− = (1 − iϵ)T, (2.55)
T+ = (−1 + iϵ)T, (2.56)

where 0 < ϵ is a small positive number and T is real. We are interested in
the limit of T → +∞. The imaginary components of T− and T+, defined
in (2.55) and (2.56), will be instrumental in isolating the contribution of
matrix elements between the true vacuum states. To see this, consider any
complete basis

{
Ψbox

a

}
composed of eigenstates of the full Hamiltonian,

which contains the vacuum state Ψbox
0 ,

HΨbox
a = EaΨbox

a , (2.57)
Ψbox

0 ∈
{

Ψbox
a

}
. (2.58)

Consider now, for instance, the factor eiHT+Ψfree,box
0 from the numerator of

(2.54). Expressing this factor in the basis
{

Ψbox
a

}
it reads

eiHT+Ψfree,box
0 =

∑
a

Ψbox
a eiEaT+

(
Ψbox

a ,Ψfree,box
0

)
, (2.59)

where the sum includes integration over the continuous parts of the label
a. Among the states in

{
Ψbox

a

}
the vacuum Ψbox

0 has the lowest value of
energy and no other basis state has the same energy. (That is, Ea > E0 for
a ̸= 0.) Hence, if we now continue this expression to complex values of T+
according to (2.56), then relative to the vacuum component the contribution
of the components with a ̸= 0 will be exponentially suppressed in the limit
of T → ∞,

eiHT+Ψfree,box
0 → e−ϵE0T

[
Ψbox

0 eiE0T
(
Ψbox

0 ,Ψfree,box
0

)
+ terms suppressed as e−ϵ(Ea−E0)T

]
. (2.60)
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We can apply the same reasoning also to the part
(
Ψfree,box

0 , e−iHT− . . .
)

of
the numerator of the fraction (2.54) and to the corresponding portions of
the denominator. This shows that if we make the continuations (2.55) and
(2.56), then in the limit of T → +∞ the fraction (2.54) becomes

∣∣∣(Ψbox
0 ,Ψfree,box

0

)∣∣∣2 e−2iE0T e−2ϵE0T
(
Ψbox

0 ,T {ϕ1(x1) . . . ϕN (xN )} Ψbox
0

)
∣∣∣(Ψbox

0 ,Ψfree,box
0

)∣∣∣2 e−2iE0T e−2ϵE0T
(
Ψbox

0 ,Ψbox
0
)

+ suppressed terms. (2.61)

The suppressed terms contain factors of the form exp (−ϵT (Ea − E0)) for
some Ea > E0. Notice that in the leading term in (2.61) there are sev-
eral factors that cancel between the numerator and the denominator. The
factors e−2iE0T correspond to the time evolution of an energy eigenstate
with eigenvalue E0 over the period of 2T , and the factors e−2ϵE0T appear
as a consequence of the analytic continuation. If we renormalized the full
Hamiltonian — e.g., by normal-ordering it — such that E0 = 0, then these
factors would be all equal to one. However, we do not need to do that:
these factors cancel between the numerator and the denominator anyway,
as they should, since physics should depend only on the differences in en-
ergy levels of various energy eigenstates and not on their absolute values.
Another factor that appears both in the numerator and in the denominator
is
∣∣∣(Ψbox

0 ,Ψfree,box
0

)∣∣∣2, and it is crucial that it cancels out as well. This is
because as we remove the box, that is, as we pass to the limit of infinite
volume, these factors each approach zero. In other words, if the normal-
ization condition

(
Ψbox

0 ,Ψbox
0

)
= 1 is enforced throughout, then as the box

increases,14 (
Ψbox

0 ,Ψfree,box
0

)
→ 0. (2.62)

Nevertheless, since these factors cancel out, the limit of infinite volume on
the right-hand side of the Gell-Mann–Low formula (2.39) is well-defined.
Thus, in these limits (first of T → +∞ and then of the infinite volume of
the box) we recover from (2.61) the quantity (Ψ0,T {ϕ1(x1) . . . ϕN (xN )} Ψ0).
But this is just the left-hand side of the GML formula, as we needed to prove.

For practical calculations with Feynman diagrams the implications of the
Gell-Mann–Low formula are as follows. The denominator on the right-hand
side of the formula (2.39) corresponds to the contribution of all Feynman
graphs that contain an arbitrary number of bubble diagrams — connected
subdiagrams without any external legs. The numerator factor, on the other
hand, represents the contribution of all Feynman diagrams, connected or

14I will not show this here. One can an get an indication of this behavior if one nor-
malizes to unity the free-particle vacuum and calculates the full vacuum in the first-order
of the time-independent perturbation theory.
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disconnected, that have in total N external legs — each corresponding to
one of the fields appearing in the Green’s function — and may contain any
number of bubble diagrams. When we divide this value by the denominator
we remove the contribution of the bubble diagrams. The formula therefore
states that in order to calculate a Green’s function we can use the standard
Feynman rules but must exclude any bubble diagrams.

2.3 Analytic properties of Laplace transforms

In many applications we need to consider more general quantities than
square-integrable functions of a single variable satisfying the primitive causal-
ity condition or its simple generalizations. In this section we will briefly state
some very general results that are relevant in quantum field theory. We will
follow the treatment of [5].

In quantum field theory the fields are usually postulated to be operator
valued tempered distributions,15 and we therefore need to investigate an-
alytic properties of Fourier transforms of such distributions. The Fourier

15Distributions are continuous linear functionals defined on some specific set of test
functions. The notion of their continuity is usually inherited directly from the corre-
sponding notions (of a metric, or convergence, etc.) for the space of test functions. We
will consider test functions that are functions of either a single or several real variables.
The most general set of distributions that we will consider is the set D ′ of what we will
simply call distributions. The space of test functions for distributions in D ′ is denoted by
D . This is the space of all infinitely differentiable complex-valued functions of compact
support. Another important space of test functions is S , defined to contain all infinitely
differentiable complex-valued functions which together with all their derivatives approach
zero (for large values of their arguments) faster than polynomially. Every function from D
is also a member of S , that is, D ⊂ S . Distributions defined on the set of test functions
S are called tempered distributions and denoted by S ′. Tempered distributions can be
Fourier transformed and the Fourier transform of a tempered distribution is a tempered
distribution. Note that any tempered distribution is also a distribution, S ′ ⊂ D ′. [This
is a consequence of the fact that D ⊂ S , which implies that any T ∈ S ′ is defined and
linear on functions from D , and the fact that continuity in S implies continuity in D .]
Coming back to quantum field theory, what we mean by the statement that fields are
operator-valued tempered distributions is that for any two vectors ψ1 and ψ2 from the
domain of a field Φ(x) the matrix element

(ψ1,Φ(f) ψ2) ,

when considered as a functional of f , is a tempered distribution. We are using a somewhat
ambiguous notation here: Φ(x) denotes an operator-valued distribution in the variable x
— and in this section we will prefer the notation Φx for that same object — but Φ(f)
denotes the result of the application of the functional Φ(x) on the test function f(x). If
the operator-valued distribution Φ(x) is also a function, then we can write

Φ(f) =
∫
dx f(x)Φ(x).

In this thesis I will not provide an introduction to the theory of distributions. The reader
can find good introductions for instance in [3, 5] and references cited therein.
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transform F [T ] of a tempered distribution T is defined by

F [T ](f) = T (Ff). (2.63)

For tempered distributions that are also functions this corresponds to∫
dω

[∫
dx T (x)eiωx

]
f(ω) =

∫
dx

[∫
dω f(ω)eixω

]
T (x), (2.64)

where we could change the order of integration because of the integrability
properties of the product T (x)f(ω) of functions T ∈ S ′

x, f ∈ Sω. (A note
regarding the notation: Throughout this section I will sometimes employ
various subscripts to make the notation more transparent. For example,
the subscript v in Sv means that these test functions are functions of the
variable v. This subscript therefore determines the dimension of the domain
of test functions. For example, if v in this example was a three-dimensional
vector, Sv would be the space of those functions from R3 to C which are
test functions for tempered distributions. If v and u belong to spaces of the
same dimension then Sv and Su denotes the same space of test functions,
and for f ∈ Sv the expression f(u) is perfectly valid. Subscripts for the
spaces of distributions carry analogous meanings.)

Recall that our earlier results concerned Fourier transforms of certain
functions and some kind of their continuation from the real line to some re-
gion of the complex plane. This actually corresponds to the Laplace trans-
form, which for functions of a single real variable we will define by the
equation

L[f ](ξ + iη) =
∫ +∞

−∞
dt f(t)ei(ξ+iη)t, (2.65)

if the right hand side converges.16 If the function f is defined on Rn and k ·p
denotes some scalar product of vectors k and p from Rn, we can generalize
(2.65) to

L[f ](ξ + iη) =
∫
dnt f(t)ei(ξ+iη)·t. (2.66)

Notice that for η = 0 we recover our definition of the Fourier transform, or
its straightforward generalization to Rn. And, as we will discuss below, if

16A more common definition is

L[f ](p) =
∫ ∞

0
dt f(t)e−pt.

Our definition (2.65) corresponds instead to the two-sided Laplace transform, where one
integrates over the whole real line. Furthermore, to obtain a better correspondence with
applications in quantum theory we substituted p → −i(ξ + iη), which is just a matter
of convention. Also, notice that for non-zero η the integral (2.65) exists only for a very
restricted class of functions because the exponential factor blows up for either positive or
for negative values of t.
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this Fourier transform exists, then the Laplace transform for non-zero values
of η represents its continuation to the complex plane.

We may use this relation between the Fourier and the Laplace transforms
to extend the definition of the Laplace transform to distributions. Consider
any distribution Tt ∈ D ′

t. Then

e−η·tTt (2.67)

is also a distribution in D ′
t. (Note that here t is the variable of the distribu-

tion and η figures only as a real parameter.) It may happen that for some
value of η this new distribution is not only in D ′

t but also in S ′
t . That is,

e−η·tTt might be a tempered distribution. In such a case it can be Fourier
transformed, and for such values of η we define the Laplace transform of Tt
as

L[Tt](ξ + iη) = F
[
e−η·tTt

]
ξ
. (2.68)

On the right-hand side we Fourier transform from the variable t to the
variable ξ, and we collect this variable together with the parameter η into
the complex variable ξ + iη of the Laplace transform on the left-hand side.
Notice that for distributions Tt that are also functions this definition is
consistent with the definition (2.66).

Consider any fixed Tt ∈ D ′
t and denote the set of all η for which e−η·tTt

is a tempered distribution by Γ. The Laplace transform of Tt is therefore
defined on the set Rn + iΓ. (By Rn + iΓ we mean the set {ξ + iη : ξ ∈
Rn, η ∈ Γ}.) It is not unusual that Γ is empty, but one can show that it
must always be convex.17 We will call a set of the form Rn + iΓ where Γ is
convex a tube.

A very important result is that the Laplace transform is always an an-
alytic function on the tube where it exists! Furthermore, it has certain
boundedness properties, and any analytic function defined on a tube with
those boundedness properties is a Laplace transform of some distribution.
Let us quote this remarkable theorem in its entirety.

Theorem 2 Let Tt be a distribution in D ′
t (with t ∈ Rn) and Γ be an open

convex set in Rn such that e−η·tTt ∈ S ′
t for all η ∈ Γ. Then L [Tt] (ξ + iη)

is an analytic function of ξ + iη in the tube Rn + iΓ. Furthermore, for any
compact subset K ⊂ Γ the Laplace transform L [Tt] (ξ + iη) satisfies the
boundedness condition ∣∣L [Tt] (ξ + iη)

∣∣ ≤
∣∣PK(ξ)

∣∣, (2.69)

for some polynomial PK and all η ∈ K.
Conversely, every function that is analytic in the tube Rn + iΓ and sat-

isfies the boundedness condition (2.69) for each compact subset K of Γ and
17Proofs or partial proofs for all the results quoted in this section can be found in [5].
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some polynomial PK is the Laplace transform of a uniquely determined dis-
tribution Tt ∈ D ′

t, such that e−η·tTt is in S ′
t for all η ∈ Γ.

Now we can see clearly that the analytic properties that we have been
exploring in this and the previous chapter are not limited to considerations
of causality and are instead a general property of Laplace transforms. In
fact, causality or locality do not appear in the above theorem at all. As we
will see, they are instead related to properties of the set Γ of those values of
η for which the Laplace transform exists.

The primitive causality condition (1.27) and its direct generalizations
all required some function f(t) to vanish for all t < t0, with t0 a constant.
The locality condition of finite-range potentials was also of a similar form.
These were special cases of a more general situation in which the support
of a distribution is limited to some half-space. Suppose that the support of
Tt lies in a half-space t · a > A, where a is some fixed vector and A is a
real number. If a distribution Tt is a function, then the convergence of the
Laplace transform ∫

dnt T (t)eit·(ξ+iη) (2.70)

implies that the integral∫
dnt T (t)eit·(ξ+iη)e−u(t·a−A) = euA

∫
dnt T (t)eit·(ξ+i[η+ua]) (2.71)

must also converge for any u ≥ 0. Hence, if e−η·tT (t) ∈ S ′
t then also

e−(η+ua)·tT (t) ∈ S ′
t for all u ≥ 0. This also holds for distributions that are

not functions, as is stated in the following theorem.

Theorem 3 Let Tt be a distribution in D ′
t and let the convex set Γ to consist

of all η ∈ Rn such that e−t·ηTt is a tempered distribution. If the support
of Tt lies in a half-space t · a > A (for some a ∈ Rn and A ∈ R), then Γ
contains all points of the form η + ua with η ∈ Γ and u ≥ 0.

Note that this theorem is of little use if Γ is empty. However, in cases when
Tt is a tempered distribution we know that Γ contains the point η = 0 and
the above theorem then implies that {ua : u ≥ 0} ⊂ Γ.

In quantum field theory we usually apply these considerations to matrix
elements of products of fields. Since each field carries a spacetime variable it
will be convenient to use the symbol x instead of t to denote the variables of
distributions on which we act with the Laplace transform. Then x ∈ R4m,
where m depends on the number of fields in the product18 and 4 corresponds

18As we will discuss in more detail near the end of the present section, translation
symmetry implies that the vacuum expectation value of a product of fields depends only
on relative positions of the fields. Hence, if there are N fields in the product at positions
y1, ..., yN , the vacuum expectation value depends on N − 1 variables, and we can choose
those for instance as y2 − y1, y3 − y2, ..., yN − yN−1. In this case the distribution Tx
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to the usual dimension of the spacetime. The scalar product a · b is then
defined as

a · b =
m∑

i=1
a(i)

µ b(i)µ, (2.72)

where each a(i) or b(i) is a four-vector and xµy
µ denotes the usual scalar

product in Minkowski space.
Let us denote by V+ the set of all real future time-like four-vectors

V+ =

x ∈ R4 : x2 =
(
x0
)2

−
3∑

j=1

(
xj
)2
> 0; x0 > 0

 , (2.73)

and by V̄+ we denote its closure, the set of all x such that x2 ≥ 0 and x0 ≥ 0.
(The notation here can be confusing: x2 in the previous sentence stands for
the square of x, x2 = xµx

µ, while x0 denotes the zeroth (contravariant)
component of x.) In quantum field theory an important case is when the
support of Tx is restricted to a subset Γ̄+ of R4m for which each of the
four-vectors x(1), ..., x(m) is within the closure of the future light-cone,

supp Tx ⊂ Γ̄+ =
{(
x(1), ..., x(m)

)
: x(j) ∈ V̄+ for each j = 1, ...,m

}
.

(2.74)
We denote the interior of Γ̄+ by Γ+. That is, Γ+ is the subset of all x =(
x(1), ..., x(m)

)
∈ R4m for which each x(j) is in V+.

Now, for a ∈ Γ+ each a(j) is a future time-like four-vector, and for
x ∈ Γ̄+ each x(j) is either a future time-like or a future null four-vector.
The scalar product of any future time-like four-vector with any future null
or time-like four-vector is always positive. Hence, if Tx satisfies the support
condition (2.74), then for any a ∈ Γ+ the product a · x > 0 for all x in
the support of Tx. Furthermore, if Tx is also a tempered distribution, then
its Laplace transform exists for η = 0. Theorem 3 then implies that the
Laplace transform of Tx exists in the tube R4m + iΓ+.

For distributions with their support in Γ̄+ one can prove stronger bound-
edness properties than those stated in Theorem 2, as we will now present.

Theorem 4 Let Tx ∈ D ′
x be such that e−η·xTx ∈ S ′

x for all η in Γ+. [Here
the scalar product is the one defined by (2.72) and the set Γ+ is defined just
below the equation (2.74).] Suppose, furthermore, that supp Tx ⊂ Γ̄+. Then
for each η in Γ+ there is a polynomial Pη such that∣∣L [Tx] (ξ + i [η + a])

∣∣ ≤
∣∣Pη (ξ + ia)

∣∣, (2.75)

would be defined on R4(N−1), and we would have x =
(
x(1), ..., x(N−1)), with variables

x(j) defined as x(1) = y2 − y1, x(2) = y3 − y2, etc. This comment largely applies even
if the matrix element is not a vacuum expectation value because the dependence on the
absolute position (say, on y1 or on some other weighted average of y1, ..., yN ) can be easily
factored out.
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for all ξ ∈ R4m and all a ∈ Γ+.
Conversely, if f(ξ + iη) is a function analytic in R4m + iΓ+ and for

each η ∈ Γ+ there exists a polynomial Pη such that the condition (2.75) is
satisfied, then f is the Laplace transform of a distribution with support in
Γ̄+.

If also Tx ∈ S ′
x then one can derive further boundedness properties for the

Laplace transform, but we will not quote them here. (The reader can find
them in [5].)

Note that in Theorem 4 it is not assumed that the Laplace transform
exists for η = 0. In fact, sometimes such a boundary value does not exist
even in the sense of distributions. For Tx ∈ S ′

x, however, the boundary
value exists and is just the Fourier transform of Tx.

Theorem 5 Let Tx ∈ S ′
x be such that e−η·xTx ∈ S ′

x for all η in Γ+. Then,
for any f ∈ Sξ,

lim
η→0

∫
d4mξ L [Tx] (ξ + iη) f(ξ) = (F [Tx])ξ (f) , (2.76)

where the limit η → 0 is taken with η restricted to some closed cone within
Γ+. In other words, L [Tx] converges in S ′

ξ to F [Tx] for η → 0 within any
closed cone in Γ+.

Conversely, if L [Tx] exists for all η in Γ+ and converges in S ′
ξ for η → 0

in any closed cone in Γ+, then Tx is a tempered distribution.

Note that when considered as a function of ξ the Laplace transform
L [T ] (ξ + iη) is a tempered distribution. This is a consequence of Theorem
2, which implies that as a function of ξ the Laplace transform L [T ] (ξ + iη)
is bounded by a polynomial. (The variable η is then a parameter. That
is, for each admissible value of η we get a distribution from S ′

ξ.) When
Theorem 5 states that ‘L [Tx] converges in S ′

ξ’ the Laplace transform is
interpreted in this sense: as a function of ξ with η being treated as a pa-
rameter.

This concludes our presentation of relevant mathematical results. In the
remaining part of this section we will introduce what is perhaps the most
fundamental application of these results to the theory of relativistic quantum
fields. We will consider the analytic properties of vacuum expectation values
of fixed-order products of fields, such as

(Ψ0, ϕ1(y1) . . . ϕN (yN )Ψ0) , (2.77)

where, as usual, Ψ0 stands for the vacuum state, and ϕ1, ..., ϕN are com-
ponents of any Lorentz-covariant fields. Recall our assumption that for
any field ϕj and any state vectors ΨA and ΨB from the domain of that
field the matrix element (ΨB, ϕj(y)ΨA) is a tempered distribution in S ′

y.
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The Schwartz nuclear theorem then implies that (2.77) is a tempered distri-
bution in all the variables y1, ..., yN together. (See, e.g., [5] and references
cited therein.) Furthermore, as we already mentioned, properties of such
matrix elements under space-time translations imply that the vacuum ex-
pectation value (2.77) depends only on the differences of the coordinates of
the fields.19 It will prove convenient to express it in terms of the variables
x1 = y1 − y2, x2 = y2 − y3, ..., xN−1 = yN−1 − yN . For any fixed choice of
the fields ϕ1, ..., ϕN in the product in (2.77) we can then write

(Ψ0, ϕ1(y1) . . . ϕN (yN )Ψ0) = W (x1, ..., xN−1), (2.78)

where W ∈ S ′
(x1,...,xN−1). We will now argue that W is analytic in the tube

R4(N−1) − iΓ+. (According to our earlier definition, Γ+ is the subset of
R4(N−1) for which each xj , j = 1, ..., N − 1, is inside the future light-cone,
xj ∈ V+.) Note that this region does not include the real hyperplane, and
at this point we do not claim anything about the analyticity of W for real
values of x1, ..., xN−1. In fact, we know from the renormalization theory
that W is quite singular when any of the separations x1, ..., xN−1 approach
zero.

As we have seen in the first part of this section, we can expect this kind
of analytic properties to result from some restrictions on the support of the
Fourier transform of W (x1, ..., xN−1), which we denote by W̃ (q1, ..., qN−1),

W̃ (q1, ..., qN−1) = F [W ](q1, ..., qN−1)

=
∫
d4x1 . . . d

4xN−1ei
∑N−1

j=1 qjxjW (x1, ..., xN−1). (2.79)

(Note that if we were to strictly follow our earlier mathematical statements,
we would need to consider support restrictions of the inverse Fourier trans-
form of W , and not of its Fourier transform. This difference is not very im-
portant though: the inverse Fourier transform differs from the Fourier trans-
form only by the inversion of its argument and the multiplication by a suit-
able constant factor.) The four-vector qj corresponds to the four-momentum
flowing from the vertex20 j + 1 corresponding to the field ϕj+1 in (2.78) to
the vertex j corresponding to the field ϕj . For the point (q1, ..., qN−1) to be
in the support of W̃ , each qk (k = 1, ..., N − 1) must lie inside the spec-
trum of the four-momenta of the physical states. We will provide arguments
for both of these claims in a moment, but for now let us just take them
for granted. Now, the four-momentum of a physical state must be either
time-like or null and must be future-pointing. (Except for the vacuum, the
four-momentum of which is zero.) This means that if each of q1, ..., qN−1

19A derivation of this well-known property is presented near the end of this section.
20Note that these are not vertices in the (sums of the) usual Feynman graphs, because

we are considering fixed-order Green’s functions.
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lies in the four-momentum spectrum of the states, then each qk is either
inside or on the future light-cone. In other words, qk ∈ V̄+ for all k. This
means that the support of W̃ lies in Γ̄+. Theorem 3, and the discussion that
followed it, then imply that

W (x1, ..., xN−1) = 1
(2π)4(N−1) L

[
W̃ (q1, ..., qN−1)

]
(−x1, ...,−xN−1) (2.80)

is analytic in R4(N−1) − iΓ+. (Note the minus sign in front of the iΓ+, and
the related minus signs in the argument of the Laplace transform on the
right-hand side of (2.80). This is because to obtain W from W̃ we need to
apply the inverse Fourier transform, and this results in the sign reversal of
the variable of the corresponding Laplace transform.) Theorem 4 gives us
some information about the boundedness properties of this analytic function
W (x1, ..., xN−1), and Theorem 5 says that in the limit when we approach
the real hyperplane we recover the tempered distribution W (x1, ..., xN−1)
defined in (2.78).

Let us now explain in what sense can we consider the four-vector qj in
(2.79) as representing the four-momentum flowing from the vertex j + 1 to
the vertex j. It will be good to start by considering the momentum-space
representation of (2.77),

∫
d4y1 . . . d

4yN ei
∑N

j=1 pjyj (Ψ0, ϕ1(y1) . . . ϕN (yN )Ψ0) . (2.81)

Here the four-vector pj represents the four-momentum exiting21 the ampli-
tude at the vertex j. To relate the Fourier transform (2.81) to W̃ , we first
change from the variables y1, ..., yN to the set consisting of yN and the
variables x1, ..., xN−1 introduced earlier. In terms of these new variables

21It may be somewhat confusing to decide which sign corresponds to the four-momentum
entering the amplitude and which sign corresponds to the four-momentum exiting the
amplitude. Here I provide a mnemonic-like argument that could be helpful. (See also the
discussion of the transformation properties of amplitudes under space-time translations
at the end of this section.) The matrix element (Ψ0, ϕ(x)Ψ1) — where Ψ0 is the vacuum,
Ψ1 is a single-particle state containing a particle n of four-momentum p = (E,p), and
where the field ϕ annihilates this particle — represents a particle that travels to the
space-time event x where it is annihilated. That is, at x the four-momentum p exits
the amplitude. The phase of a particle of four-momentum p depends on the position x
as exp(−iEx0 + ip · x) = exp(−ipx) — one can recall this by recalling that the time
evolution of such a particle is given by the factor exp(−iEt) — and this is also the x
dependence of the matrix element. To transform to the momentum representation at
this four-momentum — that is, to isolate this value of the four-momentum — we must
multiply the matrix element with exp(iEx0 − ip · x) = exp(ipx) and integrate over d4x.
This means that multiplying a vertex at x with exp(ipx) and integrating over x extracts
the four-momentum component in which the four-momentum p exits the amplitude at
that vertex.
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the variables y1, ..., yN can be expressed as

yN = yN , (2.82)
yN−1 = xN−1 + yN , (2.83)
yN−2 = xN−2 + xN−1 + yN , (2.84)

. . . (2.85)
y1 = x1 + x2 + · · · + xN−1 + yN . (2.86)

The momentum-space matrix element (2.81) can then be written as∫
d4y1 . . . d

4yN ei
∑N

j=1 pjyj (Ψ0, ϕ1(y1) . . . ϕN (yN )Ψ0)

=
∫
d4yNd

4xN−1 . . . d
4x1ei(pN yN +pN−1(xN−1+yN )+···+p1(x1+···+yN ))

× (Ψ0, ϕ1(x1 + x2 + · · · + yN ) . . . ϕN (yN )Ψ0) . (2.87)

To proceed further, we use the translation-invariance property of vacuum
expectation values, which implies that if we shift all the field-coordinates yj

by the same amount −yN — that is, if we substitute yj → yj − yN for each
j = 1, ..., N — then the amplitude does not change,

(Ψ0, ϕ1(x1 + · · · + xN−1 + yN )ϕ2(x2 + · · · + xN−1 + yN ) . . . ϕN (yN )Ψ0)
= (Ψ0, ϕ1(x1 + · · · + xN−1)ϕ2(x2 + · · · + xN−1) . . . ϕN (0)Ψ0) . (2.88)

After substituting this into the right-hand side of (2.87) the integral over
the variable yN becomes trivial, and we obtain∫

d4y1 . . . d
4yN ei

∑N

j=1 pjyj (Ψ0, ϕ1(y1) . . . ϕN (yN )Ψ0)

= (2π)4δ4 (p1 + · · · + pN )
∫
d4xN−1 . . . d

4x1ei(pN−1xN−1+···+p1(x1+···+xN−1))

× (Ψ0, ϕ1(x1 + · · · + xN−1) . . . ϕN−1(xN−1)ϕN (0)Ψ0) . (2.89)

Comparing the integral on the right-hand side with the definition of W̃ in
(2.79), we see that∫

d4y1 . . . d
4yN ei

∑N

j=1 pjyj (Ψ0, ϕ1(y1) . . . ϕN (yN )Ψ0)

= (2π)4δ4 (p1 + · · · + pN ) W̃ (p1, p1 + p2, ..., p1 + · · · + pN−1) . (2.90)

Note the presence of the four-momentum-conservation delta function.
The equation (2.90) shows that the four-momentum q1 of (2.79) is equal

to p1, the four-momentum exiting the amplitude at the vertex 1, the four-
momentum q2 is equal to p1 + p2, the sum of four-momenta exiting the
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amplitude at the vertex 1 and the vertex 2, etc. Now, if we adopt the
picture that at each vertex j the four-momentum arrives from the vertex
j + 1, which is just to the right of the vertex j, and then either directly
exits the diagram as pj or flows further left into the vertex j − 1, and if
we also assume22 that the four-momentum is conserved at each vertex, then
we can easily see that the four-momentum qj corresponds to the flow of
four-momentum from j + 1 to j. For, if the four-momentum is conserved
at each vertex and flows from right to left, then the four-momentum that
flows into the vertex j from the vertex j + 1 must be equal to the total
four-momentum that leaves the amplitude either at the vertex j or at some
other vertex further downstream. That is, it must be equal to the sum
pj + pj−1 + · · · + p1. But according to (2.90) this is just qj , which therefore
does indeed represent the four-momentum flowing into the vertex j from the
vertex j + 1.

Next we turn our attention to the more important part of the preceding
argument: we need to show that if any of the qjs lies outside of the spectrum
of the four-momenta of physical states then the distribution W̃ (q1, ..., qN−1)
vanishes. For this purpose we need to consider a complete basis {Ψa} of
physical states consisting of eigenvectors of the operator Pµ of the total
four-momentum,

PµΨa = pµ
aΨa, (2.91)〈

Ψb

∣∣Ψa
〉

= 0 if a ̸= b, (2.92)∫
da

m(a)
|Ψa⟩ ⟨Ψa| = 1. (2.93)

The first one of these equations expresses the condition that the states are
eigenvectors of the operator Pµ, and pµ

a stands there for the total four-
momentum of the state Ψa. The second equation indicates that the states
in {Ψa} are orthogonal, and the third equation represents the completeness
relation for the basis — it says that if we sum over the intermediate states
in {Ψa} we recover the identity operator 1. The symbol

∫
da is meant to

represent the integral over all continuous labels as well as the sum over all
discrete labels in the multi-index a. We added an extra factor 1/m(a) to
account for the possibility that a non-trivial measure needs to be employed in
this integration. (This, of course, depends on the normalization of the states
in {Ψa}.) Now we can insert this sum over the intermediate states {Ψa} in

22From what has been said so far these are just assumptions. After all, we have not even
specified what exactly do we mean by diagrams that would correspond to the fixed-order
Green’s functions.
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between any two neighboring operators in (2.81). We obtain23

∫
da

m(a)

∫
d4y1 . . . d

4yN ei
∑N

j=1 pjyj (Ψ0, ϕ1(y1) . . . ϕk(yk)Ψa)

× (Ψa, ϕk+1(yk+1)ϕN (yN )Ψ0) , (2.94)

where the sum over intermediate states has been inserted between the k-th
and the k+1-th member of the product. The conservation of four-momentum
requires that∫

d4y1 . . . d
4ykei

∑k

j=1 pjyj (Ψ0, ϕ1(y1) . . . ϕk(yk)Ψa) (2.95)

vanishes unless pa = p1 + · · · + pk. Similarly,∫
d4yk+1 . . . d

4yN ei
∑N

j=k+1 pjyj (Ψa, ϕk+1(yk+1)ϕN (yN )Ψ0) (2.96)

vanishes unless pa = −pk+1 − · · · − pN . These two conditions are equivalent
because of the conservation of the total four-momentum,

p1 + · · · + pN = 0,

which is enforced by the delta function in (2.90). Furthermore, as we can also
see from (2.90), both these conditions can be expressed as saying that the
matrix elements (2.95) and (2.96) vanish unless pa = qk. This implies that
if there is no state Ψa for which pa = qk then the whole sum over the inter-
mediate states in (2.94) vanishes. The same argument applies also to every
other qj . Hence, the support of (2.81) is restricted to those lists (p1, . . . , pN )
for which each qj = p1 + · · · + pj (1 ≤ j ≤ N − 1) lies in V̄+. Finally, the
equation (2.90) then implies that the same holds for W̃ (q1, ..., qN−1).

In the preceding argument, as well as several other places in this thesis,
we have employed the properties of momentum conservation and/or trans-
lation covariance of matrix elements of products of field operators. It may
be a good idea to present here a simple derivation of those properties. The
four-momentum operator Pµ is the generator of translations in space and
time. (The symmetry of a physical theory under such transformations then
implies that this operator is conserved.) This means that for any state Ψ
and any infinitesimal interval dxµ the state

(1 + iPµdxµ)Ψ, (2.97)
23In the current section we strive for a somewhat higher level of mathematical rigor than

in the rest of this work. For this reason we should at least remark that this argument is not
completely valid: there are issues related to the fact that some of the intermediate states
are not normalizable. For a discussion of this issue see [5] and especially the references
cited therein.
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corresponds to the same physical system as that described by the original
state Ψ but as seen by an observer located at the position xµ

0 − dxµ, shifted
by −dx relative to the position x0 of the original observer. (In other words,
it corresponds to the coordinate transformation xµ → xµ + dxµ. Here the
transformations are considered as passive.24 If, instead, we interpreted the
transformation in the active sense, then the effect of (2.97) would be to shift
the physical system by +dx.) Accordingly, for any field ϕ(x), we have

ϕ(x+ dx)(1 + iPµdxµ) = (1 + iPµdxµ)ϕ(x). (2.98)

That is, shifting the reference frame by −dx and then applying the field at
x + dx (in the new coordinates) is the same as applying the field at x (in
the old coordinates) and shifting the reference frame only afterwards. This
equation is equivalent to the commutation relation

[Pµ, ϕ(x)]− = −i ∂

∂xµ
ϕ(x). (2.99)

Consider now any matrix element of a product of field operators

(Ψb, ϕ1(y1) . . . ϕN (yN )Ψa) (2.100)

between two eigenstates of Pµ. Since Ψa and Ψb are four-momentum eigen-
states, we can write

(Ψb, [Pµ, ϕ1(y1) . . . ϕN (yN )] Ψa)
= (pb − pa)µ (Ψb, ϕ1(y1) . . . ϕN (yN )Ψa) , (2.101)

where pa and pb are four-momenta corresponding to the states Ψa and Ψb,
respectively. However, using the equation (2.99) we also have

(Ψb, [Pµ, ϕ1(y1) . . . ϕN (yN )] Ψa)

= −i
(

∂

∂y1µ
+ · · · + ∂

∂yNµ

)
(Ψb, ϕ1(y1) . . . ϕN (yN )Ψa) . (2.102)

24A passive symmetry transformation corresponds to a change in the way in which
we describe the system, such as a change of coordinates. These transformations do not
have any influence on the physical system itself. Active transformation are understood
differently: under these transformations the way in which we describe the system remains
unchanged and it is the physical system itself what undergoes the transformation. These
two concepts are closely related. For example, the passive transformation of rotating our
frame of reference clockwise by an angle α is equivalent to the active transformation of
rotating instead the physical system in the opposite direction, that is, counterclockwise
by the angle α. Also, to see that the sign in (2.97) is correct, consider a translation
in the time direction corresponding to dxµ = (dt,0). The expression (2.97) then reads
(1 + iP 0dx0)Ψ = (1 + iP 0dx0)Ψ = (1 + iHdt)Ψ. Since the time evolution of state is
exp(−iHt)Ψ, if Ψ is the state of system at time t = t0 then the state (1 + iHdt)Ψ
corresponds to the same system but as observed at the time t = t0 − dt. That is, the
observer shifted her location in the space-time by −dt along the time-axis, or, in other
words, by −dxµ; just as we claimed below (2.97).
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Comparing these two results we see that the matrix element satisfies the
differential equation

(pb − pa)µ (Ψb, ϕ1(y1) . . . ϕN (yN )Ψa)

= −i
(

∂

∂y1µ
+ · · · + ∂

∂yNµ

)
(Ψb, ϕ1(y1) . . . ϕN (yN )Ψa) . (2.103)

We can write the solution of this equation in the form25

(Ψb, ϕ1(y1) . . . ϕN (yN )Ψa)

= ei(pb−pa)µyµ
N (Ψb, ϕ1(y1 − yN ) . . . ϕN−1(yN−1 − yN )ϕN (0)Ψa) . (2.104)

Note that the same argument also applies to matrix elements of time-ordered
products of field operators. To summarize, we found that if a matrix element
of any product of field operators — either fixed-ordered or time-ordered
— is taken between four-momentum eigenstates Ψb and Ψa, then under
overall translation of all space-time arguments of the fields, such as yk →
yk +∆y for all k, it transforms by simply acquiring a phase factor of the form
exp (i(pb − pa) · ∆y). In particular, vacuum expectation values are invariant
under such translations: they depend only on the differences between the
field coordinates.

From the transformation law (2.104) we can derive the conservation of
four-momentum. Multiplying both sides of the equation by exp (i

∑
pjyj)

and integrating over all variables yj we find that the integral over yN on
the right-hand side is trivial and leads to the four-momentum-conservation
delta function,∫

d4y1 . . . d
4yN ei

∑N

j=1 pjyj (Ψb, ϕ1(y1) . . . ϕN (yN )Ψa)

=
∫
d4yNd

4 (y1 − yN ) . . . d4 (yN−1 − yN ) ei(pb−pa+p1+···+pN )yN

× ei
∑N−1

j=1 pj(yj−yN ) (Ψb, ϕ1(y1 − yN ) . . . ϕN−1(yN−1 − yN )ϕN (0)Ψa)

= (2π)4δ4 (pb + p1 + · · · + pN − pa)
∫
d4y1 . . . d

4yN−1ei
∑N−1

j=1 pjyj

× (Ψb, ϕ1(y1) . . . ϕN−1(yN−1)ϕN (0)Ψa) . (2.105)
25Or, more generally, the solution is

(Ψb, ϕ1(y1) . . . ϕN (yN )Ψa) = ei(pb−pa)µyµ

F (y1 − y2, ...),

where y is any weighted average of y1, ..., yN ,

y =
N∑

j=1

αjyj ,

for some real αj satisfying
∑

αj = 1, and the function F depends only on the differences
of the variables y1, ..., yN .
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The matrix element therefore vanishes unless pb + p1 + · · · + pN = pa. The
total four-momentum exiting the amplitude, either at any of the vertices
(as p1 to pN ) or in the final state (as pb) must be equal to the incoming
four-momentum pa.

There is one more issue that needs to be mentioned. We have seen that
the functions W (x1, ..., xN−1) are analytic on the tube R4(N−1) − iΓ+. How-
ever, this domain of analyticity can be extended even further if we make full
use of the fact that the fields that appear in the products of the form (2.77)
are covariant under the restricted subgroup of Lorentz transformations.26 It
can be shown that the Laplace transforms W are analytic and single-valued
on a larger set called the extended tube. The extended tube consists of all
points that can be reached by any proper complex Lorentz transformation
from any point in R4(N−1) −iΓ+. Functions W transform covariantly on this
extended tube. This uniqueness and analyticity on the extended tube, to-
gether with the covariance under complex Lorentz transformations, is used
in many applications, although often just implicitly. Let us also note that
unlike the original tube R4(N−1) − iΓ+, the extended tube contains some
real points, that is, it contains vectors whose all components are real. These
real points are called Jost points, and the knowledge of their existence can
be exploited in various ways. For example, the fact that the functions W
can be extended to this real environment can be used to show27 that W s
that correspond to different permutations (orderings) of fields in (2.77) are
analytic continuations of the same analytic function into different regions of
C4(N−1).

26Recall that restricted Lorentz transformations are those (real) Lorentz transforma-
tions which are both proper — their determinant is +1 — and ortochronous — their
component Λ0

0 ≥ 1. In some cases the fields are covariant under a larger group of Lorentz
transformations, for instance, the group that also contains space inversions.

27To provide a rough idea of why this is true consider the simple case of products
containing only two fields,

W1(y1 − y2) = (Ψ0, ϕ1(y1)ϕ2(y2)Ψ0) ,
W2(y2 − y1) = (Ψ0, ϕ2(y2)ϕ1(y1)Ψ0) .

Denote x = y1 − y2. Now, any Lorentz transformation, either real or complex, must
preserve the invariant square x2. Since points of the extended tube are obtained by
Lorentz transforming points from the original tube R− iV+, for any point on the extended
tube with some value of x2 there must be a point on the original tube with the same value
of x2. Jost points are real, so for them x2 must be real, and for each Jost point there must
exist a point in the original tube with the same value of x2. But for a point x = ξ − iη in
the original tube R−iV+ the condition that x2 = ξ2−η2−2iξ ·η is real implies that ξ ·η = 0.
But η ∈ V+ is time-like, and so ξ must be space-like. As a consequence, any such real
x2 = ξ2 − η2 must negative. At Jost points the separation between y1 and y2 is therefore
space-like and the condition of local commutativity yields W1(y1 − y2) = W2(y2 − y1).
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2.4 Field theoretic argument for the existence of
poles

In the previous section we have introduced methods that can be used to
show that Fourier transforms of various quantities are boundary values of
analytic functions, provided that those quantities vanish on suitable sub-
sets of their domains. We then proceeded to apply those methods to the
case of vacuum expectation values of fixed-order products of field operators.
Since these functions (or rather distributions) depend on space-time coordi-
nates of the fields, they are sometimes referred to as being expressed in the
space-time representation or in the coordinate representation. Their Fourier
transforms depend on variables that represent various four-momenta, and,
accordingly, they are sometimes referred to as being expressed in the mo-
mentum representation.

As we saw, the fact that the coordinate-representation fixed-order prod-
ucts were boundary values of analytic functions depended on particular re-
strictions satisfied by the support of their Fourier transforms — their mo-
mentum space counterparts. The support of those momentum-space matrix
elements was restricted to those regions in which the four-momentum flow-
ing between adjacent vertices fell into the energy-momentum spectrum of
physical states.

Of course, we can try to argue also in the opposite direction: if we man-
aged to establish suitable restrictions on the support of matrix elements in
the space-time representation, then analytic properties of matrix elements in
momentum-space representation would follow. In fact, we briefly mentioned
how to do this in the case of time-ordered products. At the end of the sec-
tion 2.1 we considered a simple example of how the support of certain parts
of such a product was restricted by the condition of microscopic causality.

In the present section we will continue investigating this kind of matrix
elements. That is, we will focus our attention on products that are time-
ordered. However, while until now we have been mostly interested in showing
for some matrix element that it is analytic in a certain region, in the present
section we are instead going to start investigating the other side of that same
coin: we will be interested in a particular condition when the matrix element
is not analytic. What we will find is that such matrix elements contain poles,
which correspond to single-particle states.

In fact, although we will not discuss it here in greater detail, apart from
poles corresponding to single-particle states, several other types of singulari-
ties are known to be present in Green’s functions. These usually correspond
to branch points and are related to processes involving several particles. At
the level of Feynman diagrams they can be detected by the application of
the Landau conditions, which we briefly mentioned in the section 1.4, and
which we will also discuss in the section 2.5. They can be interpreted in
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terms of processes involving classical propagation of several on-shell parti-
cles,28 as was realized by Coleman and Norton [15], and this point of view
lends itself quite well to attempts at a generalization to non-perturbative
settings. In any case, by these or some other kinds of arguments one can
attempt to establish a procedure to determine a set of known singularities.
It then may be reasonable to simply assume that the actual amplitude is
analytic everywhere else except for that set of singularities. This is known
as the principle of maximal analyticity.

Returning to our topic, we are now going to concentrate on vacuum
expectation values of time-ordered products of field operators, such as

(Ψ0,T {ϕ1(y1) . . . ϕN (yN )} Ψ0) . (2.106)

As we already mentioned, by the application of the LSZ reduction formula to
vacuum expectation values such as (2.106), one can obtain matrix elements
of time-ordered products between any asymptotic states, including the S-
matrix. The expectation values (2.106) are often referred to as the (space-
time representation/coordinate-space) Green’s functions. We are interested
in exploring the presence of poles in their Fourier transforms. That is, we
are going to investigate momentum-space Green’s functions, such as

G(q1, . . . , qn) =∫
d4y1 . . . d

4yn eiq1y1 . . . eiqnyn (Ψ0, T {ϕ1(y1) . . . ϕn(yn)} Ψ0) . (2.107)

Here, Ψ0 is the true vacuum state and ϕj are fields expressed in the Heisen-
berg picture. (Our findings, however, apply also to matrix elements con-
taining free-fields and free-particle vacua, since those simply represent the
special case of a theory of non-interacting fields.) As was already explained
in the previous section, the four-momentum qj in (2.107) corresponds to the
four-momentum that exits the amplitude at the vertex j.

Now suppose that there is an integer a, 1 ≤ a < n, and a single-particle
state Ψp,σ that has non-vanishing matrix elements both with ϕa+1 . . . ϕnΨ0
and with ϕ†

a . . . ϕ
†
1Ψ0. Our result is then that if we consider G as a function

of q2, where
q = q1 + · · · + qa = −qa+1 − · · · − qn, (2.108)

then G has a pole at q2 = m2, where m is the mass of the particle cor-
responding to the state Ψp,σ. Furthermore, the residue of this pole can
be calculated using the usual Feynman rules as if a field for that particle
(represented by Ψp,σ) was present in the Lagrangian. (To provide a fully un-
ambiguous statement of this result would require a bit more care than what

28In addition to the original work [15], this criterion is explained also in many textbooks
or lectures, such as [1, 4]. In the context of the Libby-Sterman analysis, and with an
illuminating discussion of the coordinate-space representation, it is explained and used in
the textbook [7]. See also [6].
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we will offer. Our main purpose is only to show that the aforementioned
pole is indeed present in the amplitude.)

To specify the value of the residue we will use matrix elements between
asymptotic states. These depend on the normalization of those states. Fur-
thermore, any precise statement of the Feynman rules also depends on var-
ious conventions. For the purposes of this section we will therefore need to
choose between various popular conventions. Since our treatment will closely
follow that of [9], I will adopt the convention from that book, except that
for the reader’s convenience I will keep using the metric diag(1,−1,−1,−1)
instead of switching to the metric diag(−1, 1, 1, 1) of [9].

We will normalize single-particle states to the delta function:(
Ψp′,σ′,n′ ,Ψp,σ,n

)
= δn′n δσ′σ δ

3 (p′ − p
)
, (2.109)

where Ψpσn corresponds to a single particle of type n, spin z-component
(or helicity) σ and three-momentum p, and similarly for Ψp′σ′n′ . This leads
to particularly simple commutation or anti-commutation relations for the
corresponding creation and annihilation operators, which are just[

a(p, σ, n), a(p′, σ′, n′)
]
± = 0, (2.110)[

a†(p, σ, n), a†(p′, σ′, n′)
]

±
= 0, (2.111)[

a(p, σ, n), a†(p′, σ′, n′)
]

±
= δn′n δσ′σ δ

3 (p′ − p
)
. (2.112)

Another advantage is that if we sum over intermediate states (such as in
(2.93)) from a basis that satisfies this normalization convention then the
summation over the single-particle sector does not include any additional
measure factors. That is, we have

1 =
∑
n,σ

∫
d3p |Ψp,σ,n⟩ ⟨Ψp,σ,n| + a sum over multiparticle states. (2.113)

However, there is a price that we pay for this convenience. The unitary
operator U(Λ), which corresponds to a restricted Lorentz transformation
x → Λx, does not transform Ψp,σ,n directly to a superposition of ΨpΛ,σ′,n

that would be given only by the transformation properties within the ap-
propriate little group, but the state also acquires an additional, energy-
dependent factor. (Here, pΛ stands for the space components of the four-
vector Λp: Λp =

(
(Λp)0,pΛ

)
.) More specifically, we have

U(Λ)Ψp,σ,n =

√
(Λp)0

p0

∑
σ′

D
(j)
σ′σ (W (Λ, p)) ΨpΛ,σ′,n, (2.114)

where j is the spin of the particle n, W (Λ, p) is the Wigner little group
transformation corresponding to the Lorentz transformation Λ applied to
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the four-momentum p, and D
(j)
σ′σ is the spin j representation of the little

group. (This is for massive particles. The little group then consists only of
rotations. Massless particles must be treated somewhat differently. These
issues are not directly related to our present topic, so I do not explain them
here. They are introduced in detail in Chapter 2 of [9], or also in [5].)
While the superposition

∑
σ′ D

(j)
σ′σ (W (Λ, p)) ΨpΛ,σ′,n is a direct consequence

of Wigner’s construction of the (infinite-dimensional) unitary representation
of the restricted Lorentz group, the extra factor (Λp)0 /p0 results from our
particular normalization convention. From this point of view the normal-
ization (2.109) may appear as perhaps being not particularly natural, even
though it is convenient.

Furthermore, in order to speak explicitly about the Feynman rules, we
also need to fix the convention for the coefficient functions of the annihilation
and creation operators that appear in the free versions of the fields ϕj . We
will write a general Lorentz-covariant free field ϕI j describing a particle of
species n in the form

ϕI j(x) = 1
(2π)3/2

∑
σ

∫
d3p

{
uj(p, σ)e−ipxa(p, σ, n) + vj(p, σ)eipxa†(p, σ, nc)

}
.

(2.115)
Here, nc is the antiparticle for n, and the operators a(p, σ, n) and a†(p, σ, nc)
annihilate and create the corresponding free particles. The coefficient func-
tions u and v depend on the type of the field. For example, for a scalar
field we have u(p) = v(p) = 1/

√
2p0, where p0 =

√
p2 +m2

n. The field ϕI j

may transform according to any representation of the Lorentz group. Note
that here the coefficients u, v are just complex numbers, and not tensors or
spinors. That is, the field ϕI j can be also thought of as a component of a
field.

The definition (2.115) fixes the convention for the coefficient functions.
[This is because up to its overall normalization the field itself is fixed by
its properties under Lorentz transformations and translations. Its nor-
malization is in turn determined by the canonical commutation or anti-
commutation relations. The right-hand side of (2.115) contains only two
kinds of not fully specified quantities: the coefficient functions and the cre-
ation/annihilation operators. But the creation and annihilation operators
become fully specified once a normalization of single-particle states, such
as (2.109), is selected.] Now that we are equipped with the conventions
(2.109)–(2.115), the Feynman rules follow in principle unambiguously (ex-
cept for the choice of gauge, etc). In particular, we can now specify the free
propagator in terms of the coefficient functions u and v. The propagator
between two free fields can be defined as

i∆lm(x, y) = (Ψfree
0 , T{ϕI l(x)ϕI

†
m(y)}Ψfree

0 ), (2.116)
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and expressed in the form

i∆lm(x, y) = i

(2π)4

∫
d4q

Plm(q)e−iq(x−y)

q2 −m2
n + iϵ

, (2.117)

where Plm is a polynomial in the components of q. On the mass-shell, this
polynomial is given in terms of the coefficient functions as

Plm(q,
√

q2 +m2
n) = 2

√
p2 +m2

n

∑
σ

ul(q, σ)u∗
m(q, σ), (2.118)

and can be continued to off-shell momenta covariantly.29

Now we are ready to state and interpret the result regarding the value of
the residue. The full result is that if there is a single-particle physical state
Ψp,σ that has non-vanishing matrix elements both with ϕa+1 . . . ϕnΨ0 and
with ϕ†

a . . . ϕ
†
1Ψ0, then the amplitude G, defined in (2.107)

G(q1, . . . , qn)

=
∫
d4y1 . . . d

4yn eiq1y1 . . . eiqnyn (Ψ0, T {ϕ1(y1) . . . ϕn(yn)} Ψ0) ,

when understood as a function of q2, with the variable q defined in (2.108)

q = q1 + · · · + qa = −qa+1 − · · · − qn,

has a pole at q2 = m2, and its residue is given by

G −−−−→
q2→m2

i
2
√
q2 +m2

q2 −m2 + iϵ
(2π)7δ4(q1 + · · · + qn)

×
∑

σ

M0|q,σ(q2, . . . , qa)Mq,σ|0(qa+2, . . . , qn). (2.119)

Here M0|q,σ and Mq,σ|0 are defined by

∫
d4y1 . . . d

4yaeiq1y1 . . . eiqaya (Ψ0, T {ϕ1(y1) . . . ϕa(ya)} Ψq,σ)

= (2π)4δ4(q1 + · · · + qa − q)M0|q,σ(q2, . . . , qa), (2.120)

29Arriving at these covariant propagators is not always straightforward. If we apply the
usual operator techniques to the definition (2.116) we can obtain a non-covariant result.
This can be dealt with by adding suitable non-covariant terms to the interaction density
that effectively cancel out the non-covariant terms in the propagator and restore the
Lorentz-covariance of the resulting Feynman rules. If we start from a Lorentz-invariant
Lagrangian density and use the canonical formalism to derive the interaction density,
then these non-covariant terms needed to restore the covariance of the propagator appear
automatically. However, to obtain covariant Feynman rules it is usually more convenient
to simply use the path-integral methods and avoid all the aforementioned difficulties.
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and∫
d4ya+1 . . . d

4yneiqa+1ya+1 . . . eiqnyn (Ψq,σ, T {ϕa+1(ya+1) . . . ϕn(yn)} Ψ0)

= (2π)4δ4(qa+1 + · · · + qn + q)Mq,σ|0(qa+2, . . . , qn). (2.121)

As we partially discussed in the section 2.2, the equation (2.120) means
that

(2π)4δ4(q1 + · · · + qa − q)M0|q,σ(q2, . . . , qa)

corresponds to the sum of all Feynman diagrams in which a single external
line corresponding to the particle Ψq,σ enters the diagram and which have
a external vertices corresponding to the operators ϕ1, ..., ϕa through which
the four-momenta q1, ..., qa leave the diagram, but with all bubble subdia-
grams excluded. Similarly, (2π)4δ4(. . . )Mq,σ|0(qa+2, . . . , qn) corresponds to
the sum of diagrams with a single external line of the particle Ψq,σ leaving
the diagram and n−a extra vertices ϕa+1, ..., ϕn through which the momenta
qa+1, ..., qn exit the diagram, with all bubble subdiagrams excluded.

To better appreciate the result (2.119) let us suppose for a moment that
there is a field in the Lagrangian (and the Feynman rules) corresponding to
the particle of Ψq,σ. With the commutation relations of the form (2.110)–
(2.112) and the definition of the coefficient functions implicit in (2.115), the
(momentum-space) Feynman rules associate with the external particle line
in (2π)4δ4(. . . )M0|q,σ the kinematic factor

1
(2π)3/2u(q, σ). (2.122)

Similarly, the external line of (2π)4δ4(. . . )Mq,σ|0 yields the factor u∗(q, σ)/(2π)3/2.
Consider now the expression∑

σ

[
(2π)4δ4(q1 + · · · + qa − q)M0|q,σ(q2, . . . , qa)

]
× i

(2π)4
1

q2 −m2 + iϵ
(2π)32q0

×
[
(2π)4δ4(qa+1 + · · · + qn + q)Mq,σ|0(qa+2, . . . , qn)

]
.

(2.123)

The external particles lines from the two expressions in the square brackets
each contribute with the factor of (2π)−3/2. This cancels the factor of (2π)3

in the middle line of (2.123). These two external lines also contribute the
factor u(q, σ)u∗(q, σ). But the middle line of (2.123) contains the factor 2q0,
and according to (2.118), this factor, together with u(q, σ)u∗(q, σ) from the
external particle lines, yields simply Plm after we sum over the quantum
number σ. But (2.117) then implies that the middle line, together with the
factors from the external particle lines, corresponds after the summation
over σ just to the momentum-space propagator of the particle represented
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by Ψq,σ! This means that in terms of Feynman diagrams (2.123) corresponds
to the sum of all Feynman diagrams (excluding bubble subdiagrams) that
consist of two parts, one having a external vertices corresponding to fields
ϕ1, ..., Φa and a single external propagator line corresponding to the par-
ticle of Ψq,σ, which connects it to the second part of the diagram, which
except for this external propagator line also contains n−a external vertices,
corresponding to fields ϕa+1, ..., ϕn.

Now, if we integrate (2.123) over d4q we obtain∫
d4q

∑
σ

[
(2π)4δ4(q1 + · · · + qa − q)M0|q,σ(q2, . . . , qa)

]
× i

(2π)4
(2π)32q0

q2 −m2 + iϵ

[
(2π)4δ4(qa+1 + · · · + qn + q)Mq,σ|0(qa+2, . . . , qn)

]
= (2π)7δ4(q1 + · · · + qn) i2q0

q2 −m2 + iϵ

×
∑

σ

M0|q,σ(q2, . . . , qa)Mq,σ|0(qa+2, . . . , qn), (2.124)

where q = q1 + · · · + qa. This is the same as the limit in (2.119). Hence,
in the limit of q2 → m2 the pole structure of the full unperturbed ampli-
tude G is the same as would arise from the propagator of the particle Ψq,σ

connecting the first a and the last n− a vertices. It is important to realize
that this is true even if there is no field of the particle of mass m in the
Lagrangian. That is, the pole structure is the same even if the particle of
the state Ψq,σ is a composite particle, a bound state of particles whose fields
do appear in the Lagrangian. The only thing that matters is that there is a
physical state Ψq,σ corresponding to that particle. This also implies that if
there is a field in the Lagrangian whose associated particle is not observed
in the physical spectrum, then the corresponding pole should not appear in
the full Green’s function (2.107). To illustrate this point with a well-known
example, consider the theory of quantum chromodynamics. In that theory,
the product (2.107) of quark and/or gluon fields should contain poles corre-
sponding to mesons, such as π- or K-mesons, or baryons, such as nucleons
or hyperons, but should not contain quark or gluon poles, because due to
the color confinement those particles do not appear in asymptotic states.

Let us now proceed with the proof. Our assumption was that both the
matrix elements (Ψp,σ, ϕa+1 . . . ϕnΨ0) and (Ψ0, ϕ1 . . . ϕaΨp,σ) do not vanish.
For this reason we restrict our attention only to those regions in the integral
(2.107) where in the time-ordered product all the operators ϕ1, ..., ϕa appear
to the left of the operators ϕa+1, ..., ϕn

G =
∫
d4y1 . . . d

4yn θ
(
min(y0

1, . . . , y
0
a) − max(y0

a+1, . . . , y
0
n)
)

eiq1y1 . . . eiqnyn

× (Ψ0, T {ϕ1(y1) . . . ϕn(yn)} Ψ0) + other contributions. (2.125)
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Here “other contributions” refers to the contribution of the rest of the in-
tegral, when min(y0

1, . . . , y
0
a) < max(y0

a+1, . . . , y
0
n). Because of the explicit

ordering enforced by the theta function we can split the time-ordered prod-
uct into two parts

θ
(
min(y0

1, . . . , y
0
a) − max(y0

a+1, . . . , y
0
n)
)

× T {ϕ1(y1) . . . ϕa(ya)ϕa+1(ya+1) . . . ϕn(yn)}

= θ
(
min(y0

1, . . . , y
0
a) − max(y0

a+1, . . . , y
0
n)
)

× T {ϕ1(y1) . . . ϕa(ya)} T {ϕa+1(ya+1) . . . ϕn(yn)} .

This allows us to insert the summation over a complete set of intermediate
physical states {Ψa} in between T {ϕ1(y1) . . . ϕa(ya)}
and T {ϕa+1(ya+1) . . . ϕn(yn)},

T {ϕ1(y1) . . . ϕa(ya)} T {ϕa+1(ya+1) . . . ϕn(yn)} =

T {ϕ1(y1) . . . ϕa(ya)}
(∫

da |Ψa⟩ ⟨Ψa|
)
T {ϕa+1(ya+1) . . . ϕn(yn)} .

Here the integral
∫
da symbolizes integration over continuous labels and

sums over discrete labels in the multi-index a. (Note that unlike in (2.93)
we did not explicitly indicate the presence of a non-trivial measure. This is
because at present we are following the normalization convention (2.109).)
We choose the set {Ψa} such that it includes the states Ψq,σ. Now we can
further restrict our attention and among all the states in

∫
da |Ψa⟩ ⟨Ψa| focus

only on the states Ψq,σ. In this manner, we write

G =
∫
d4y1 . . . d

4ynθ
(
min(y0

1, . . . , y
0
a) − max(y0

a+1, . . . , y
0
n)
)

eiq1y1 . . . eiqnyn

×
∑

σ

∫
d3q (Ψ0, T {ϕ1(y1) . . . ϕa(ya)} Ψq,σ)

× (Ψq,σ, T {ϕa+1(ya+1) . . . ϕn(yn)} Ψ0)
+ other contributions, (2.126)

where the “other contributions” now contains not only the integration over
the region min(y0

1, . . . , y
0
a) < max(y0

a+1, . . . , y
0
n) but also the contribution

over the region min(y0
1, . . . , y

0
a) > max(y0

a+1, . . . , y
0
n) from the intermediate

states other than Ψq,σ.
In our next step we need to make use of the transformation proper-

ties (2.104) of matrix elements between four-momentum eigenstates under
translation. They imply

(Ψ0, T {ϕ1(y1)ϕ2(y2) . . . ϕa(ya)} Ψq,σ)
= e−iqy1 (Ψ0, T {ϕ1(0)ϕ2(y2 − y1) . . . ϕa(ya − y1)} Ψq,σ)

(2.127)
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and

(Ψq,σ, T {ϕa+1(ya+1)ϕa+2(ya+2) . . . ϕn(yn)} Ψ0)
= eiqya+1 (Ψq,σ, T {ϕa+1(0)ϕa+2(ya+2 − ya+1) . . . ϕn(yn − ya+1)} Ψ0) .

(2.128)

We now make the following change of the integration variables30

x1 = y1,

x2 = y2 − y1,

. . .

xa = ya − y1,

xa+1 = ya+1,

xa+2 = ya+2 − ya+1,

. . .

xn = yn − ya+1.

(2.129)

In these new variables, and after using (2.127) and (2.128), the equation
(2.126) reads

G =
∑

σ

∫
d3q

∫
d4x1 . . . d

4xn

[
θ
(
x0

1 − x0
a+1 + min(0, x0

2, . . . , x
0
a) − max(0, x0

a+2, . . . , x
0
n)
)

× ei(q1+···+qa−q)x1eiq2x2 . . . eiqaxaei(qa+1+...qn+q)xa+1eiqa+2xa+2 . . . eiqnxn

× (Ψ0, T {ϕ1(0) . . . ϕa(xa)} Ψq,σ) (Ψq,σ, T {ϕa+1(0) . . . ϕn(xn)} Ψ0)
]

+ other terms. (2.130)

The integration over the space components of x1 and xa+1 is now trivial and
yields delta function factors (2π)3δ3(q1 + · · · + qa − q) and (2π)3δ3(qa+1 +
· · · + qn + q). These factors, in turn, make trivial the integration over q,

30These variables are not the same as the variables xj that we used in the previous
section.
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and we obtain

G = (2π)6δ3(q1 + · · · + qn)
∑

σ

∫
dx0

1d
4x2 . . . d

4xadx
0
a+1d

4xa+2 . . . d
4xn

[
× θ

(
x0

1 − x0
a+1 + min(0, x0

2, . . . , x
0
a) − max(0, x0

a+2, . . . , x
0
n)
)

× ei(q0
1+···+q0

a−
√

q2+m2)x0
1eiq2x2 . . . eiqaxa

× ei(q0
a+1+...q0

n+
√

q2+m2)x0
a+1eiqa+2xa+2 . . . eiqnxn

× (Ψ0, T {ϕ1(0) . . . ϕa(xa)} Ψq,σ) (Ψq,σ, T {ϕa+1(0) . . . ϕn(xn)} Ψ0)
]

+ other terms, (2.131)

where q is now fixed at the value q = q1 + · · · + qa. (Also not that since
q stands for the four-momentum of a real particle it must be on-shell.) We
still need to evaluate the integrals over x0

1 and x0
a+1. In order to do so we

express the step function θ in terms of its Fourier transform (1.54),

θ(t) = 1
−2πi

∫ +∞

−∞
dω

e−iωt

ω + iϵ
,

where the limit of ϵ → 0+ is understood implicitly. Substituting this into
(2.131) yields

G = (2π)6δ3(q1 + · · ·+qn)
∑

σ

∫
dωdx0

1d
4x2 . . . d

4xadx
0
a+1d

4xa+2 . . . d
4xn

[
× i

2π(ω + iϵ)
e−iω[min(0,x0

2,...,x0
a)−max(0,x0

a+2,...,x0
n)]

× ei(q0
1+···+q0

a−
√

q2+m2−ω)x0
1eiq2x2 . . . eiqaxa

× ei(q0
a+1+...q0

n+
√

q2+m2+ω)x0
a+1eiqa+2xa+2 . . . eiqnxn

× (Ψ0, T {ϕ1(0) . . . ϕa(xa)} Ψq,σ) (Ψq,σ, T {ϕa+1(0) . . . ϕn(xn)} Ψ0)
]

+ other terms. (2.132)

It is now possible to perform the integration over x0
1 and x0

a+1, which leads
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to

G = (2π)7δ4(q1 + · · · + qn)
∑

σ

∫
dωd4x2 . . . d

4xad
4xa+2 . . . d

4xn

[
× 2πδ(q0

1 + · · · + q0
a −

√
q2 +m2 − ω)

× i

2π(ω + iϵ)
e−iω[min(0,x0

2,...,x0
a)−max(0,x0

a+2,...,x0
n)]

× eiq2x2 . . . eiqaxaeiqa+2xa+2 . . . eiqnxn

× (Ψ0, T {ϕ1(0) . . . ϕa(xa)} Ψq,σ) (Ψq,σ, T {ϕa+1(0) . . . ϕn(xn)} Ψ0)
]

+ other terms. (2.133)

Finally, we can also integrate over the variable ω to obtain

G = (2π)7δ4(q1 + · · · + qn)
∑

σ

∫
d4x2 . . . d

4xad
4xa+2 . . . d

4xn

[
i

q0
1 + · · · + q0

a −
√

q2 +m2 + iϵ
×

× e−i(q0
1+···+q0

a−
√

q2+m2)[min(0,x0
2,...,x0

a)−max(0,x0
a+2,...,x0

n)]

× eiq2x2 . . . eiqaxaeiqa+2xa+2 . . . eiqnxn

× (Ψ0, T {ϕ1(0) . . . ϕa(xa)} Ψq,σ) (Ψq,σ, T {ϕa+1(0) . . . ϕn(xn)} Ψ0)
]

+ other terms. (2.134)

At this point we are nearly finished. Let us denote the sum q0
1 + · · · + q0

a by
q0. Then we can write31

1
q0

1 + · · · + q0
a −

√
q2 +m2 + iϵ

= 1
q0 −

√
q2 +m2 + iϵ

=

= q0 +
√

q2 +m2 − iϵ

(q0)2 − q2 −m2 + iϵ
= q0 +

√
q2 +m2

q2 −m2 + iϵ
.

We are investigating the limit of G for q approaching its mass-shell, that is,
q0 > 0 and q2 → m2. In this limit we can substitute

√
q2 +m2 for q0 in the

numerator of the previous equation. Furthermore, the leading part of the ex-
pression exp

(
−i(q0 −

√
q2 +m2)

[
min(0, y0

2, . . . , y
0
a) − max(0, y0

a+2, . . . , y
0
n)
])

31Here we employ “allowed” manipulations with the “iϵ”-terms. These terms are meant
to shift the poles away from the contour of integration so that the overall integral is defined
as the limit of regular integrals for ϵ → 0+. This has several consequences. In general,
we may ignore these terms in numerators. Furthermore, it is only important that ϵ is a
small positive number, which means that for any positive real number x, we can substitute
xϵ → ϵ.
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in (2.134) is just 1. Altogether, we arrive at

G −−−−→
q2→m2

(2π)7δ4(q1 + · · · + qn)
∑

σ

∫
d4x2 . . . d

4xad
4xa+2 . . . d

4xn

[
2i
√
q2 +m2

q2 −m2 + iϵ
eiq2x2 . . . eiqaxaeiqa+2xa+2 . . . eiqnxn

× (Ψ0, T {ϕ1(0) . . . ϕa(xa)} Ψq,σ) (Ψq,σ, T {ϕa+1(0) . . . ϕn(xn)} Ψ0)
]
,

(2.135)

where we have also dropped the “other terms” because those should not
(in the absence of degeneracy) produce any pole at the point q2 = m2.
(The terms corresponding to other single particle states produce poles at
different values of q2, while terms corresponding to multi-particle states lead
to branch points in q2. The terms corresponding to different time orderings
produce poles and branch points in other variables.) Thus, we have finally
obtained (2.119).

2.5 Normal thresholds

In addition to poles that correspond to single-particle states, another com-
mon type of singularity that appears in Green’s functions are branch points.
As we already mentioned, these can be usually interpreted as related to
processes involving two or more particles, and at the level of perturbation
theory we can detect them by the application of the Landau conditions. Our
aim in this section will be to introduce one particular kind of branch point,
called normal threshold. Other branch points are often called anomalous
thresholds. There is, however, nothing really anomalous about them, and
the terminology is due to historical reasons. Normal thresholds were the
easiest to predict and understand, because they follow in a relatively simple
way from the condition of unitarity. In the second part of this section we
will describe normal thresholds from exactly that point of view. But first
we will consider two very simple examples that are meant to indicate how
branch points appear in perturbation theory.

2.5.1 Branch points in Feynman integrals

There are various approaches to perturbation theory, with the most common
being the covariant formalism that we discussed briefly in Sec. 2.2. As a
rule, beyond the first order they usually lead to terms in which we integrate
over various loop variables. Integrals of this type are often called Feynman
integrals, and they are parametric integrals of functions that are analytic
except for a number of singularities, usually poles, the location of which
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z = 0 z = 1

z = z0

Figure 2.1: The contour of integration as determined by the equation
(2.136). We integrate the function 1/(z − z0) along the straight line from
z = 0 to z = 1. In the figure we located the pole at z0 just above the
contour of integration. If we move it downwards as indicated by the arrow,
the integral (2.136) becomes undefined when the pole crosses the contour of
integration.

may depend on the parameters. Now we will proceed to indicate how such
integral may give rise to branch points.

Consider first the following integral

I(z0) =
∫ 1

0
dx

1
x− z0

. (2.136)

When z0 is a real number between 0 and 1 (including the endpoints) then
the integral (2.136) is not defined, because at x = z0 the integrand 1/(x−z0)
becomes infinite. However, for any other complex value of z0 the integral
(2.136) is well-defined and finite. In fact, in this simple case it is not difficult
to obtain the explicit solution,

I(z0) = log
(
z0 − 1
z0

)
, z0 /∈ [0, 1] . (2.137)

This result is simple but we can learn a lot from it if we consider it carefully.
Notice, first, the following two things:

• The integral (2.136) is a well-defined, single-valued function of z0 on
C − [0, 1]. The complex logarithm, which figures in its explicit solu-
tion (2.137), is however not single-valued and has one branch point.
Therefore, in order for (2.137) to really be the solution of the integral
(2.136) we must pick the correct branch of the logarithm. The inte-
gral (2.136) is not defined for z0 ∈ [0, 1], and the argument (z0 − 1)/z0
of the logarithm in (2.137) for such values of z0 assumes values from
the interval (−∞, 0]. This means that we must choose a branch of
the logarithm with the branch cut on the negative real axis. (Because
then the branch cut of the logarithm will be restricted to those values
of z0 for which (2.136) is not defined, and the solution (2.137) will be
well-defined and single-valued on C− [0, 1].) Furthermore, considering
that for real z0 < 0 the integral (2.136) must also be real, the correct
choice turns out to be the principal branch of the logarithm

log z = log |z| + iϕ, with ϕ ∈ (−π, π]. (2.138)
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z = 0 z = 1
z = z0

Figure 2.2: An illustration of a continuation of I(z0), defined by the integral
(2.136), to a point on the original contour of integration. For this to be
possible, we first need to slightly deform the original contour before we
move the pole onto the interval [0, 1]. In this way it avoids the pole as the
pole is moved to its target position at z0 as depicted in the figure. (Note
that the original, undeformed contour is depicted in Fig. 2.1.)

• When considered as a function of its parameter z0, the result I(z0)
is analytic everywhere where the integral (2.136) is defined. That is,
the solution (2.137) is an analytic function on C− [0, 1]. This is not a
surprise, because the integrand 1/(x− z0) is an analytic function of z0
everywhere except for its one simple pole at z0 = x, and for z0 /∈ [0, 1]
it is integrated, as a function of x, over a compact contour that does
not cross the singularity.

Using the branch of the logarithm defined in (2.138) the solution (2.137)
correctly describes the integral (2.136) everywhere on C − [0, 1]. Notice,
however, that (2.137) is singular only at z0 = 0 and z0 = 1. We can
therefore analytically continue the solution (2.137) to and beyond all the
points on the interval (0, 1). The maximal such a continuation leads to a
Riemann surface with an infinite number of sheets, directly inherited from
the Riemann surface on which the logarithm is defined. The interval [0, 1]
then becomes the branch cut on the first Riemann sheet, which corresponds
to the integral (2.136).

Now we are ready to ask the central question of this discussion. Is
it possible to interpret this analytic continuation in terms of the integral
(2.136)? The answer is yes, and, in fact, we have already discussed this
kind of interpretation briefly in Section 1.4. Consider the integral (2.136)
with z0 positioned just above the contour of integration. (See Fig. 2.1.) As
we push the singularity at z0 downwards, the integral becomes undefined as
soon as the singularity touches the integration contour. But recall that as a
consequence of the Cauchy’s theorem, any continuous deformation of the in-
tegration contour (with the endpoints fixed) does not change the value of the
integral as long as it does not cross any singularity of the integrand. Thus,
as z0 approaches the line [0, 1] we can deform the contour of integration
slightly downwards in order to avoid the singularity. (See Fig. 2.2.) This
defines an analytic continuation of (2.136). That is, in terms of the inte-
gral (2.136), an analytic continuation of I(z0) corresponds to an appropriate
deformation of the integration contour: as the location of the singularity at
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z0 moves over the complex plane it pushes the deformation contour away.
Notice that this means that the location of the branch cut of an integral,
such as the branch cut of the function I(z0), is determined by the definition
of the original contour of integration, which in the case of I(z0) is given
by (2.136) as the interval [0, 1]. It is also important to recognize, however,
that it is only branch points that have the real physical significance. Branch
cuts must originate in branch points but otherwise they are quite arbitrary.
It is up to us to choose how to draw them, and different choices correspond
to different descriptions of the same mathematical structure. In this sense
the choice of a branch cut is somewhat similar to the choice of coordinates.

This point of view makes it also quite intuitive that the points z0 = 0
and z0 = 1 are real singularities of I(z0). This is because the endpoints
of the integration contour are fixed, and we therefore cannot avoid crossing
the singularity if z0 moves to either one of the endpoints. This kind of a
singularity of an integral is called the endpoint singularity.

Note that although in the simple case of (2.136) we could discern the
complete analytic structure of I(z0) directly from its explicit solution (2.137)
and (2.138), in more complicated cases an explicit solution may either be
unknown to us or it may be known but too complex to study directly. It
is then easier to study the problem in terms of the methods that we just
introduced. That is, it may be easier to study the analytic structure in
terms of the positions of singularities and allowed contour deformations in
the complex space of integration.32

This representation of analytic continuations of integrals in terms of
contour deformations is also useful in situations when we need to calculate
discontinuities across branch cuts. We will illustrate this method on the

32Let me add two remarks. First, I think that the more important reason why this
formalism is superior to the direct analysis of explicit solutions is that it is universal. Even
if we were able to find explicit solutions to each problem of interest, we would (presumably)
do so for each such a problem, or at least a class of problems, on an individual basis. That
makes it difficult to formulate and prove general observations. (What does the solution
(2.137) tell us about general Feynman integrals?) On the other hand, the representation
in terms of contour deformations in the integration space is completely general and well-
suited for discovery of universal mechanisms behind the structure of singularities. One
could argue that it allows us to concentrate on the underlying physics without being
distracted by specific details of each particular problem. An important example of this is
the reformulation of the Landau conditions in terms of a classical propagation of particles
due to Coleman and Norton. This, however, brings me to the second remark. Most of the
examples that I provide in this chapter are in a single dimensional complex space. These
cases are simple to visualize and one can relatively easily construct very persuasive and
transparent proofs of various statements related to this approach. (Such as for instance
the sufficiency of Landau conditions for the existence of a pinch in the physical region.)
Realistic problems, however, are usually formulated in higher dimensional spaces and
working with those is much more difficult. The usual treatments currently present in the
physics literature do not really address this issue and as a result much of the transparency
of the single-dimensional examples is lost once the methods are applied in more realistic
settings.
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example (2.136), but before we do so, let us first make use of the fact that
in this case we know the explicit solution (2.137), (2.138). We will start by
calculating the discontinuity directly from this solution, and only afterwards
will we introduce and apply the general method that makes use of contour
deformations.

Consider two close values of z0 of the form

z
(±)
0 = x± iϵ (2.139)

where 0 < x < 1 and ϵ is small and positive. That is, z(+)
0 lies right above

the branch cut while z(−)
0 is located below z

(+)
0 on the other side of the cut.

The discontinuity across the branch cut corresponds to the difference in the
values of I at those two points in the limit of ϵ → 0+. The explicit solution
(2.137) leads to

I(x± iϵ) = log
(
x± iϵ− 1
x± iϵ

)
= log ((x± iϵ− 1)(x∓ iϵ)) − log(x2 + ϵ2).

(2.140)
If we retain only those ϵ-terms that are relevant in the limit of ϵ → 0+ this
can be written as

I(x± iϵ) = log
(
x2 − x± iϵ

)
− 2 log x. (2.141)

We use the principal branch of the logarithm (2.138), and in the limit ϵ → 0+

we therefore obtain I(x+ iϵ) = log((1 − x)/x) + iπ and I(x− iϵ) = log((1 −
x)/x) − iπ. The discontinuity across the branch cut is therefore

I(x+ iϵ) − I(x− iϵ) = 2πi. (2.142)

Of course, this is just the usual logarithmic discontinuity, but we needed to
be careful with the sign due to the non-trivial relation between z0 and the
argument of the logarithm.

Our task now is to obtain an interpretation of this branch cut disconti-
nuity in terms of deformations of the integration contour. The discontinu-
ity (2.142) corresponds to the difference between the values of the function
I on the opposite sides of the branch cut. Of course, both these values are
taken from the same sheet. But the same discontinuity can also be inter-
preted as the difference between the values taken on the same side of the
branch cut but from different branches! This is because if we start at x+ iϵ
and then move the distance 2ϵ in the negative y-direction across the branch
cut, we arrive at the point x− iϵ but on the neighboring branch. Let us call
this neighboring branch the second branch. Due to the continuity of analytic
continuation, the value of I(x − iϵ) on the second branch is essentially the
same as that of I(x+ iϵ) on the first branch, at least in the limit of ϵ → 0+.
Thus, the equation (2.142) tells us that the value of I(x− iϵ) on the second
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0 1
z0 =

0 1

Figure 2.3: An illustration of how to calculate the discontinuity across the
branch cut. If we start with the original contour of integration according
to (2.136) and with z0 just above the contour as depicted in Fig. 2.1, but
then move the singularity across the branch cut into the lower half-plane,
we need to push the contour away to avoid the singularity. This is depicted
on the left-hand side. That integral therefore corresponds to an analytic
continuation from the upper half-plane through the branch cut [0, 1]. The
value of this continuation is not the same as the value at the same z0 but
on the original sheet — that is, the value of the integral when z0 is as in
the present figure but the contour is the original one, as in Fig. 2.1. To
calculate the difference between those two values one just needs to notice
that according to the Cauchy’s theorem the integral on the left is the same as
the integral on the right-hand side. Consequently, the difference between the
values on two neighboring sheets is given by the residue of the singularity.

branch, which is given by I(x + iϵ) on the first branch, minus I(x − iϵ) on
the first branch equals 2πi.

When stated this way, the discontinuity equation (2.142) can be inter-
preted in terms of contour deformations quite easily. This is illustrated in
Fig. 2.3. The value of I(x−iϵ) on the second sheet can be obtained by start-
ing at x+iϵ on the first sheet and moving slightly in the negative y-direction
across the branch cut. For this we need to deform the integration contour
to avoid the singularity, as depicted on the left-hand side of Fig. 2.3. The
integral depicted on that side of the figure therefore corresponds to I(x− iϵ)
on the second sheet. As we can see, on this sheet the integration contour
goes below the singularity. In order to calculate the value of I(x − iϵ) on
the first sheet we would need to use the original contour of integration, as
depicted in Fig. 2.1. On this sheet the contour passes above the singularity.
Using the standard manipulations of integration contours and the Cauchy’s
theorem33 we can easily see that the difference between these two integrals

33To obtain the integral over two contours on the right-hand side of the Fig. 2.3 from
the integral on the left-hand side of the same figure, it is enough to add to the deformed
contour on the left-hand side the “missing” section of the x-axis above the singularity
and integrate over it there and back. (Integrating there and back evaluates to zero and
the value of the overall integral therefore remains unchanged.) Now we just reconsider
this new contour as consisting of two parts: The first part is composed from those parts
of the original contour on the left-hand side that lied on the x-axis as well as the new
part integrated in the positive direction of the x-axis. This corresponds to the original
contour of integration from Fig. 2.1. The second part consist of the parts of the contour
on the left-hand side that were not on the x-axis — that is, of the curve below the x-axis
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p
p− l

p

Figure 2.4: A single-loop diagram in a ϕ3 theory of a real scalar field.

is just the integral over a small circle taken in the counterclockwise direc-
tion around the singularity, as depicted on the right-hand side of Fig. 2.3.
This means that the difference is 2πi times the residue of the singularity,
which in our case of the integrand 1/(z − z0) is just 2πi. This confirms our
earlier calculation (2.142). This method can be generalized and leads to the
Cutkosky rules for the calculation of discontinuities. (See, e.g. [1].)

We have now reached the point that we have covered everything what
we planned to discuss regarding the branch structure of integrals of analytic
functions. The example (2.136) allowed us to discuss branch cuts in a very
simple setting, but its disadvantage was that it did not possess a structure
typical of a Feynman integral. For this reason we will now very briefly dis-
cuss a simple example of a Feynman integral. In a theory of a real scalar field
ϕ describing a particle of mass m, consider the one-loop diagram depicted in
Fig. 2.4, which contains two ϕ3 interaction vertices and from which we am-
putate the two external propagators. The loop momentum l flows along the
loop in the counterclockwise direction. Except for various constant factors
that are currently of no interest to us, the diagram contributes the value34

I(p) =
∫
d4l

1
l2 −m2 + iϵ

1
(p− l)2 −m2 + iϵ

. (2.143)

This is an example of a simple Feynman integral. An adequate treatment
of the analytic structure of this integral would require us to investigate
singularity structure and contour deformations in the full complex space
of the loop momenta l, which is four complex dimensional or eight real
dimensional. For our illustrative purposes, however, we will fix the value
of the space components of l at some particular point l and consider only
the integral over the single remaining loop variable, the energy l0. We will
discuss the singularity structure of

I(p, l) =
∫
dl0

1
(l0)2 − E(l)2 + iϵ

1
(p0 − l0)2 − E(p − l)2 + iϵ

, (2.144)

that avoids the singularity — and the new part but integrated in the negative x-direction.
Using the Cauchy’s theorem this second contour can be deformed — without changing
the value of the integral — into the small circle around the singularity, as depicted on the
right hand side of Fig. 2.3.

34This is a logarithmically divergent integral, but because we are now interested only
in singularities that correspond to finite values of loop momenta, we will ignore this issue.
Of course, it could be addressed by the usual methods of renormalization.
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where E(k) =
√

k2 +m2 is the energy of a particle of mass m and three-
momentum k. Of course, in terms of I the full integral I can be expressed
as

I(p) =
∫
d3l I(p, l),

but here we will limit our attention only to the integral (2.144). The inte-
gration contour in that integral is the whole real axis of l0, and the integrand
has four singularities, all of them simple poles, at the points35

l0 = E(l) − iϵ, (2.145)
l0 = −E(l) + iϵ, (2.146)
l0 = p0 − E(p − l) + iϵ, (2.147)
l0 = p0 + E(p − l) − iϵ. (2.148)

For the case when both p0 and E(p − l) are real the situation is illustrated
in Fig. 2.5. The first two poles, at ±(E(l) − iϵ), do not depend on the
parameter p and are always positioned just below and above the integration
contour, respectively. Note that on their own they would never give rise
to a singularity. If they were the only poles present, it would be always
possible to deform the integration contour such as to avoid them as ϵ → 0+,
because there is a finite separation between them in the real-l0 direction.36

This changes when we also consider the other two poles. The discussion of
these other two poles is complicated by the fact that all the components of
p are allowed to be complex. Fortunately, we can use the Lorentz invariance
property37 of the integral I(p), which implies that I must be a scalar function
of the only invariant that is present in the problem, the square p2. (The
mass m is another such an invariant, but we consider it fixed now.) Without
a loss of generality we may therefore suppose that p is real, and let p0 supply
the imaginary component of p2 if needed. In this case we may again use the
property that E(p− l) > 0 to argue that the two poles at p0 ±(E(p− l)− iϵ)
cannot create a pinch on their own. The only way a pinch can appear is
either between the pole at E(l) − iϵ and the pole at p0 − E(p − l) + iϵ, or

35Recall that the “iϵ”-terms are meant to indicate the limit ϵ → 0+ and their precise
value is therefore immaterial. For instance, the following is valid

(l0)2 − E(l)2 + iϵ = (l0)2 − (E(l) − iϵ)2 ,

because the energy is positive.
36Here we assume m > 0, which means that E(l) > 0 for all l. If the scalar particle

was massless, then there would be a pinch at l = 0, l0 = 0, leading to a so-called soft
singularity.

37For real values of p the Lorentz invariance of (2.143) is easy to show. The extension of
this property to complex values of p, however, requires a little bit more work because the
integration contour is real. Nonetheless, as we mentioned in Sec. 2.3, one can show that
the desired property holds quite generally by considerations of transformation properties
under proper complex Lorentz transformations.
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l0 = −E(l) + iϵ

l0 = E(l) − iϵ

l0 = p0 − E(p − l) + iϵ

l0 = p0 + E(p − l) − iϵ

Figure 2.5: The pole structure of the integrand of (2.144) when both p and
p0 are real.

between the pole at −E(l) + iϵ and the pole at p0 +E(p − l) − iϵ. For this
to happen p0 must be real. Furthermore, the two poles that participate in
the pinch must be located right on top of each other, with the integration
contour running in between them. This means that if the pinch is between
the poles at E(l) − iϵ and p0 − E(p − l) + iϵ, then the pinch appears at
l0 = E(l) = p0 −E(p−l). This implies that l0 = E(l) and p0 −l0 = E(p−l).
If, on the other hand, the pinch is between −E(l)+ iϵ and p0 +E(p− l)− iϵ,
then l0 = −E(l) = p0 +E(p − l), or −l0 = E(l) and −(p0 − l0) = E(p − l).
Thus, as we can see, the second case corresponds to the reversal of all time
components in the first case. For this reason we will not address the second
case separately.

The condition that l0 = E(l) and p0 − l0 = E(p − l) says that both
the virtual particles in the loop are on the mass-shell. If we considered also
the space dimensions of l we would find that most of these solutions are not
real pinches — the full integration contour can usually avoid singularities by
suitable deformations into the imaginary directions of the space components
of l. It turns out that only the lowest-energy solution (for a given value of
p) of this condition corresponds to the real pinch. That is, the pinch occurs
only when l = p − l, which implies that p = 2l, p0 = l0 + E(l) = 2E(l),
and therefore p2 = 4m2. In fact, this singularity is a branch point and
corresponds to a normal threshold.

[Let us briefly illustrate how to determine if a pinch is present. Feynman
integrals usually entail integration over several loop variables, so instead
of a single-dimensional contour of integration we integrate over a multi-
dimensional surface. When we integrate over 4L loop variables then the
singularities typically form surfaces of 4L − 1 complex dimensions, instead
of being located at single points as they were in our single-dimensional ex-
amples. This is because they can typically be characterized as solutions of
some particular equations of the form χ(l) = 0, where l represents all 4L
integration variables. Recall that our main goal is to investigate points on
the integration surface that become singular when the “iϵ”-terms in denom-
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inators of the propagators decrease to zero. It is often possible to avoid
such singularities by suitable deformations of the integration surface. This
is actually more subtle that may appear at a first glance and it will prove
worthwhile to describe the process of avoiding singularities more carefully.
While doing so, we will also introduce some useful terminology.38

At the beginning the parameter ϵ is fixed at some positive value and
the surface of integration has not yet been deformed in any way. For the
integrals that concern us here we assume that for this positive value of ϵ
none of the singular surfaces crosses the original integration surface, that
is, the integrand is regular everywhere. However, when ϵ is set to zero,
some of the parts of the surface of integration might become singular. If
this happens we need to consider the possibility that the integral can be
analytically continued to that point,39 so that the apparent singularity can
be removed. For this reason, our next step — with ϵ still fixed and positive —
is to continuously deform the integration surface away from the singularities.
However, in order for us to be able to use the Cauchy’s theorem to argue
that the integral over the original surface of integration has the same value
as the integral over the deformed surface, we must make sure that at no
point during the process of deformation the surface crosses any singularity.
We say that such a deformation is allowed. (That is, allowed deformations
do not cross any singular surfaces, and consequently the integral over final
such a deformed surface has the same value as the original integral.) Now we
are ready for the next step: we continuously decrease the value of ϵ > 0 to
zero. If no singularity appears on the (deformed) integration surface during
this process we say that the deformed surface avoids the singularities. To
summarize, in order to analytically continue the integral we need to find an
allowed deformation of the integration surface that avoids singularities. If
this is not possible we say that the integration surface is pinched.

We define the physical region of a Feynman integral by requiring that
the original (undeformed) surface of integration is the real hyperplane (cor-
responding to real values of the components of loop momenta) and that the
external momenta and all the masses are real. The main result is that the so-
called Landau conditions are both sufficient and necessary for the existence
of a pinch in the physical region. (We already mentioned this in Sec. 1.4.
A textbook treatment can be found in [1]. A more careful discussion is
provided in [6].)

As we already specified, we collect all 4L loop variables into a single
(vector) variable l. We consider Feynman integrals of the form

I(p) =
∫
d4Ll

1
[A1(l; p) + iϵ] . . . [An(l; p) + iϵ]

, (2.149)

38This terminology, as well as the overall presentation, are motivated by [6].
39At this level of detail we can think about this either as an analytic continuation in

the external parameters, or also as an analytic continuation in ϵ.
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where p represents all the external parameters (in principle including also
masses). We assume that the denominator factors A1, ..., An are analytic
functions of l and p everywhere, and that their zero surfaces are given by
equations χj(l; p) = 0, j = 1, . . . , n. For ϵ = 0 the zero surfaces of the
denominator factors correspond to singular surfaces of the integrand.

The Landau conditions say that (for some fixed value of p) the integration
surface is pinched at l = l0 if and only if there is a subset of the denominator
factors — say, for simplicity, that this subset consists of the factors A1, ...,
Am for some m ≤ n — such that all of those factors vanish at l0,

A1(l0; p) = · · · = Am(l0; p) = 0, (2.150)

and that there are numbers α1 ≥ 0, ..., αn ≥ 0, not all zero, such that
m∑

i=1
αi ∂lAi(l0; p) = 0. (2.151)

Note that ∂lAi are best understood as one-forms. That is, when they act on
a 4L-dimensional vector a, whose components we denote ak, then the result
is

[∂lAi] (a) = a · ∂lAi =
4L∑

k=1
ak
∂Ai

∂lk
. (2.152)

Therefore, we may interpret the second condition (2.151) as simply saying
that there exists a vanishing convex combination of the one-forms ∂lA1, ...,
∂lAm.

Note that even if there is a pinch at some point l = l0, not all of the
denominator factors must participate in it. First of all, as was already said,
some of them may not even vanish at l = l0. But even those that do vanish
— in our notation A1, ..., Am — might not all participate. This happens
when there exists an allowed deformation that avoids singularities of some
of those factors. (But not all of them, because we assume that there is a
pinch.) Factors whose singularities can be avoided in this manner are those
for which there is no solution of (2.151) with the corresponding α being non-
zero positive. Therefore, we say that the denominator factor Aj participates
in the pinch at l = l0 if and only if Aj(l0; p) = 0 and there is a solution of∑m

i=1 αi∂lAi(l0; p) = 0 with αj > 0 and all other αi ≥ 0, and where A1, ...,
Am represent all the denominator factors that vanish at l = l0.

In the integral (2.143) the denominator factors are A1(l; p,m) = l2 −m2

and A2(l; p,m) = (p − l)2 − m2. The conditions that these factors vanish,
A1 = 0 or A2 = 0, are easy to interpret: the virtual particle that corresponds
to the vanishing denominator factor must be on the mass-shell. Furthermore,
we have ∂lA1 = 2l and ∂lA2 = 2(l− p). Is it possible for either one of these
denominator factors to pinch the integration surface on its own? If A1 was
to pinch the surface on its own (without A2 participating) the two equations
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A1 = 0 and ∂lA1 = 0 would need to be satisfied simultaneously. (The second
equation follows from the condition that α1∂lA1 = 0 for α1 > 0.) But if
∂lA1 = 0 then l = 0, which means that A1 ̸= 0. The case of A2 is similar.
(Recall that we assume that m > 0. Otherwise, there indeed would be a
soft pinch at l = 0 from the denominator factor A1, and another soft pinch,
at l = p, from the denominator factor A2.) Hence, to create a pinch, the
two denominators A1 and A2 must both participate. The condition that
α12l + α22(l − p) = 0, with both α1 and α2 positive, then requires that

l = α2
α1 + α2

p. (2.153)

But this implies that also

p− l = α1
α1 + α2

p, (2.154)

and if both l and p− l are to be on the mass-shell, we necessarily have (recall
that both α1 and α2 are positive)

α1 = α2. (2.155)

But this implies that l = p/2, and since l2 = m2 by the first Landau condi-
tion, we find that the pinch appears if

p2 = 4m2. (2.156)

In fact, one can show that if there is no solution of
∑

j αj∂lAj = 0 with
αj ≥ 0 not all zero, then there exists a vector v such that v · ∂Aj > 0
for all j. (See [6].) In such a case, if we deform the integration surface
continuously in such a way that at l0 the surface is moved to l0 + ivδ, then
for a sufficiently small δ > 0 the deformation is allowed, and when ϵ → 0+

neither of the denominator factors Aj + iϵ vanishes on the deformed surface
of integration. Hence, we escape the pinch. If presented in a greater detail,
this would serve as a proof that the Landau conditions are necessary for the
existence of a pinch. However, the implication in the other direction, that
in the physical region the Landau conditions are also sufficient, seems to be
much more difficult to prove.

And lastly, it may useful to return to our discussion of the integral (2.144),
where the integration has been restricted only to the l0-component with the
other three components of l fixed, and show how to choose a suitable vector
v to escape the pinch that seems to appear in the l0-plane between the two
denominators A1 and A2 of (2.143). In that discussion we found that in the
l0-plane the pinch occurs only if E(l) = E(p − l). That means that in the
real three-dimensional space the vectors l and p − l must be of the same
length. The vectors p, l and l − p = − (p − l), when translated appropri-
ately, form a triangle in which l and l − p start at different endpoints of p
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p

l − p

l

v

Figure 2.6: An illustration of how to choose the vector v = (0,v) to escape
the apparent pinch in the l0-plane of (2.144). The pinch truly appears only
when l = p/2, in which case the vector v illustrated above is of zero length.

and end at the same point. (See Fig. 2.6.) This configuration is possible
only if their length is at least |p|/2 each, in which case they are both parallel
to p and meet in the middle of that vector. (This, of course, corresponds
to the minimal energy solutions, and to the only case when the pinch is
really present. In this case a suitable v does not exist.) If their lengths are
larger than |p|/2 then a full non-degenerate triangle is formed. In those
cases, if we define v to be the vector that is orthogonal to p and spans the
interval from the middle point of p to the vertex where l and l − p meet,
then v = (0,v) satisfies v · ∂A1 = v · 2l > 0 and v · ∂A2 = v · 2(l − p) > 0.
Deforming the integration surface (near the singularity) in the direction iv
therefore escapes the pinch.]

The discussion presented here does by no means provide an adequate
treatment of the general singularity structure of Feynman integrals. Unfor-
tunately, such a complete treatment would take us far too away from our
present goals and we will therefore skip it. A reader interested in this topic
can find a good exposition of the relevant techniques for instance in [1, 6].
The remaining part of this section is devoted to a brief discussion of a special
case of a branch point, the normal threshold.

2.5.2 Unitarity and normal thresholds

As we are going to see, the rough idea of how the unitarity implies the ex-
istence of normal thresholds is quite straightforward. It would be, however,
much more difficult to supply all the missing details and to state the result
in a reasonable generality. For this reason we will not provide here such
a complete treatment. Rather, we will present a simple but very limited
argument that makes the main idea apparent. Then we will briefly discuss
some of the weak points and inadequacies of that explanation, but for a
more complete treatment the reader is advised to consult [1].

One last remark before we begin. Although our discussion is going to be
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limited only to their appearance in the S-matrix, the normal thresholds exist
also in other matrix elements of products of field operators. For example,
to study them in general time-ordered Green’s functions we could employ
an approach similar to what we used in Sec. 2.4 when we studied particle
poles.

In our argument we are going to present normal thresholds as a conse-
quence of the unitarity of the S-matrix. Recall that the S-matrix element
Sβα is defined as

Sβα =
(
Ψ(out)

β ,Ψ(in)
α

)
, (2.157)

where Ψ(out)
β is the asymptotic “out”-state consisting of particles described

by the multi-index β, and Ψ(in)
α is the asymptotic “in”-state whose particle

content is specified by the multi-index α. The unitarity relation for Sβα

then follows from the completeness of the asymptotic states,40

∫
dγ S∗

γβSγα =
∫
dγ
(
Ψ(in)

β ,Ψ(out)
γ

) (
Ψ(out)

γ ,Ψ(in)
α

)
=
(
Ψ(in)

β ,Ψ(in)
α

)
= δ (β − α) . (2.158)

Here we assumed that the asymptotic states were normalized “to delta func-
tions”, as they were in Sec. 2.4. The symbol δ (β − α) represents the ap-
propriate product of delta functions in continuous labels that are present in
the multi-indices α, β, and of the Kronecker delta symbols in their discrete
labels. Also, just as before, the symbol “

∫
dγ” involves integration over all

the continuous labels together with sums over all the discrete labels in γ.
(It usually also involves extra combinatorial or other factors, depending on
what exact normalization condition we employ for multi-particle states. Of
course, these factors are fixed by the condition

∫
dγ |Ψγ⟩ ⟨Ψγ | = 1.) The

symbol S∗
γβ stands for the complex conjugate of Sγβ . In a similar way, but

this time using the completeness of the asymptotic “in”-states, we can also
obtain ∫

dγ SβγS
∗
αγ = δ (β − α) . (2.159)

There is an important property of the S-matrix related to its connected-
ness structure, which we have not yet mentioned: the S-matrix is assumed
to satisfy the cluster decomposition principle. This roughly corresponds to
the basic assumption which is implicitly present in the scientific method
and which says that the experiments that we carry out here and now are
(in some sense) independent of what is happening elsewhere in the universe

40This assumption is called the asymptotic completeness and it states that the asymp-
totic states {Ψ(out)

α }, as well as the states {Ψ(in)
α }, form a complete basis for physical

states.
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at a distant location.41 Roughly speaking, for the S-matrix element Sβα the
cluster decomposition principle says that if the “in”-state described by the
multi-index α and the “out”-state described by β consist of particles that
can be divided into two separate sets, one described by the multi-indices α1
and β1 and the other by α2 and β2, such that all the particles in the first
set are far away from all the particles in the second set, then as we gradu-
ally increase the distance between these two sets of particles the S-matrix
factorizes,

Sβα → Sβ2α2Sβ1α1 . (2.160)

Note that in order to speak about large space-like separations of various
subsets of particles in the asymptotic states one needs to pass from the mo-
mentum representation to the coordinate representation. Furthermore, any
complete statement of (2.160) would need to specify what kind of conver-
gence is implied by the “→” sign in that condition. We will not go into those
details here. Instead, what we would at this point like to take away from
(2.160) is that a coordinate-representation S-matrix that describes particles
interacting in several clusters that are separated from each other by large
space-like intervals factorizes into a product of S-matrices, one for each such
a cluster. This implies that the scattering in each such a cluster is indepen-
dent of the processes that happen in the other clusters. Furthermore, since
the asymptotic states each contain a finite number of particles, this kind of
factorization cannot continue indefinitely, and for any given process we must
eventually reach a point when none of the clusters can be further decom-
posed into widely separated sub-clusters. Within such irreducible “atomic”
clusters each particle interacts with all other particles in that same cluster.42

The S-matrices that correspond to processes occurring in such irreducible
clusters are called connected S-matrices.

In the momentum representation the S-matrix elements carry no in-
formation about the space-time location of the individual particles, because
those particles are of definite momenta. Nonetheless, the overall momentum-
space S-matrix element can still be separated into the sum of terms, one for
each possible partition of particles into irreducible clusters, and each such
term consisting of an appropriate product of the momentum-space versions
of connected S-matrices. Connected S-matrices expressed in momentum rep-
resentation are characterized by the property that except for a single delta
function that ensures the conservation of the overall four-momentum in the
cluster they do not contain any other delta-function factors. In terms of

41This is a complex topic, and I will not try to address it in the present work. Limiting
our attention to the cluster decomposition principle itself, a readable exposition of this
property can be found, for instance, in Chapter 4 of [9].

42There are various issues that we would need to explicitly discuss in order to make
this statement precise. For our purposes, let us interpret the phrase that ‘each particle
interacts with all other particles’ as saying that in perturbation theory the reaction is
calculated by considering only connected Feynman diagrams.



100 CHAPTER 2. ANALYTICITY IN QUANTUM THEORY

Feynman diagrams, the connected S-matrices are represented by the sums
of all appropriate connected diagrams.

Let us illustrate this on a simple example of elastic scattering of three
distinct particles labeled by numbers 1, 2, 3 when they are in the “in”-
state and by 1’, 2’, 3’ when they are in the “out”-state. Let us denote
the overall momentum-space S-matrix element by S (123 → 1′2′3′). This
contains contributions from processes when all the particles interact with
each other — that is, when the particles cannot be separated into several
distant clusters — as well as from processes in which there exist two or more
disconnected clusters. Let us denote the contribution from the connected
part by SC (123 → 1′2′3′). Next, we need to characterize all possible ways in
which the particles can be partitioned into several clusters. We may start by
considering processes in which the particle 3 is far away from all the other
particles. This leads to the overall contribution S(12 → 1′2′)SC(3 → 3′).
Now, the term S(12 → 1′2′) contains the contribution from the case when
1 and 2 interact, S(12 → 1′2′)C, as well as from the case when they are
separated, SC(1 → 1′)SC(2 → 2′). Thus, we have so far considered all the
cases when the particle 3 is far away from particles 1 and 2, and also the case
when all three particles form a single irreducible cluster. Hence, there are
only two options remaining. Either the particle 3 interacts with the particle
1, in which case the particle 2 must be far away, or the particle 3 interacts
with the particle 2, in which case the particle 1 is far away. These two cases
correspond to terms SC(13 → 1′3′)SC(2 → 2′) and SC(23 → 2′3′)SC(1 →
1′), respectively. Altogether, we have therefore found that

S
(
123 → 1′2′3′) = SC (123 → 1′2′3′)+ SC(12 → 1′2′)SC(3 → 3′)+

SC(23 → 2′3′)SC(1 → 1′) + SC(13 → 1′3′)SC(2 → 2′)
+ SC(1 → 1′)SC(2 → 2′)SC(3 → 3′). (2.161)

This provides an example of the decomposition of the S-matrix into the sum
over all possible partitions into disconnected clusters. Each of the connected
S-matrices on the right-hand side contains only a single delta-function factor.
For instance, SC (123 → 1′2′3′) contains δ4(p1+p2+p3−p1′ −p2′ −p3′) and no
other delta-function factors, and SC(13 → 1′3′) contains δ4(p1+p3−p1′ −p3′)
and no other delta functions. Single-particle S-matrices, such as SC(1 →
1′), correspond to a single particle not interacting with any other particles.
Under the usual definition of the relative phases of the “in”- and the “out”-
states SC(1 → 1′) is therefore equal to δ4(p1 − p1′) times the Kronecker
delta symbols for the spin and species indices of the particle. The term
SC(1 → 1′)SC(2 → 2′)SC(3 → 3′) in (2.161) represents a special case of
what we generally denote by δ(β − α).

This structure of the S-matrix is very important in the study of its
analytic structure, and if we decided to further study the results which will
be mentioned at the end of this section we would make an extensive use of
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it. For now, however, we are only going to need its simplest application: the
widely-used decomposition of the S-matrix into the following two terms

Sβα = δ(β − α) − 2πi δ4 (pβ − pα)Mβα. (2.162)

Here the first term corresponds to the contribution of the scenario when all
the particles are far away from each other and there is no interaction between
them. The second term corresponds to all the effects of interaction between
the particles. We have factored out the overall four-momentum conservation
delta function. From our earlier discussion it then follows that the connected
part of Mβα does not include any other delta-function factors, but in general
we should expect there to be other parts of Mβα, corresponding to processes
when the particles interact in several disconnected clusters, that contain
additional delta-function factors.

Using the decomposition (2.162), the unitarity condition (2.159) reads

δ (β − α) =
∫
dγ

(
δ(β − γ) − 2πi δ4 (pβ − pγ)Mβγ

)
×
(
δ(α− γ) + 2πi δ4 (pα − pγ)M∗

αγ

)
= δ(β − α) − 2πi δ4 (pβ − pα)

(
Mβα −M∗

αβ

)
+ 4π2δ4 (pβ − pα)

∫
dγ δ4 (pγ − pα)MβγM

∗
αγ . (2.163)

For the cases when pβ = pα this implies the condition

i

2π

(
Mβα −M∗

αβ

)
=
∫
dγ δ4 (pγ − pα)MβγM

∗
αγ . (2.164)

When we apply the decomposition (2.162) to the other version of the uni-
tarity condition, (2.158), we instead obtain

i

2π

(
Mβα −M∗

αβ

)
=
∫
dγ δ4 (pγ − pα)M∗

γβMγα (for pα = pβ). (2.165)

These are the unitarity conditions for the M-matrix.
The conditions (2.164), (2.165) become much more simple if we restrict

our attention to the case of the forward scattering, β = α. In that case we
obtain the optical theorem for the M-matrix

− 1
π

ℑ {Mαα} =
∫
dγ δ4 (pγ − pα) |Mαγ |2 =

∫
dγ δ4 (pγ − pα) |Mγα|2 .

(2.166)
The integral

∫
dγ δ4 (pγ − pα) |Mγα|2 is proportional to the total rate of the

reaction α → ‘anything’, or, if α describes a two-particle state, to the total
cross section, and the matrix element Mαα is proportional to the forward
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scattering amplitude.43 The equation (2.166) therefore states that there is a
direct correspondence between the imaginary part of the forward scattering
amplitude and the total rate of reaction or the total cross section.

We will now argue that the equation (2.166) suggests the existence of
normal thresholds in Mαα. To make the presentation more simple, suppose
that there is only one kind of particle present in the theory, and that those
particles are of spin zero and have the mass m > 0. We will consider states α
that consist of two particles and are described in their center-of-mass frame.
As a consequence of the rotational symmetry, the only variable on which

43It does not really concern us here what are the exact proportionality constants. How-
ever, for the reader’s convenience, we will collect here all these relations in full detail. We
continue using the convention (of, for instance, [9]) that asymptotic states are normalized
to delta functions:

(
Ψ(in)

β ,Ψ(in)
α

)
= δ (β − α), etc. The differential rate of the reaction

dΓ(α → β)/dβ from the state described by α into any of the states inside the infinitesimal
volume dβ near the state β, also known as the differential transition rate, can be calculated
as

dΓ(α → β)
dβ

= (2π)3Nα−2V 1−Nα |Mβα|2 δ4(pβ − pα), (2.167)

where Nα is the number of particles in the state α, and V is the volume of the system
(“box”) in which the reaction takes place. (Note that the rate here corresponds to prob-
ability per unit of time.) If Nα = 2 we can think of the reaction probability in terms of
the cross section. The differential cross section dσ/dβ can then be given as

dσ(α → β)
dβ

= (2π)4 1
uα

|Mβα|2 δ4(pβ − pα), (2.168)

where uα is the velocity of either of the two incoming particles in the frame in which the
other particle is at rest. (The generalization to other frames is fixed by the usual convention
that the cross section, when summed over the spins of all particles, is a Lorentz invariant
quantity. Then uα =

√
(p1 · p2)2 −m2

1m
2
2/E1E2, where p1 and p2 are four-momenta of

the two particles in the state α and E1, E2 are their energies.) In the center-of-mass frame
we define the scattering amplitude for the scattering of a two-particle state α into another
two-particle state β as

f(α → β) = −4π2

E

√
k′

k
E1E2E′

1E
′
2 Mβα, (2.169)

where E is the total energy, E1 and E2 are the energies of the particles in the initial
state, E′

1, E′
2 energies of the particles in the final state, and k, k′ the magnitudes of

the (center-of-mass) three-momenta of the initial and final particles, respectively. For
the forward scattering this reads f(α → α) = − 4π2E1E2

E
Mαα. Furthermore, for Nα = 2

the optical theorem (2.166) reads ℑ {Mαα} = −uασ
(total)
α /16π3. Combining this with

the above expression for f(α → α) (and using the fact that in the center-of-mass frame
uα = kE/E1E2) then yields the familiar form of the optical theorem, which is often
derived in non-relativistic quantum mechanics,

ℑ {f(α → α)} = k

4πσ
(total)
α . (2.170)
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such Mαα can depend is the total energy E. Now, notice that the integral∫
dγ δ4 (pγ − pα) |Mγα|2 , (2.171)

which appears on the right-hand side of (2.166), runs over all intermediate
states (labeled by γ) that have the same total four-momentum as the state
Ψ(in)

α . That is, these are states of zero total three-momentum and the total
energy E. The range of possible values of E is determined by the energy
spectrum of the physical states Ψ(in)

α , which starts at E = 2m and continues
to infinity. If we start at E = 2m and gradually increase the energy we ex-
pect the integral (2.171) to change, both because Mγα can in general depend
on the energy and also as a consequence of the gradual change in the size of
the kinematic space of integration. The optical theorem (2.166) then implies
that the imaginary part of Mαα also changes with energy. Note, however,
that when we reach the value E = 3m, the character of the integral (2.171)
suddenly changes. While for energies 2m < E < 3m only two-particle in-
termediate states γ were permissible, when the energy reaches the threshold
value of 3m a new channel for intermediate states opens. For E > 3m, the
integral (2.171) runs not only over two-particle intermediate states, but also
over three-particle intermediate states. Because of this abrupt change in the
character of the right-hand side of (2.166) at E = 3m we would expect some
kind of irregularity44 of the imaginary part of Mαα to appear. Therefore,
we would expect Mαα to not be analytic at E = 3m, and under normal cir-
cumstance this turns out to be correct. This kind of a threshold is called a
normal threshold, and it is usually a branch point. As the energy increases,
new and new channels open, and at each such a point a normal threshold
singularity is expected to appear.

This argument may be intuitive but it is also unsatisfactory in several
regards. Among those, the most glaring are likely the following:

1. Although the opening of a new channel on the right-hand side of
(2.166) strongly suggests that the matrix element Mαα is not ana-
lytic there, nothing that we have said so far proves that there must
indeed be a singularity.

2. In our argument we considered only the case of the forward-scattering
matrix element Mαα. That is too restrictive, and we would like to

44Note that the opening of a new channel does not imply that ℑ {Mαα} must be dis-
continuous there. In fact, under usual circumstances if there is a reaction that is possible
only above some threshold E0 we would expect the total cross section for that reaction
to depend on the energy approximately as

√
E − E0 when E is slightly above the thresh-

old. (This is under assumption that the final state is allowed to have zero orbital angular
momentum. Otherwise, we would instead expect σ ∝ (E −E0)

2l+1
2 , where l is the lowest

value of the orbital angular momentum present in the final state.) If the contribution of
the new channel above the threshold had this character (with l = 0) then ℑ {Mαα} would
be continuous but not differentiable at the threshold.
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show that normal thresholds are present in general matrix elements
Mβα.

3. Unless α corresponds to a single stable particle, in which case the
matrix Mβα is identically zero, the energy of a scattering state α is
always at or above the lowest threshold. (That is, in our case Eα ≥
2m.) But this means that our argument cannot be used to say anything
about the nature of Mαα at the lowest normal threshold, which in our
case was at E = 2m.

In the remainder of this section we will provide an incomplete discussion
of some of these objections. A more complete treatment can be found in [1]
and references cited therein.

Let us start with the second objection, that our argument was of very
limited scope. When we decided to restrict our attention to the case α = β,
the unitarity condition (2.165)

i

2π

(
Mβα −M∗

αβ

)
=
∫
dγ δ4 (pγ − pα)M∗

γβMγα (for pα = pβ),

simplified at two places. First, the factor M∗
γβMγα on the right-hand side

became |Mγα|2. This allowed us to express the right-hand side in terms of the
total transition rate or the total cross section. For our purposes, however,
this was not very important. Our argument relied only on the fact that
at normal thresholds new channels for intermediate states open, and this
happens for the productM∗

γβMγα in pretty much the same way as for |Mγα|2.
It was the second simplification, that allowed us to replace Mβα − M∗

αβ on
the left-hand side with 2iℑ {Mαα}, that was of key importance. This is
because for α ̸= β there is no simple relation between Mβα and Mαβ.45

There is a special case when this complication can be addressed by a
simple application of the rotational covariance of the S-matrix, and that
is the case of elastic scattering of two spinless particles. Suppose that in
the center-of-mass frame the initial state α consists of a spinless particle of
mass m1 and three-momentum p1 and a spinless particle of m2 and three-
momentum p2. Since we assume that the scattering is elastic, the final state
β contains the same particles, and we denote the final three-momentum of
the particle of mass m1 by p′

1, and the final three-momentum of the particle
45To exchange multi-indices α and β in the S-matrix element Sβα one could try to apply

the operation T of time inversion which transforms asymptotic “in”-states into asymptotic
“out”-states and vice versa. In fact, one would need to consider the product CPT of the
operators of charge conjugation, space inversion and time inversion, because a general
relativistic quantum field theory is symmetric under CPT, but not under T alone. There
is, however, a complication that CPT relates the “in”-state (“out”-state) Ψα to the “out”-
state (“in”-state) Ψα′ where α′ does not correspond to the same particle content as α, but
instead to the content of α with all particles exchanged for their antiparticles and their
spin z-components and helicities reversed.
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p1

p′
1

p′
2

p2

Figure 2.7: A rotation by π about the axis depicted in the figure by the
thick line carries the vector p1 into the vector p′

1 (we are considering only the
vectors themselves — their directions and lengths — and not their positions)
and p′

1 into p1. It also exchanges p2 and p′
2.

of mass m2 by p′
2. Consider now the axis parallel to the vector p1 + p′

1 (or,
equivalently, parallel to p2 + p′

2). (See Fig. 2.7.) A rotation by π about this
axis transforms the momentum p1 into p′

1 (and vice versa) and p2 into p′
2

(and vice versa). Hence, such a rotation exchanges the states α and β. But
because the particles were assumed to be spinless the rotational covariance of
the S-matrix implies that Mβα = Mαβ and the unitarity conditions (2.164)
and (2.165) therefore simplify into

− 1
π

ℑ {Mβα} =
∫
dγ δ4 (pγ − pα)MβγM

∗
αγ =

∫
dγ δ4 (pγ − pα)M∗

γβMγα.

(2.172)
We can now use the same argument as before to argue that for an elas-
tic scattering of two spinless particles Mβα should be singular at normal
thresholds.

The result (2.172) is encouraging, but because of its limited applicability
it is still not very satisfying. If one assumes the principle of maximal analyt-
icity, however, then it is possible to obtain much more general results from
the unitarity condition for the S-matrix combined with the cluster decompo-
sition principle, which dictates the connectedness structure of the S-matrix.
In particular, one can provide strong arguments in favor of the so-called
principle of generalized unitarity, which says that we can continue the uni-
tarity relations (2.164), (2.165) to energies outside of the physical spectrum
of the scattering states α, β. To illustrate this, let us return to our ear-
lier example of a theory that contains only one kind of particle, of the mass
m > 0. Suppose that α describes a two-particle state and β describes a state
consisting of three particles. The unitarity relations (2.164) and (2.165), as
they were derived, can therefore be applied only if E ≥ 3m, because that is
the minimal possible energy of a physically permissible three-particle state
β. (Of course, the energy spectrum of two-particle states α goes as low as
2m, but for the unitarity condition to be applicable both α and β must
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describe physical states.) But if the condition of generalized unitarity holds
we can continue the relations (2.164) and (2.165) out of their physical region
to energies E < 3m. The integrals over the intermediate states in those re-
lations, however, are still restricted to those states γ that are allowed by the
energy-momentum conservation condition. This can then be used to prove
the property called Hermitian analyticity, which says that Mαβ and M∗

βα

are analytic continuations of the same analytic function, which is real below
the lowest threshold. To reach Mαβ we must continue above the normal
thresholds and to reach M∗

βα we continue below the thresholds. This then
provides an argument that the normal thresholds are branch points that is
both more general and more convincing than what we have presented. For
details, the reader is advised to consult Chapter 4 of [1].

2.6 Poles of unstable particles

At this point we are approaching the end of the first part of this thesis.
We have discussed some of the fundamental reasons why Green’s functions
and other matrix elements can be expected to have some particular analytic
properties. We have mentioned that Laplace transforms, if they exist, are
always analytic, and that the existence of Laplace transforms of tempered
distributions in certain tubes is equivalent to the presence of particular re-
strictions on the support of those distributions. We also briefly mentioned
two basic physical principles that lead to such restrictions in quantum field
theory: the spectral condition in case of the vacuum expectation values of
fixed-order products of fields in momentum-space, and the condition of mi-
croscopic causality in the case of coordinate-space (time-ordered) Green’s
functions. Then we moved on to explain why stable particles correspond to
poles in Green’s functions and to introduce the concept of a normal thresh-
old. The primary value that I see in this discussion is that it may serve as a
gentle introduction to this field of study. But there was also another, more
specific reason behind the selection of topics in that discussion: I wanted to
introduce the main concepts that are employed in the Unitary and Analytic
model. As we will see later, these are the concepts of maximal analyticity,
and of normal threshold and particle pole singularities. However, the parti-
cles that play role in the Unitary and Analytic model are not stable, they
are resonances, and for this reason we need to discuss one more topic, that
of poles of unstable particles.

We have seen that stable particles give rise to poles in Green’s functions
and a more careful analysis would show that these poles lie on the physical
sheet. But what about unstable particles? On the one hand, unstable parti-
cles do not appear among asymptotic states which suggests that they should
not lead to poles on the physical sheet. But on the other hand, it is difficult
in practice to distinguish between a sufficiently long-lived unstable particle
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and a particle that is truly stable, and one would therefore expect there to
be some kind of poles also for unstable particles. As it turns out, unstable
particles do indeed seem to result in poles, but those poles are not on the
physical sheet. Instead, they are hidden behind normal threshold branch
cuts. It is possible to give various arguments in favor of that statement, but
here we will limit ourselves only to a simple heuristic description of those
poles. Afterwards we will present a depiction of how the relation between
poles of unstable particles and poles of stable particles can be understood.
In that we will follow the treatment of [16]. (For a wider and more detailed
discussion see [1] and references cited therein.)

As is well-known from the usual derivation of the Breit-Wigner formula,
a term with energy dependence of the form

1
E −

(
Mr − iΓr

2

) (2.173)

in a scattering amplitude has the effect that seems to correspond to the
situation when there is present a resonant intermediate state with mass
spectrum centered near Mr and with decay rate Γr. To see this, consider a
superposition

∫
dE g(E)ΨE of energy eigenstates ΨE where the coefficient

function g is sufficiently smooth and centered near Er. Then it may easily
happen that the scattering is dominated by the pole term (2.173), and if that
is the case then the time dependence of the scattered state is approximately46

∫
dE g(E) e−iEt

E −Mr + iΓr
2

→ −2πi g
(
Mr − i

Γr

2

)
e−iMrte−Γrt/2. (2.174)

Now, since the probability can be calculated from the amplitude by taking
the square of its modulus, the result (2.174) corresponds to the presence of
an intermediate state that decays as exp (−Γrt). This heuristic argument
therefore suggests that the effect of an unstable particle can be approximated

46Let us unpack the derivation of this result. First of all, we assume that near E = Mr

the scattering amplitude is entirely dominated by the contribution of the pole at E =
Mr − iΓr/2. This allows us to claim that we can approximate its energy dependence as
being proportional to 1/ [E − (Mr − iΓr/2)]. In order for this assumption to be reasonable,
we must require that the wave packet be centered near E = Mr, because otherwise
we would need to explicitly consider also contributions from distant energies, where the
resonance pole can no longer be expected to dominate. In particular, this implies that the
wave packet must be negligibly small near other singularities, such as normal thresholds
or other resonances. Second, we assume that g is smooth enough because we want to
calculate the integral by using the residue theorem. We are interested in large positive
times, which means that we can close the contour of integration by a large semi-circle in
the lower half-plane. And lastly, the limit in (2.174) corresponds to t → +∞. This is
because generally there will also be contributions from poles of g, which might be present
in the lower half-plane. However, if the resonance is sufficiently long-lived, then the poles
of g will all lie much further down the imaginary axis than the resonance pole, and will
therefore not contribute in that limit.
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by a pole at Mr − iΓr/2. But is this pole on the physical sheet? The answer
is no. First of all, if the particle is unstable, then Mr must necessarily lie
above the lowest threshold, for otherwise there would be no scattering state
into which it could decay. Although we did not really explain it properly
here, the physical region of a normal threshold branch cut can be reached by
approaching the branch cut on the physical sheet from above. That is, if the
lowest threshold is at E0 then for E > E0 the physical region corresponds to
points E = ℜ{E}+ iϵ (with ϵ > 0) on the physical sheet in the limit ϵ → 0+.
But the resonance pole (2.173) is accessed by starting at E = Mr + iϵ in the
physical region — right above the branch cut — and then going downwards
parallel to the imaginary axis the distance Γr/2. Hence, to reach the pole
we start on the physical sheet and cross the branch cut from above. The
pole is therefore located on another sheet, hidden behind the branch cut.

Note that since the amplitude is real below the lowest threshold, the
Schwarz reflection principle implies that the resonance pole at E = Mr −
iΓr/2, which is on the sheet that can be accessed from the physical sheet
by crossing the branch cut from above, must be accompanied by another,
complex conjugate “shadow” pole at E = Mr + iΓr/2, and this pole is on
the sheet that is accessed from the physical sheet by crossing the branch cut
from below. The shadow pole is therefore quite distant from the physical
region, and its contribution is neglected in the Breit-Wigner formula.47

In the remaining part of this section we will suggest a way of how to un-
derstand the relation between poles of stable particles and those of unstable
particles. We will follow the treatment of [16, 1]. For simplicity, we will
return to our earlier example of a theory that contains only a single kind of
particle, of spin zero and mass m > 0. Let us suppose that there is some real
parameter g, corresponding to a coupling constant, which can be continu-
ously adjusted, and that as we vary the coupling constant the solution of
the theory — and, in particular, all the amplitudes — changes analytically
with g. Furthermore, we suppose that at some initial value g = g0 there
are no true bound states present in the theory but that there is an unstable
bound state that decays into two particles of mass m, and we also suppose
that there is some higher value g1 > g0 of g, at which the coupling is strong
enough to make the unstable bound state stable. As we gradually increase
g0 to g1 we will encounter a point when the unstable state becomes stable.
Let us denote this threshold value of g by gth. Clearly, g0 < gth < g1. As
we will see, when g = gth the particle pole meets the normal threshold, and
that renders the description less transparent. For that reason, we will also
assume that the solution can be continued into some complex neighborhood
of the real axis of g, so that we can avoid the threshold value g = gth by

47This of course leads to the question of whether the usual Breit-Wigner formula needs
to be adjusted for near-threshold resonances. We will encounter this question again in the
section 6.2, but we will not really address it in the current work.
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sths1

s0

Figure 2.8: An illustration of how a stable particle pole can change into a
resonance pole. We suppose that for g = g1 there is a (stable) bound state,
whose pole is located at s = s1 on the physical sheet. This pole lies on the
real axis below the lowest threshold, which is at sth. As we decrease the
strength of the coupling g the energy of the bound state increases and the
corresponding pole moves towards the threshold. For g = gth the particle
pole and the lowest threshold coincide, and to avoid that situation we give
g a small imaginary component when it is near gth. This moves the pole off
the real axis. For g < gth the bound state turns into a resonance, and as we
make the coupling constant real again the pole crosses the branch cut from
above, and appears on another sheet. It then continues to move on that
sheet until it reaches the position s = s0 for g = g0. In the figure, the part
of the pole’s path that is on the physical sheet is depicted by black color,
and the path on the unphysical sheet is depicted by gray.

going slightly above or slightly below it. Note that when g is complex the
theory loses some of its physical properties — in particular, the condition of
Hermitian analyticity does no longer apply, which means that a resonance
pole and its “shadow” pole might not occupy complex conjugated positions.

To be specific, let us consider the amplitude for elastic scattering of two
particles (of mass m). This is the simplest amplitude that should contain
the pole for the bound state of those two particles. We will consider this am-
plitude as a function of the variable s, the center-of-mass energy squared.48

The path that the pole takes when we vary the coupling g between the values
g0 and g1 is depicted in Fig. 2.8. If we start at the value g = g1, the bound
state is stable, and there should be a corresponding pole on the physical
sheet, lying on the real axis below the lowest threshold. In the figure, we
labeled its position with s1. Now, as the coupling gradually decreases, the
binding energy of the bound state gets smaller, and the pole approaches the
lowest threshold at s = sth. When g = gth the pole is right at the lowest
threshold because it is at this value of s that the stable state turns into
an unstable one. However, if the pole is right at the threshold, then as we

48This is a more usual choice of the variable for such a case, rather than the total
center-of-mass energy E that we used in the previous section.
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sths′
1

s′
0

Figure 2.9: The path of the “shadow” pole as the coupling constant changes
between g0 and g1. In Fig. 2.8 we depicted how a pole corresponding to a
bound state moves on the physical sheet and eventually crosses the branch
cut when the coupling gets weak enough for the state to become unstable.
Here we depict the corresponding path of its “shadow” pole. (But for the
ease of presentation we describe it for g starting at g0 and being gradually
increased.) The pole starts at s = s′

0. As the coupling increases from g0
to g1, and the resonance pole crosses the branch cut and moves onto the
physical sheet, the “shadow” pole must remain on the “unphysical” sheet.
Hence, near g = gth when g has a small imaginary part, the “shadow” pole
must move as indicated in the figure, because it must not cross the branch
cut. When the coupling constant g > gth becomes real again, the “shadow”
pole moves onto the real axis but stays on the “unphysical” sheet.
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further vary g the pole can move either to the original sheet or cross the
branch cut — both of those options are possible. To avoid this complication
we give g a small imaginary component when it is close to gth. This way
it will avoid the threshold, making it easy to determine if the pole crosses
the branch cut or not. In the figure this is illustrated as a small detour into
the upper-half plane, which the pole takes around the point s = sth. (Note
that we do not know that the pole must go into the upper half-plane. The
precise way in which the pole avoids the threshold depends on what exact
theory do we work with, as well as the sign of the imaginary component
of g.) Afterwards, when the real part of g is smaller than gth, we can make
the coupling real again and the pole crosses the branch cut, as indicated
in the figure, and moves to another sheet. And finally, when g decreases
to g0 the pole assumes its position at s = s0 on this other, “unphysical”
sheet. Note, however, that since the overall amplitude must be real below
the lowest threshold the presence of the pole at the complex position s0 in
Fig. 2.8 necessitates a presence of another pole at a complex conjugated
position. This “shadow” pole is on the sheet that can be accessed from the
physical sheet by crossing the branch cut from below. Note that since in
our example the threshold is assumed to be the lowest threshold, it must be
of the square-root type, which means that if one crosses it once, then goes
around the branch point and crosses the cut the second time in the same
direction, then one returns to the original sheet — just as if the function
was

√
s. Therefore, in our case the resonance pole and its “shadow” pole

both lie on the same “unphysical” sheet. Under more general circumstances,
though, that might no longer be true.

It is important to recognize that when the coupling is strong enough so
that the resonance turns into a stable state and its pole is on the real axis on
the physical sheet, the “shadow” pole must be located on another sheet. This
is because at any given time there should be only a single pole corresponding
to the bound state on the physical sheet. For that reason, when g is varied
in a way that corresponds to the path depicted in Fig. 2.8, the “shadow”
pole must move on the path illustrated in Fig. 2.9. In particular, when g
is near gth and is complex, the shadow pole takes the path as depicted in
figure: it remains in the upper half-plane and ceases to occupy the position
that is complex conjugate to the resonance pole, for it must not cross the
branch cut. For real g > gth both the resonance pole and the “shadow” pole
are on the real axis as required by the Hermitian analyticity, but each on a
different sheet.

Before we close, let us mention that decreasing the coupling is not guar-
anteed to turn a bound state into a resonance. It might instead become a
virtual state. In such a case, as we decrease g from g1 to g0 the pole at first
approaches the branch point from the physical sheet, just as in Fig. 2.8, but
after it crosses the branch cut and moves onto the other sheet, and after
the coupling becomes real again (and g < gth) it does not remain complex
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but instead returns onto the real axis below the threshold, remaining on the
“unphysical” sheet. In this case there is no need for a “shadow” pole.
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Chapter 3

Electromagnetic form factors

Electromagnetic form factors appear when one considers the scattering of
a charged particle by a virtual photon. As we will see, the correspond-
ing matrix elements are fully determined by their properties under Lorentz
transformations and by the conservation condition for the electromagnetic
current except for a number of unknown coefficient functions that depend
on kinematic invariants of the scattering. These functions are called electro-
magnetic form factors, and are of great importance when one needs to make
a contact between theory and experiment. For the purposes of this thesis
electromagnetic form factors are relevant in the following three ways. First,
the main aim of this second part of the thesis is to introduce the Unitary
and Analytic model, which is a model of electromagnetic form factors of
hadrons. Second, one of the more practical topics that this thesis touches
upon is the evaluation of the muon’s magnetic anomaly, and this quantity is
directly related to electromagnetic form factors of the muon. And thirdly,
electromagnetic form factors of hadrons, and their representation by the
Unitary and Analytic model, will play an important role in several research
topics discussed in the third part of this thesis. A reader interested in the
general theory of form factors can find additional information for example
in the chapter 10 of [9] or the chapter 26 of [17], which were also employed
as main references for the treatment presented here.

3.1 Initial considerations

Suppose that we wish to describe the scattering of an electrically charged
particle by a single virtual photon, and that we want to include all self-
interactions of that particle. Another way of saying this is that we are
describing the interaction of that charged particle with an external electro-
magnetic field (or with some other charged particle), but only to the first
order in that external field (or in the charge of that other particle), and to
all orders — or, in fact, non-perturbatively — in all other interactions. In
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terms of Feynman diagrams this corresponds to the sum of all the diagrams
with one external line corresponding to the charged particle entering the
diagram, another external line corresponding to the charged particle exiting
the diagram, and a single external vertex corresponding to the electromag-
netic current. We can consider the matrix element of the operator of the
current, instead of the matrix element of the gauge field, because the ex-
ternal photon gauge field is assumed to be coupled to the current. (One of
the advantages of considering the current instead of the gauge field is that
matrix elements of the gauge field transform under Lorentz transformations
in a more complicated way than those of the current.) This sum of Feynman
diagrams corresponds to the matrix element(

Ψout
p′,σ′ , Jµ(x)Ψin

p,σ

)
, (3.1)

where Ψin
p,σ and Ψout

p′,σ′ are the “in” and “out” states of the charged par-
ticle and Jµ(x) is the electromagnetic current (density) expressed in the
Heisenberg picture.

Before we continue, let me add one remark. People sometimes say that
the non-triviality of electromagnetic form factors of some particles, such
as the proton, corresponds to the fact that those particles are not point
particles. If the form factors are understood in the way as we introduced
them here, that statement is simply wrong. In quantum field theory, the dis-
tinction between elementary and composite particles is far from obvious, but
even if we sidestep this issue by adopting the definition that elementary par-
ticles are those whose fields appear in the Lagrangian, electromagnetic form
factors of charged particles are never trivial if we include effects of their
electromagnetic self-interaction. However, there is a good sense in which
such statements are meaningful, and that is when we consider the matrix
elements such as (3.1) not in the full theory, but in a theory with some
of the interactions switched off. In particular, it is very useful to consider
the matrix element (3.1) evaluated with only the strong force switched on.
This corresponds to the calculation of the scattering in the external electro-
magnetic field to all orders in the strong interaction but only to the lowest
order in the electromagnetic charge e. In that approach the electromagnetic
form factor of, say, the electron does indeed turn out to be trivial, since
the electron does not interact strongly and we decided to ignore its elec-
tromagnetic (and weak) self-interactions. In this sense the statements such
as that the electron is a point-like particle while the proton is not simply
mean that to our required precision — the lowest order in e — the electron’s
self-interactions can be neglected but those of the proton cannot, and this is
a direct consequence of the fact that at the relevant energy scale the strong
force is much stronger than the electromagnetism.1 In fact, even in this
thesis, when we will later speak about the electromagnetic form factors of

1Of course, there is also (at least one) other sense in which statements such as that
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hadrons and their representations by the Unitary and Analytic model, what
we will have in our mind are exactly these “strong-interactions-only” elec-
tromagnetic form factors: form factors that correspond to (3.1) evaluated
with only the strong force switched on.

Let us now start exploring the amplitude (3.1). First, transformation
properties (2.104) under translations allow us to explicitly factor out its
x-dependence,(

Ψout
p′,σ′ , Jµ(x)Ψin

p,σ

)
= eix(p′−p)

(
Ψout

p′,σ′ , Jµ(0)Ψin
p,σ

)
. (3.2)

If we now apply to both sides the derivative ∂/∂xµ, and use the current-
conservation condition ∂µJ

µ = 0, we obtain the important restriction

(p′ − p)µ

(
Ψout

p′,σ′ , Jµ(0)Ψin
p,σ

)
= 0. (3.3)

Another restriction on (3.1) that can be obtained using properties of the
conserved current Jµ is a kind of normalization condition. Before we derive
this condition let us briefly discuss the required properties of Jµ.

From any conserved current, electromagnetic or other, we can construct
the corresponding charge operator

Q =
∫
d3x J0(x, t). (3.4)

The current-conservation condition ∂µJ
µ implies that Q is conserved,

d

dt
Q =

∫
d3x ∂0J

0(x, t) = −
∫
d3x ∇ · J(x, t) = 0, (3.5)

because we can use the Gauss’s theorem to express the last integral in terms
of the integral of the flux of J over the boundary of the volume of integration,
which is zero. (As usual, we assume here that the fields vanish as |x| → ∞.)
The fact that Q is an integral of J0 over the whole space means that Q is
invariant under space translations. This, together with dQ/dt = 0, means
that Q commutes with generators of space-time translations Pµ,

[Q,Pµ] = 0. (3.6)

By the same argument we can see that Q also commutes with the gener-
ators of rotations. It is, however, a slightly more difficult to show that Q
also commutes with boost generators. The problem is that the definition
(3.4) is not manifestly covariant and appears to depend on the definition
of the time coordinate. Boosts modify both the hyperplanes of constant

proton is not a point-like particle can be interpreted: hadrons are bound states in an
asymptotically free theory and it is therefore quite meaningful to speak about its internal
structure when considering high-energy processes such as, for instance, deep inelastic
scattering.
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time and the time component J0. In order to explore this issue let us first
rewrite the definition (3.4) in a form in which its covariance will become
more apparent. Consider the Lorentz-covariant three-form ϵµνρσJ

σ. When
we integrate it over a hyperplane of constant time, only the time component
of Jσ contributes. Hence, one can see that the definition (3.4) is equivalent
to2

Q =
∫
ϵµνρσJ

σ, (3.7)

where the integrand is interpreted as a differential form and the integration
surface must be a hyperplane of constant time in some given coordinate
frame. Let us now fix a reference frame, denote the time coordinate in this
reference frame by t, and apply (3.7) to obtain the value Q of the charge
by integrating over the hypersurface t = 0. Let us next boost to a different
frame of reference and denote the new time coordinate by t′. If we now apply
(3.7) in this new reference frame we obtain a new value Q′ of the charge
operator, and it is not obvious that Q = Q′, because when inspected in the
old reference frame the quantity Q′ is obtained by integrating the three-
form ϵµνρσJ

σ over the hypersurface t′ = const, which is not a hypersurface
of constant time in the old reference frame. However, by the generalized
Stokes’ theorem the difference between Q and Q′ equals the integral of the
differential of ϵµνρσJ

σ over the oriented volume between the hyperplanes
t = 0 and t′ = 0.3 But the three-form ϵµνρσJ

σ is closed,

dα (ϵµνρσJ
σ) ∝ ϵαµνρ∂µJ

µ = 0. (3.8)

Hence Q = Q′, and we have demonstrated that the operator Q commutes
with boosts. (In fact, we have actually demonstrated that Q can be calcu-
lated by the integral (3.7) over any three-surface that stretches to the infinity
in all space directions.) Thus, we see now that Q commutes with the gener-
ators of translations and also all the generators of Lorentz transformations.
We can use these commutation properties to constrain the possible values of
QΨp,σ,n. First, since [Q,Pµ] = 0 we know that QΨp,σ,n has the same value
of four-momentum as Ψp,σ,n. Barring any degeneracy in particle masses this
also means that the species of QΨp,σ,n is still n.4 Furthermore, since Q also
commutes with the generators of Lorentz transformations, it preserves the
spin or helicity value σ. In other words, QΨp,σ,n must be proportional to
Ψp,σ,n,

QΨp,σ,n = qnΨp,σ,n. (3.9)
2Perhaps up to the overall sign, depending on the exact definition of ϵµνρσ. Here, we

use ϵ0123 = −1, but the overall sign is not important in our current argument.
3Here we again use the assumption that Jµ vanishes as |x| goes to infinity, so that

we do not need to consider the integral of ϵµνρσJ
σ over the rest of the boundary of the

volume between t = 0 and the hyperplane of the constant t′.
4In fact, to exclude the possibility that Q transforms the particle into its antiparticle

would require a further discussion. Let us just assume here that this does not happen.
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The proportionality coefficient qn cannot depend on p or σ; again because
of the commutation properties of Q with the generators of Lorentz transfor-
mations. We call the coefficient qn the charge of the particle n. (In our case
qn is its electric charge.)

Now we can return to (3.1) and derive the normalization condition. In-
tegrating the zeroth component of (3.2) over the whole space t = 0 yields(

Ψout
p′,σ′ , QΨin

p,σ

)
= (2π)3δ3 (p′ − p

) (
Ψout

p′,σ′ , J0(0)Ψin
p,σ

)
. (3.10)

We can now use (3.9) and the normalization condition (Ψout
p′,σ′ ,Ψin

p,σ) =
δ3 (p′ − p) δσ′σ to obtain

1
(2π)3 q δσ′σ =

(
Ψout

p,σ′ , J0(0)Ψin
p,σ

)
, (3.11)

where we denoted the electric charge of the particle by q. Notice that we
had to change p′ to p because we were comparing here the coefficients of
two three-momentum delta functions. The normalization condition (3.11)
together with the current-conservation condition (3.3) are the two main con-
ditions resulting from the properties of the current operator Jµ that we are
going to use in our investigation of the matrix elements (3.1). Further-
more, we are also going to employ the fact that Jµ is a Hermitian operator.
The only remaining restriction that we are going to use is the requirement
that (3.1) must be Lorentz-covariant.

3.2 Spin zero particle
Electromagnetic form factors can be defined for a particle of any spin, but
we will be mainly interested in the cases of spin 0 and spin 1

2 , which we are
now going to treat in a greater detail. We start with the case of spin zero.
That is, we investigate the amplitude(

Ψout
p′ , Jµ(0)Ψin

p

)
, (3.12)

where both the “in” and the “out” states transform as

U(Λ)Ψp =
√

(Λp)0

p0 ΨpΛ , (3.13)

where we have denoted the three-vector part of Λp by pΛ. Let us now write
(3.12) as (

Ψout
p′ , Jµ(0)Ψin

p

)
= q

(2π)3A
µ (p′, p

)
, (3.14)

where we have extracted the factor q/(2π)3 according to the normalization
condition (3.11). Using transformation properties of the vector operator Jµ
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and of the spin zero particle, we obtain the following restriction on A

q

(2π)3 Λµ
νA

ν(p′, p) =
(
Ψout

p′ , U(Λ)−1Jµ(0)U(Λ)Ψin
p

)
=

√(Λp′)0

p′0 Ψout
p′

Λ
, Jµ(0)

√
(Λp)0

p0 Ψin
pΛ

 =

= q

(2π)3

√
(Λp′)0(Λp)0

p′0p0 Aµ(Λp′,Λp), (3.15)

or, more simply,√
p′0p0 ΛA(p′, p) =

√
(Λp′)0(Λp)0 A(Λp′,Λp). (3.16)

We can solve this by choosing Aµ of the form

Aµ(p′, p) = 1√
2p′0 2p0

J µ(p′, p), (3.17)

with J a vector function of p′ and p. (We have also extracted an additional
factor 1/2 for later convenience.) Now, the only way to construct a four-
vector J µ(p′, p) from p and p′ is to add them in a linear combination with
coefficients that are scalar functions of p and p′. (Only objects that are at our
disposal are the two four-vectors pµ and p′ν , the metric tensor ηµν , and the
anti-symmetric pseudo-tensor ϵµνρσ.) Of course, instead of considering linear
combinations of p and p′ directly, we can equivalently also consider linear
combinations of any two independent four-vectors that can be constructed
from p and p′. It turns out that the most convenient approach is to consider
linear combinations of p′ + p and p′ − p. This is because that choice makes
it easy to apply the current-conservation condition (3.3). As we said, the
coefficients in that linear combination must be scalar functions of p and p′,
and we can construct only three independent scalars from those two vectors,
for example, the scalars p2, p′

µp
µ, and p′2. However, the four-momenta p′ and

p are on the mass shell, so we have p2 = p′2 = m2. This means that there
is only single non-trivial scalar left, which we can choose as p′

µp
µ, or even

more conveniently, k2 = (p′ − p)2, the square of the transferred momentum.
Thus, the most general solution of (3.15) can be written in the form(

Ψout
p′ , Jµ(0)Ψin

p

)
= q

(2π)3
1√

2p′0 2p0

(
F (k2)(p′ + p)µ + i(p′ − p)µG(k2)

)
.

(3.18)
This is a general Lorentz-covariant form of the left-hand side for a spin zero
particle. Notice that we have extracted the factor i from the function G.
This is to make the functions F and G both real, which follows from the
fact that Jµ is Hermitian. To see this, consider the identity(

Ψout
p′ , Jµ(0)Ψin

p

)∗
=
(
Ψout

p , (J†)µ(0)Ψin
p′

)
, (3.19)
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where we have used the fact that for single-particle states Ψin
p = Ψout

p . The
reality of F and G then follows from J = J† and the equation (3.18).

Our next step is to employ the constraints (3.3) and (3.11). Applying
the current-conservation condition (3.3) to (3.18) yields

0 = F (k2)(p′ + p)µ(p′ − p)µ + ik2G(k2). (3.20)

Because p and p′ are both on the mass shell, we have (p′ + p)µ(p′ − p)µ = 0,
and the condition (3.20) reduces to k2G(k2) = 0. This must hold for all
allowed values of k2. Both p and p′ are future-oriented and on the (same)
mass shell, which means that p′−pmust be space-like, as one can easily verify
by inspecting this quantity in the center-of-mass frame. Possible values of
k2 therefore form the interval −∞ < k2 ≤ 0. Normally, we would interpret
the condition k2G(k2) = 0 as implying that G is zero everywhere (on the
allowed interval), but since k2 can be zero we should also consider the option
when G(k2) is proportional to δ(k2). But for k space-like, k2 = 0 only if
kµ = 0, and because in (3.18) G(k2) appears in a product with kµ, the term
containing G(k2) would still not contribute even if G(k2) was proportional
to δ(k2). Hence, the current-conservation condition implies that we may
drop the term containing G, so that(

Ψout
p′ , Jµ(0)Ψin

p

)
= q

(2π)3
1√

2p′0 2p0
F (k2)(p′ + p)µ. (3.21)

The function F is called the electromagnetic form factor of the particle. The
normalization condition (3.11) now reads

1
(2π)3 q =

(
Ψout

p , J0(0)Ψin
p

)
= q

(2π)3
1

2p0F (0)2p0,

which immediately implies that

F (0) = 1. (3.22)

Before we close our discussion of the spin 0 case, let us note that the
above results were derived under the normalization condition (2.109), which
we have followed throughout the first part of this thesis. If the states Ψp
and Ψp′ describe the same spin 0 particle, this condition reads(

Ψp′ ,Ψp
)

= δ3 (p′ − p
)
. (3.23)

There are also other widespread normalization conventions. Perhaps the
most common among them is what is sometimes called the covariant nor-
malization, and which (for a spin 0 particle) reads(

Ψp′ ,Ψp
)

= 2p0(2π)3δ3 (p′ − p
)
. (3.24)
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With this normalization, single-particle states transform simply as

U(Λ)Ψp = ΨpΛ , (3.25)

instead of (3.13). This simplifies properties of the matrix element (3.12) un-
der Lorentz transformations, and instead of (3.15) we simply get ΛA(p′, p) =
A(Λp′,Λp). We can therefore put Aµ = J µ, with J µ defined just as before.
Thus, after applying the current-conservation condition, instead of (3.21)
we obtain (

Ψout
p′ , Jµ(0)Ψin

p

)
= q

(2π)3F (k2)(p′ + p)µ. (3.26)

However, because now we are using a different normalization of state vectors,
the charge normalization condition (3.11) has also changed, and now reads(

Ψout
p,σ′ , J0(0)Ψin

p,σ

)
= 2p0 q δσ′σ. (3.27)

For F defined as in (3.26) this implies F (0) = (2π)3. Hence, if we redefine
Fnew = (2π)−3Fold, the equation (3.26) becomes(

Ψout
p′ , Jµ(0)Ψin

p

)
= q F (k2) (p′ + p)µ, (3.28)

where F (0) = 1. This is the usual relation for the electromagnetic form
factor of a spin 0 particle, when expressed in the covariant normalization.
In fact, in Part III of this thesis we are going to work in that normalization.
In the remainder of this chapter, however, we continue using the normaliza-
tion (2.109).

3.3 Spin zero: Related diagrams
In the previous subsection we have arrived at the equation (3.21), which
expresses the matrix element (3.12) in terms of a single unknown real func-
tion F (k2). This function is the electromagnetic form factor of that particle,
and the equation (3.21) defines it only for zero or negative values of k2. This
is because the four-momenta p′ and p of (3.12) must be on their mass shell
and, furthermore, p′0 > 0 and p0 > 0, which means that the transferred
four-momentum k = p′ − p is either zero or space-like.5 However, it is very
useful to consider the function F also for other values of k2. To motivate
this extension let us first consider two other amplitudes closely related to
(3.12).

5As we mentioned in the previous subsection, this is most obvious in the center-of-mass
frame. Another simple way to show this is to transform into the rest frame of the incoming
particle, in which p = (m,0) and p′ = (

√
p′2 +m2,p′). Hence,

k2 =
(√

p′2 +m2 −m
)2

− p′2 = −2m
(√

p′2 +m2 −m
)

≤ 0.
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The first of them is (
Ψout

p′,n ;p̄,nc , Jµ(x)Ψ0
)
. (3.29)

Here we have explicitly depicted the particle species labels to show that the
particle with the four-momentum p̄ is the antiparticle of the particle with
the four-momentum p′. In (3.12) both particles were of the type n. We have(

Ψout
p′,n ;p̄,nc , Jµ(x)Ψ0

)
= ei(p′+p̄)x

(
Ψout

p′,n ;p̄,nc , Jµ(0)Ψ0
)
, (3.30)

which means that the condition ∂µJ
µ = 0 implies

(p′ + p̄)µ

(
Ψout

p′,n ;p̄,nc , Jµ(0)Ψ0
)

= 0. (3.31)

We can also try to apply the approach that yielded the normalization condi-
tion (3.11) for the original matrix element. Integrating the zeroth component
of (3.30) over the hyperplane t = 0 leads to(

Ψout
p′,n ;p̄,nc , QΨ0

)
= (2π)3δ3 (p′ + p̄

) (
Ψout

p′,n ;p̄,nc , J0(0)Ψ0
)
. (3.32)

Since QΨ0 = 0,6 we obtain the requirement(
Ψout

p′,n ;−p′,nc , J0(0)Ψ0
)

= 0. (3.33)

However, as we will see below, this condition turns out to be of little use.
Now, to make use of the Lorentz-covariance properties of (3.29) we can

proceed in the same way as we did to obtain (3.18). The result is that
the most general Lorentz-covariant form of the amplitude (3.29) can be
expressed in the form(
Ψout

p′,n ;p̄,nc , Jµ(0)Ψ0
)

= q

(2π)3
1√

2p′0 2p̄0

(
X(k2) (p′ + p̄)µ + Y (k2) (p′ − p̄)µ

)
.

(3.34)
Here, X and Y are some scalar functions of the on-shell four-momenta p′

and p̄. Unlike in the case of (3.18) we have not extracted the imaginary unit
i from any of the functions, since now it is not possible to use the Hermiticity
of Jµ in the way as we did before to derive reality properties of X or Y .
Also, as before, there is only one independent non-trivial scalar that can
be formed from p′ and p̄, which we may choose as p′

µp̄
µ. However, just as

we used (p′ − p)2 instead of p′
µp

µ in (3.18), we will make a similar choice
6By the arguments that we used to obtain (3.9) we find that QΨ0 must be proportional

to Ψ0. However, we can also see that (Ψ0, J
µ(x)Ψ0) must vanish as a result of the Lorentz-

transformations properties of Jµ and Ψ0. (Or, one can also say as a consequence of the
Wigner-Eckart theorem.) Hence, the constant of proportionality between QΨ0 and Ψ0
must be zero.
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here. We could choose to use (p′ − p̄)2 in the direct formal analogy with
(3.18), but as we will see below, it is better to use (p′ + p̄)2 instead. That
is, we define k = p′ + p̄ here. The current-conservation condition (3.31) now
implies that X(k2) = 0. (Note that the allowed values of k2 are now those
for which k2 ≥ 4m2, where m is the mass of the particle.7 Hence, there is
no need to pay special attention to the case of k2 = 0.) We then obtain(

Ψout
p′,n ;p̄,nc , Jµ(0)Ψ0

)
= q

(2π)3
1√

2p′0 2p̄0
(p′ − p̄)µY (k2). (3.35)

We also can now see why the “normalization” condition (3.33) is of no help
here. If p′ = −p̄ then p′0 = p̄0 and the right hand side of (3.35) satisfies
(3.33) automatically, without any additional requirements on the function
Y .

The second amplitude that we wish to investigate is(
Ψ0, J

µ(x)Ψin
p̄′,nc;p,n

)
. (3.36)

Repeating the steps that we took to obtain (3.35) we arrive at(
Ψ0, J

µ(0)Ψin
p̄′,nc;p,n

)
= q

(2π)3
1√

2p̄′0 2p0 (−p̄′ + p)µZ(k2), (3.37)

where Z is a scalar function of k2 = (p̄′ + p)2.
Now we are ready to look more closely at the question of what is the

relation between the functions F , Y and Z. As we will see, they can be
thought of as continuations of the same function of complex k2 into different
regions. First, note that for on-shell momenta the squares k2 = (p′ + p̄)2 of
Y and k2 = (p̄′ + p)2 of Z are always positive, and satisfy k2 ≥ 4m2. To
summarize, the function F is defined for values k2 ≤ 0 of its argument, while
the functions Y and Z are both defined only for values k2 ≥ 4m2 of their
arguments. Since the functions Y and Z seem to share the same domain, let
us first restrict our attention only to them. To relate the amplitudes (3.29)
and (3.36) we can use the operator CPT, the product of the operators of
charge conjugation, space inversion, and time reversal8. This operator is

7This is easy to see in the center-of-mass frame, when p′ =
(√

p̄2 +m2,−p̄
)

and

p̄ =
(√

p̄2 +m2, p̄
)

. We have

k2 =
(

2
√

p̄2 +m2,0
)2

= 4
(
p̄2 +m2) ≥ 4m2.

8Sometimes people try to do this by arguing from the Hermiticity of Jµ and pre-
tending that something like the following formula is correct:

(
Ψout

p′ ;p̄, J
µ(0)Ψ0

)∗ =(
Ψ0, J

µ(0)Ψin
p ;p̄
)
. This is similar to what we did in (3.19) but I do not think it works

here, since for multi-particle states we no longer have relations such as Ψin
p ;p̄ = Ψout

p ;p̄.
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conserved in any quantum field theory. When applied to a state Ψp,σ,n

that corresponds to a single massive particle, the operator P of the space
inversion reverses the particle’s three-momentum and multiplies the state
vector by the intrinsic parity of that particle ηn,

PΨp,σ,n = ηnΨ−p,σ,n. (3.38)

The effect of the operator T of the time reversal is to reverse both the
particle’s three-momentum and its spin z-component, multiply the state by
its time-reversal phase factor ζn, and also to change the asymptotic “in”
state into the appropriate “out” state and vice versa,

TΨin
p,σ,n = ζnΨout

−p,−σ,n,

TΨout
p,σ,n = ζnΨin

−p,−σ,n.
(3.39)

And, finally, the operation of charge conjugation changes particles into their
antiparticles and multiplies the state by its charge-conjugation phase factor
ξn,

CΨp,σ,n = ξnΨp,σ,nc . (3.40)

Hence, altogether, the effect of CPT on a single-particle state of a massive
particle of spin zero is

CPTΨin
p,n = ξnηnζnΨout

p,nc ,

CPTΨout
p,n = ξnηnζnΨin

p,nc .
(3.41)

It is possible to show9 that in a theory that conserves the CPT operator one
must have

ξ∗
nη

∗
nζ

∗
n = ξncηncζnc . (3.42)

When we apply CPT to multi-particle asymptotic states, they transform as
direct products of corresponding single-particle states. Thus, if we consider
two-particle states consisting of particle–anti-particle pairs, and if we use
the fact that the parities η, ζ and ξ are all just phase factors, we find

CPTΨin
p̄′,nc;p,n = Ψout

p̄′,n;p,nc ,

CPTΨout
p̄′,n;p,nc = Ψin

p̄′,nc;p,n.
(3.43)

Before we use this property we need to recall the important fact that
although the operators P and C are linear and unitary, the operator of time
inversion is anti-linear and anti-unitary. Anti-linearity means that for any
complex number α we have Tα = α∗T. This property right away implies
that T cannot be unitary, because then we would have

(Ψ,TΦ) =
(
T−1Ψ,Φ

)
,

9See, e.g., Chapter 5 of [9].
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the left-hand side of which would be anti-linear in Φ (because of the anti-
linearity of T) and anti-linear in Ψ (because of the property of the scalar
product), while the right-hand side would be linear both in Φ and Ψ. In
fact, T is an anti-unitary operator, which means that it satisfies

(Ψ,TΦ) =
(
T−1Ψ,Φ

)∗
. (3.44)

Thus, we can write(
Ψout

p′,n; p̄,nc , (CPT)−1Jµ(x)(CPT)Ψ0
)

=
(
(CPT)Ψout

p′,n; p̄,nc , Jµ(x)(CPT)Ψ0
)∗

=
(
Ψin

p′,nc; p̄,n, J
µ(x)Ψ0

)∗

=
(
Ψ0, J

µ(x)Ψin
p′,nc; p̄,n

)
. (3.45)

One can also show that the electric current operator Jµ transforms as10

(CPT)−1Jµ(x)(CPT) = −Jµ(−x). (3.46)

Hence, we can conclude

−
(
Ψout

p′,n; p̄,nc , Jµ(0)Ψ0
)

=
(
Ψout

p′,n; p̄,nc ,−Jµ(0)Ψ0
)

=
(
Ψout

p′,n; p̄,nc , (CPT)−1Jµ(0)(CPT)Ψ0
)

=
(
Ψ0, J

µ(0)Ψin
p′,nc; p̄,n

)
, (3.47)

which, together with (3.35) and (3.37), leads to the condition

− q

(2π)3
1√

2p′0 2p̄0
(p′−p̄)µY (k2) = q

(2π)3
1√

2p′0 2p̄0
(−p′+p̄)µZ(k2). (3.48)

This implies that the functions Y and Z must be the same,

Y (k2) = Z(k2). (3.49)

In fact, since Y (or Z) and F have been defined on non-overlapping
domains we are free to denote them all by the same symbol F . Let us now
explore this further so that we can better understand why it makes a good
sense to consider Y , Z and F as a single function. As we briefly mentioned
in Sec. 2.2, the matrix element (3.12),(

Ψout
p′, n, J

µ(0)Ψin
p, n

)
,

10See, again, [9]. One can show that the free photon gauge field aµ(x) transforms
as (CPT)−1aµ(x)(CPT) = −aµ(−x). Since CPT commutes both with H0 and H this
result also extends to the same field expressed in the Heisenberg picture. Electromagnetic
currents appear together with the photon gauge field in the gauge-invariant combination
JµAµ. (Jµ, Aµ here represent the full, interacting fields.) This, together with the required
commutation properties of the interaction and the CPT inversion, [CPT, V ] = 0, allows
us to infer the transformation property of any electromagnetic current Jµ under the CPT
operator.
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can be obtained from the momentum-space Green’s function∫
d4x d4y eip′y e−ipx

(
Ψ0, T

{
Jµ(0)Φ(y)Φ†(x)

}
Ψ0
)

(3.50)

by the application of the LSZ reduction formula. For this to work, the scalar
field Φ(x) of (3.50) must be such that Φ†(x)Ψ0 has non-zero scalar products
with single-particle states Ψp, n of the charged particle. In practice, the
application of the LSZ formula here entails bringing the external momenta p
and p′ of (3.50) on the mass shell (and both with positive zeroth components,
because as we discussed earlier, in (3.50) p′ exits the diagram and p enters
it), amputating the external propagators for the charged particle (which are
singular on the mass shell), supplying instead of them appropriate coefficient
functions of on-shell momenta p and p′ as required by usual Feynman rules
for incoming and outgoing particles, and supplying an additional constant
factor that depends on the renormalization scheme used for the field Φ(x).
For our purposes these details are not very important, except for the fact
that we may disregard the external propagator poles of (3.50) since those
are stripped away in (3.12).

The reason why we are considering (3.50) is that while in the original
matrix element (3.12) the four-momenta p, p′ are necessarily on-shell, in the
expression (3.50) we are allowed to take them off the mass shell. In particu-
lar, we can attempt to change the sign of the time component of either of the
four-momenta — that is, their energy — from positive to negative. Then,
if we return to the mass shell again, but with the energy being negative,
the integral corresponds to the original amplitude but with the correspond-
ing external line “crossed”; if before that line corresponded to the particle
entering the graph now it corresponds to its antiparticle leaving the graph,
and vice versa. For instance, we can try to change the four-momentum p
into the four-momentum −p. If we denote this new value by p̄, that is, if
we put p̄ = −p, and apply the LSZ formula, we obtain the matrix element
(3.29), (

Ψout
p′, n; p̄, nc , Jµ(0)Ψ0

)
.

Similarly, if instead of “crossing” the line carrying the four-momentum p
we “cross” the line carrying the four-momentum p′, that is, we change the
four-momentum p′ to p̄′ = −p′, we obtain an expression that corresponds to
the matrix element (3.36),(

Ψ0, J
µ(0)Ψin

p̄′, nc; p, n

)
.

We can now check that different definitions of k2 which we chose in form
factors F , Y , and Z follow this correspondence. The same can be said also
about the four-momentum factors that multiply those form factors in the
expressions for the corresponding matrix elements. (For example, in (3.21)
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we defined k = p′ − p, while in (3.35) we defined k = p′ + p̄, which is the
same as the first definition if we put p̄ = −p. Similarly, the momentum
factor multiplying the form factor in (3.21) is (p′ + p), while in (3.35) it is
(p′ − p̄).)

This shows why it makes a good sense to denote all three form-factors
by the same symbol F . However, there is a problem with this argument. If,
for instance, we start with (3.50) and p, p′ both on-shell and future-oriented,
then k2 = (p′ − p)2 < 0. Now, if we keep all the components of p and p′ real
and continuously change p and p′ along some path that starts at the original
values of p and p′ and ends with p′ back at its original value but p reversed
to −p, then along this path the value of k2 must also change continuously,
and furthermore must always be real. But since the path starts at a negative
value of k2,

(
k2)

initial < 0, and ends at a value that satisfies
(
k2)

final ≥ 4m2,
there must be a point on this path when k2 = 4m2. And this is a problem,
because using the methods that we have briefly discussed in Sec. 2.5 it can be
shown that at k2 = 4m2 the Green’s function (3.50) has a normal threshold
singularity. Thus, in order to connect the region of k2 < 0 with the region
k2 > 4m2, we are forced to venture into the complex plane of k2. In fact,
one can make strong claim that F (k2) is analytic in the upper half-plane of
k2. There is a branch cut, starting at the lowest threshold at k2 = 4m2 and
going to k2 = +∞. As we move from the region k2 < 0 towards k2 > 4m2

we can avoid all normal thresholds that stand in our way by giving k2 a
small positive imaginary part. It can be shown that the physical region,
which corresponds to (3.29), (3.36), can indeed be reached by approaching
the branch cut from above, that is, by taking the limit of k2 = ℜ{k2}+iϵ for
ϵ → 0+. Furthermore, as we have shown earlier, near the equation (3.19),
for k2 < 0 the form factor F (k2) must be real. Assuming, therefore, that
for ℑ{k2} > 0 the form factor is indeed analytic, one can use the Schwarz’s
reflection principle to show that F is analytic everywhere on C− [0,∞), and,
furthermore, that F

([
k2]∗) = F (k2)∗. In fact, one can argue that F is real

all the way to the lowest threshold, which then implies that F is analytic on
C − [4m2,∞).

3.4 Spin 1/2 particle

Let us now discuss the case of a spin 1/2 particle. In this case the form
factor formula for the amplitude (3.1) becomes more complex, because a
spin 1/2 particle has more complicated Lorentz-transformation properties
than a spin 0 particle. Transformation properties of a spin 1/2 particle are
given by

U(Λ)Ψp,σ =
√

(Λp)0

p0

∑
σ′

D
( 1

2 )
σ′ σ(W (Λ, p)) ΨpΛ,σ′ , (3.51)
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where D( 1
2 )

σ′ σ(R) is the matrix corresponding to the transformation of a spin
1/2 system under the rotation R, and the rotation W (Λ, p) is the little
group transformation corresponding to the Lorentz transformation Λ and the
initial four-momentum p. (See, e.g., [9] for details.) We will not describe here
the details11 but one can show that a general Lorentz-covariant amplitude
(3.1) of a spin-1/2 particle can be expressed in the form(

Ψout
p′,σ′,n, J

µ(0)Ψin
p,σ,n

)
= i

q

(2π)3 ū(p′, σ′)Γµ(p′, p)u(p, σ), (3.52)

where u is the coefficient function of the Dirac field (a precise convention
will be specified below) and Γµ is a four-vector 4 × 4 matrix function of p′,
p and the gamma matrices. We can expand an arbitrary 4 × 4 matrix in the
basis constructed from products of gamma matrices: 1, γµ, [γµ, γν ], γµγ5,
and γ5. To build a four-vector matrix Γµ, using the above matrices and the
four-vectors p′ and p, we can use a linear combination of the following terms:

• Using the unit matrix 1 we can construct two independent four-vector
terms p′µ1 and pµ1.

• Using the matrices γµ we can construct the independent terms γµ,
p′µp′

νγ
ν , pµp′

νγ
ν , p′µpνγ

ν , and pµpνγ
ν .

• From [γµ, γν ] we can construct the independent four-vectors [γµ, γν ]p′
ν ,

[γµ, γν ]pν , p′µ[γρ, γσ]p′
ρpσ, and pµ[γρ, γσ]p′

ρpσ.

• Since γµγ5 transforms as a pseudo-vector (or, in other words, as an
axial vector), we must contract it with ϵµνρσ to produce a vector-
like quantity that transforms as a true vector under space inversions.
Hence, only one independent combination is possible: ϵµνρσγνγ5p

′
ρpσ.

• The matrix γ5 transforms as pseudo-scalar. Hence, we again need to
create a product of it with ϵµνρσ. However, since there are only two
independent momenta p′, p available, all such four-vector combinations
vanish. (E.g., ϵµνρσpνpρp

′
σ is identically zero.)

All of these terms can be multiplied by any scalar functions of p′ and p. As
before, we will express those functions in terms of the invariant square of
the momentum transfer, k2 = (p′ − p)2.

Considering all these options, it may seem that a general form of Γµ

is very complicated. Fortunately, one can greatly reduce the number of
independent terms by using the fact that the coefficient functions u and ū

11Note, however, that if one is satisfied with an argument limited to the perturbation
theory then the result follows directly from the Feynman rules and the methods described
in Sec. 2.2.
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satisfy the Dirac equations12

(−ipµγ
µ +m)u(p, σ) = 0, (3.53)

and
ū(p′, σ′)(−ip′

µγ
µ +m) = 0. (3.54)

For example, the term p′µp′
νγ

ν effectively reduces to −imp′µ when multiplied
by ū from the left. Similarly, one can see that all the terms proportional to
a single gamma matrix except for γµ are equivalent to one of the terms p′µ1
or pµ1. Furthermore, we have

ū(p′)[γµ, γν ]p′
νu(p) = ū(p′)({γµ, γν}p′

ν − 2γνγµp′
ν)u(p)

= ū(p′)(−2p′µ + 2imγµ)u(p),

which is a linear combination of ū1u and ūγµu. We can handle other terms
containing the commutator of two gamma matrices similarly. And lastly, to
express ϵµνρσγνγ5p

′
ρpσ as a linear combination of 1 and γµ we can write

ϵµνρσγνγ5p
′
ρpσ =

i

6
[γµγργσ + γσγµγρ + γργσγµ − γργµγσ − γσγργµ − γµγσγρ] p′

ρpσ

and move all the matrices γρ to the left and the matrices γσ to the right,
so that we can apply the Dirac equations. Altogether, we find that it is in
effect possible to express Γµ as a linear combination of only three terms, p′µ,
pµ, and γµ. Hence, a general Lorentz-covariant expression for the amplitude
is (

Ψout
p′,σ′,n, J

µ(0)Ψin
p,σ,n

)
= i

q

(2π)3 ū(p′, σ′)
[
γµF (k2)

− i

2m
(p′ + p)µG(k2) − 1

2m
(p′ − p)µH(k2)

]
u(p, σ). (3.55)

From the Hermiticity of Jµ we can obtain the condition

Γµ(p, p′) = −βΓµ†(p′, p)β,

which means that the functions F , G and H, as defined above, are all real.
The current-conservation condition (3.3) requires13 that H(k2) = 0. That

12Warning: This subsection is less detailed, and since we mainly follow the treatment
of [9], I decided to use the definition of gamma matrices used in that textbook, to make
it easier for the reader to refer to a more complete treatment. This leads to a somewhat
unusual convention, when (unlike [9]) we use the metric η = diag(1,−1,−1,−1), and
gamma matrices that satisfy {γµ, γν} = −2ηµν .

13We have

(p′ − p)µ(p′ + p)µ = p′2 + p′ · p− p · p′ − p2 = m2 −m2 = 0,

and
ūγµ(p′ − p)µu = iū

[
(−iγµp′

µ +m) − (−iγµpµ +m)
]
u = 0.
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is, we have obtained the formula(
Ψout

p′,σ′,n, J
µ(0)Ψin

p,σ,n

)
= i

q

(2π)3 ū(p′, σ′)
[
γµF (k2) − i

2m
(p′ + p)µG(k2)

]
u(p, σ). (3.56)

Thus, as we can see, for a spin-1/2 particle there are two independent form
factors. To derive the consequence of the normalization condition (3.11) we
can use the identity {γµ,−iγνpν +m} = 2ipµ + 2mγµ to obtain

ū(p)(−2ipµ)u(p) = ū(p)(2mγµ)u(p).

Also, since ū(p, σ′)u(p, σ) = δσ′σm/p
0, we arrive at(

Ψout
p,σ′,n, J

µ(0)Ψin
p,σ,n

)
= q

(2π)3 δσ′σ

[
pµ

p0 F (0) + pµ

p0G(0)
]
. (3.57)

Hence, the normalization condition (3.11) in this case reads

F (0) +G(0) = 1. (3.58)

As we have seen, there are many ways to construct a four-vector matrix
from gamma matrices and two four-momenta p′ and p but when sandwiched
between ū and u only 3 of the terms are independent. This means that there
is a substantial freedom of choice when deciding in what form to express the
product ūΓµu. In the rest of this subsection we will describe a representation
which is probably the most common. This representation uses the matrices
γµ and [γµ, γν ](p′−p)ν instead of the pair γµ and (p′+p)µ employed in (3.56).
More specifically, we write(

Ψout
p′,σ′,n, J

µ(0)Ψin
p,σ,n

)
=

i
q

(2π)3 ū(p′, σ′)
[
γµF1(k2) − i

2
[γµ, γν ] (p′ − p)νF2(k2)

]
u(p, σ), (3.59)

where F1 is called the Dirac form factor and F2 the Pauli form factor of
the particle. To express these form factors in terms of the form factors F
and G we need to express the matrix [γµ, γν ](p′ − p)ν in terms of matrices
γµ and (p′ + p)µ that figure in the original expression (3.56). We have

ū(p′, σ′)
(
[γµ, γν ] (p′ − p)ν

)
u(p, σ)

= ū(p′, σ′)
(
−2p′

νγ
νγµ + {γµ, γν}p′

ν − γµγν2pν + {γµ, γν}pν
)
u(p, σ)

= ū(p′, σ′)
(
4imγµ − 2(p′ + p)µ)u(p, σ).

(3.60)

Using this in (3.59) and comparing with (3.56) gives

F (k2) =F1(k2) + 2mF2(k2),
G(k2) = − 2mF2(k2).

(3.61)
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The normalization condition now reads

F1(0) = 1. (3.62)

And lastly, let us remark that it is often useful to define the electric form
factor GE and the magnetic form factor GM ,

GE(k2) =F1(k2) − k2

2m
F2(k2),

GM (k2) =F1(k2) + 2mF2(k2).
(3.63)

(Or, in terms of F and G, GE = F − k2+4m2

4m2 G and GM = F .)

3.5 Magnetic dipole moment of a charged particle
of spin 1/2

The interaction of a charged particle with an external magnetic field that
is time-independent should be well-described by the interaction term of the
form

V (0) = −
∫
d3x J(x, 0) · A(x), (3.64)

where A(x) is the static vector potential of the external field. Under these
circumstances, it should be therefore possible to provide a complete de-
scription of that interaction in terms of only A(x) and form factors of the
interacting particle. In case of a spin 1/2 particle, one of the measurable
parameters of such an interaction is the magnetic anomaly of that parti-
cle, and in this subsection we are going to derive the relation between this
quantity and the particle’s electromagnetic form factors.

The g-factor g can be defined by the statement that in a weak, static,
and slowly (in space) varying magnetic field a stationary particle of spin 1/2
has the interaction matrix elements(

Ψout
p′,σ′ , VΨin

0,σ

)
= − gq

2m

(
J( 1

2 )
)

σ′σ
· B δ3 (p′) , (3.65)

where J( 1
2 ) are the angular momentum matrices for spin 1/2, and the inter-

action can be expressed as in (3.64). In order to obtain the relation between
g and form factors, we will need to take an appropriate limit of (3.56) and
compare it to (3.65).

In fact, it will be convenient to use yet another representation of (3.56),
which is of the form

ū(p′, σ′)Γµ(p′, p)u(p, σ) =

ū(p′, σ′)
[
− i

2m
(p′ + p)µA(k2) − i

2
[γµ, γν ] (p′ − p)νB(k2)

]
u(p, σ). (3.66)
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Using (3.60) we can rewrite this as

ū(p′, σ′)Γµ(p′, p)u(p, σ) =

ū(p′, σ′)
[
− i

2m
(p′ + p)µ

(
A(k2) − 2mB(k2)

)
+ 2mγµB(k2)

]
u(p, σ).

(3.67)

Comparing this with (3.56) gives F = 2mB and G = A− 2mB, or

A =G+ F,

B = 1
2m

F.
(3.68)

To summarize, we have found that(
Ψout

p′,σ′,n, J
µ(0)Ψin

p,σ,n

)
= i

q

(2π)3 ū(p′, σ′)
[

− i

2m
(p′ +p)µ

(
G(k2) + F (k2)

)
− i

4m
[γµ, γν ] (p′ − p)νF (k2)

]
u(p, σ). (3.69)

Let us now calculate the spatial components of this amplitude in the
limit of very small momenta. In the representation14

γ0 = −i
(

0 1
1 0

)
, γ = −i

(
0 σ

−σ 0

)
, (3.70)

we have15

J ij = − i

4

[
γi, γj

]
= 1

2
ϵijk

(
σk 0
0 σk

)
, (3.71)

and

J i0 = − i

4

[
γi, γ0

]
= i

2

(
σi 0
0 −σi

)
. (3.72)

Here σ are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.73)

Furthermore,

u(0, 1
2

) = 1√
2


1
0
1
0

 , u(0,−1
2

) = 1√
2


0
1
0
1

 . (3.74)

14Reminder: For an ease of comparison, we are using the representation of gamma
matrices from [9], although we use a different metric convention. Hence, in terms of our
metric, {γµ, γν} = −2ηµν .

15Latin indices such as i or j assume only the values corresponding to the spatial com-
ponents, e.g., i ∈ {1, 2, 3}. Also, ϵ123 = +1.
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Hence, we can obtain

ū(0, σ′)[γi, γj ]u(0, σ) = 2iϵijk (σk)σ′σ = 4iϵijk
(
J

( 1
2 )

k

)
σ′σ

, (3.75)

and
ū(0, σ′)[γi, γ0]u(0, σ) = − (σi)σ′σ + (σi)σ′σ = 0. (3.76)

Now we are ready to consider the limit of the space components of (3.69)
when |p′|, |p| << m. To the first order in the momenta we have

(
Ψout

p′,σ′,n, J
k(0)Ψin

p,σ,n

)
→ i

q

(2π)3

[
− i

2m
(p′k + pk)δσ′σ (G(0) + F (0))

− 1
m
ϵklm(p′ − p)l

(
J

( 1
2 )

m

)
σ′σ

F (0)
]
. (3.77)

Recalling now the space-time dependence(
Ψout

p′,σ′,n, J
k(x)Ψin

p,σ,n

)
= ei(p′−p)·x

(
Ψout

p′,σ′,n, J
k(0)Ψin

p,σ,n

)
,

we see that in order to obtain the matrix element of the interaction

V (0) = −
∫
d3x A(x) · J(x, 0),

we just multiply (3.77) with exp (i(p′ − p) · x), form the scalar product with
(minus) the vector potential of the external field, and integrate it over the
whole three-space. The term proportional to δσ′σ (p′ +p) ·A(x) corresponds
to the interaction of the moving charge with the external field, and we are
not interested in it. Instead, we will focus on the second term, which can
be expressed as below,(

Ψout
p′,σ′,n, VΨin

p,σ,n

)
→ i

q

(2π)3 ×∫
d3x e−i(p′−p)·x 1

m
A(x) ·

[
(p′ − p) ×

(
J( 1

2 )
)

σ′σ

]
F (0) + . . . ,

(3.78)

where we do not explicitly write the contribution from the first term. Writing
(p′ − p) e−i(p′−p)·x as i∇e−i(p′−p)·x and integrating per partes yields(

Ψout
p′,σ′,n, VΨin

p,σ,n

)
→ − q

(2π)3 ×∫
d3x e−i(p′−p)·x 1

m
(∇ × A(x)) ·

(
J( 1

2 )
)

σ′σ
F (0) + . . . .

(3.79)

If we now assume that the magnetic field B = ∇ × A is approximately
constant across the space, we can easily evaluate the integral and obtain(

Ψout
p′,σ′,n, VΨin

p,σ,n

)
→ − q

m
δ3(p′ − p)B ·

(
J( 1

2 )
)

σ′σ
F (0) + . . . . (3.80)
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Comparing this with (3.65) then leads to16

g = 2F (0). (3.81)

In terms of the Dirac and Pauli form factors we have F (0) = F1(0)+2mF2(0).
With help of the normalization condition F1(0) = 1 we can then write

g = 2 + 4mF2(0). (3.82)

If we calculate the amplitude (3.1) for a spin 1/2 particle considering only
the tree level diagram we obtain F2 = 0. This corresponds to the original
Dirac’s prediction g = 2 in his relativistic quantum mechanics. Also, using
the definition a = (g − 2)/2 of the magnetic anomaly a we can express the
result (3.82) more simply as

a = 2mF2(0). (3.83)

In other words, the magnetic anomaly corresponds to the value of the Pauli
form factor F2 at k2 = 0. (Note, however, that there is no complete consen-
sus on the exact definition of the form factors and the Pauli form factor is
often defined as the whole product 2mF2(k2). One would then have directly
a = F2(0).)

16Note that the terms represented by dots do not contribute if the particle does not
move.
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Chapter 4

Unitary and Analytic model

At this point we are finally ready to introduce the Unitary and Analytic
model. (From now on, we will use the abbreviation U&A for “Unitary and
Analytic”.) This model provides an approximate description of electromag-
netic form factors of hadrons. At its core the model is determined by the
particular analytical structure that it imposes on the form factor. It de-
scribes the form factor as an analytic function that has exactly two branch
points, both of them of the square-root type, and a number of particle poles
corresponding to resonances which couple to the virtual photon. Since the
number of resonances that enter the model is not determined in any fixed
way, in a certain sense the U&A model is a framework rather than a model.
Within that framework we can construct different models for the same form
factor and — even more importantly — we can construct various models
for different form factors. It is this universality that is perhaps the most
attractive feature of this phenomenological framework.1

Before we move on to heuristically introduce the model, let us first sum-
marize some of the key properties that this model aims to satisfy:

• We will take for granted the assumption that on the physical sheet
the form factor is analytic everywhere except for its normal thresh-
olds, which are located on the positive real axis of the Mandelstam
variable s. It can be shown that the lowest threshold is always of
the square-root type (see, e.g. [1]). The U&A model works under
the approximation that there are only two normal thresholds, both of
which are assumed to be of the square-root type. The lower of those
two thresholds is called the elastic threshold and corresponds to the
lowest threshold of the real form factor. The higher one, on the other

1It should be noted, however, than when the model is applied to hadrons that contain
more than two valence quarks an additional care must be taken to ensure an acceptable
asymptotic behavior at large energies. The established procedure (see [18]) for dealing
with these cases becomes cumbersome rather quickly as the number of valence quarks
grows. We will briefly return to this topic at the end of this chapter.
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hand, does generally not correspond to any specific physical threshold.
Instead, it plays the role of an “effective” threshold, meant to approx-
imate the cumulative effect of all higher thresholds of the real form
factor. We will call it the inelastic threshold. Since these two thresh-
olds are both of the square-root type, they generate a four-sheeted
Riemann surface, and in accordance with our assumption that there
are no other singularities present in the form factor on the physical
sheet, we need to make sure that our model is analytic on the first
sheet of its Riemann surface.

• The interaction between the virtual photon and the hadron is en-
visaged as being mediated by vector meson resonances. We need to
consider resonances that have the same (conserved or approximately
conserved) quantum numbers as the photon. This means that the
resonances must be spin 1 particles with the space inversion parity
η and the charge conjugation parity ξ both equal to −1.2 Since the
electromagnetic current has both isospin 0 and 1 components, we may
consider both isoscalar and isovector resonances. We will place a se-
lected number of vector meson resonance poles on the Riemann surface
on which the U&A model is defined. Since on the physical sheet the
form factor should be analytic, we place those poles only on the un-
physical sheets — that is, only on the second, the third or the fourth
sheet of the Riemann surface, but never on its first sheet.

• The property of Hermitian analyticity requires that on the physical
sheet the form factor is real below the lowest threshold. To make
sure that this property holds, we provide with each resonance pole
also its associated “shadow” pole located at the complex conjugate
position. Note that the reality of the form factor below the lowest
threshold is related to the condition of unitarity. (Recall our mention
of how the Hermitian analyticity follows from the generalized unitarity
in Sec. 2.5.) It is partially because it satisfies this property that the
model has the word “unitary” in its name.

2Recall that values of internal parities, such as η, ξ or ζ are in general not fully deter-
mined by the theory. This is because we can combine their corresponding operators —
P, C, or T — with any operators of internal symmetry to define new operators P, C, and
T. For example, if P is conserved, then so is also the operator ei(αQ+βB+γL)P, for any
real values of α, β, and γ, where Q, B, L are the operators of the electric charge, baryon
number, and lepton number, respectively. This new operator can serve as the operator of
space inversion just as well as does the original operator P. Thus, we can always adjust
the numbers α, β, and γ to fix the internal space-inversion parities of any three particles,
provided that they have linearly independent values of Q, B, and L. In fact, people often
use this freedom of choice of the operator P to set the internal parities η of the proton, the
neutron, and the electron to be all equal to +1. However, internal parities of completely
neutral particles that carry no conserved internal charges — such as the photon — are
independent of such re-definitions of P or C, and are therefore meaningful on their own.
(For further discussion of this topic, see, e.g., Chapter 3 of [9].)
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• We also need to make sure that the model is correctly normalized
and that it possesses a suitable asymptotic behavior at high energies,
as predicted by the QCD. (Although we will ignore the logarithmic
corrections.) Note that the first requirement, the normalization, is
always simple to satisfy. The second requirement, on the other hand,
is satisfied for mesons automatically, but requires special care if ones
wishes to formulate the model for hadrons that consist of more than
two valence quarks.

• Under these assumptions, on the physical sheet the form factor is fully
determined by the location of its lowest branch point and the discon-
tinuity across the branch cut. (This follows, for instance, from the
dispersion relation (4.1) derived below.) We select resonances and
adjust locations of their poles and values of their residues, as well
as the position of the inelastic threshold, in such a way as to faith-
fully approximate the discontinuity of the real form factor. As a rule,
this is achieved by fitting the model to the experimental data for the
corresponding total cross section. Since it is possible to derive from
unitarity a constraint on this discontinuity, this is another sense in
which the model can be said to be unitary.

In the following sections we will more closely introduce the model. We
will focus mainly on the general structure rather than on specific technical
details. Let me also mention that some aspects of the presentation given here
are my own and different from earlier treatments. The reader interested in a
more traditional, and in some sense also more detailed treatment, is advised
to consult the review [18]. If one is interested in the history of the model,
a good first step could be to look at the work [19], which is the earliest
English-language reference that I know of in which an early version of the
U&A model was presented.

4.1 From dispersion relation for form factor to
vector meson poles and branch cuts

In this section we are going to motivate the introduction of the U&A model.
We will choose a path that is not the most direct one, but which will lead
us to several other useful concepts along its way.

We will start by formulating what is commonly known as the dispersion
relation for the form factor. It is a consequence of the following two proper-
ties. The first one of them is the assumption that on the physical sheet the
form factor is analytic everywhere except for the interval [s0,∞), with the
positive number s0 representing the location of the lowest threshold. The
second assumption regards the asymptotic properties of the form factor for
large values of its argument. In accordance with QCD we assume that for
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large values of |s| the modulus |F (s)| of the form factor decreases at least
as fast as |s|−1. Then, if we integrate the expression F (s′)/(s′ − s) — as a
function of s′ — over the contour depicted in Fig. 4.1, in the limit when the
radius of the circle goes to infinity, we can easily evaluate the integral using
the residue theorem. This yields the value 2πiF (s) for the whole integral,
because the integration contour is traversed in the counterclockwise direc-
tion and the residue of F (s′)/(s′ − s) at s′ = s is F (s). Next, we observe
that because of the asymptotic properties of F the part of the integral over
the large circle vanishes. Only the parts of the contour that go right below
or right above the branch cut contribute, and since F (s∗) = F (s)∗, their
overall value equals∫ ∞

s0
ds′ (F (s′ + iϵ) − F (s′ − iϵ)

)
=∫ ∞

s0
ds′ (F (s′ + iϵ) − F (s′ + iϵ)∗) = 2i

∫ ∞

s0
ds′ℑ{F (s′ + iϵ)},

where ϵ is positive and infinitesimal. Combining these results, we find that

F (s) = 1
π

∫ ∞

s0
ds′ ℑ {F (s′ + iϵ)}

s′ − s
. (4.1)

This is a very useful result on its own. We can see that the discontinuity
across the cut fully determines the form factor. There are various ways how
one can attempt to determine or approximate this discontinuity. Here we
will introduce a simple but useful approach, which basically corresponds to
the vector meson dominance model.

Roughly speaking, in this approach one describes the interaction of the
virtual photon and a hadron as being fully mediated by vector meson res-
onances which have the same conserved quantum numbers as the photon.
Let us suppose that we are considering in total N such resonances and de-
note them by the label r = 1, . . . , N . In the first approximation we pretend
that these resonances appear as single-particle contributions in the sum over
intermediate states of definite total four-momentum. Hence, in this approx-
imation we consider them as if they were stable particles, which means that
their associated poles should appear in the form factor on the physical sheet.
These poles need to be at values s = sr = m2

r that correspond to the squares
of their approximate energies. Of course, since these particle are not really
stable, their energies all lie above the lowest threshold: sr > s0 for all r.
This means that these resonance poles all lie inside the interval [s0,∞) and
are therefore consistent with the analytic properties of the form factor that
we assumed during the derivation of the dispersion relation (4.1). If we as-
sume that no other intermediate states contribute to the discontinuity of F ,
then we can write

ℑ{F (s)} = π
N∑

r=1
arm

2
rδ(s−m2

r), (4.2)
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s0

Figure 4.1: The integration contour that can be used to obtain the dispersion
relation (4.1) for the form factor. We assume that the form factor is analytic
everywhere except for the interval that starts at the lowest threshold (at
s0 > 0) and continues to infinity along the positive real axis. In the limit
of infinite radius the part of the integral over the large circle vanishes as a
consequence of the assumed asymptotic properties of the form factor. (Note
that the integral over the small left semicircle centered at s = s0 does not
contribute anything beyond what has already been included in (4.1) as the
discontinuity at s = s0. However, for this to be true that discontinuity at
s = s0 must included in the integral, so strictly speaking the integration
bounds in (4.1) should be from s0 −δ to ∞, in the limit that δ → 0+. Under
normal circumstances, however, this does not make a difference in (4.1), so
we will ignore it here.)
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where ar are some unknown coefficients. (Those coefficients are related to
particular coupling constants, but we will not need to use that detail here.)
If we use this approximation in the dispersion relation (4.1), we can easily
calculate the corresponding form factor

F (s) =
N∑

r=1
ar

m2
r

m2
r − s

. (4.3)

This is the Vector Meson Dominance (VMD) model of the form factor. (See
[20] for a more complete discussion of this approach.)

There are several problems with the function (4.3). First of all, there
should also be contributions of other intermediate states to the disconti-
nuity, not just the contribution from resonances. Starting from the VMD
model (4.3), however, it is not at all straightforward to include these other
contributions, since resonances are not orthogonal to multi-particle states of
definite momentum. The second problem, related to the first one, is that the
electromagnetic form factor should have no poles on the physical sheet, and,
furthermore, that resonances should not be treated as stable particles. The
U&A model does partly address some of these issues. It retains the VMD
model’s fixation on the resonance poles, but introduces two normal thresh-
olds, and this allows one to treat resonances in a more appropriate way by
hiding them behind the branch cuts. This also means that the resonances
no longer figure in the discontinuity as if they were stable particles.

As was already mentioned several times, in the U&A model there are
two branch points. The branch point that is located at the higher value of
s is called the inelastic threshold and its position is usually left as a free
parameter that is determined by a comparison with data. On the other
hand, the lower, elastic threshold should correspond to the physical lowest
threshold, and its position is therefore fully determined. Let us now discuss
where should this elastic threshold be located. Before we proceed we need
to make it clear that form factors that we are trying to describe by the
U&A model are meant to correspond to matrix elements (3.1) evaluated
with electromagnetic and weak interactions switched off. These form factors
represent only the effects of strong interactions. The lowest mass strongly-
interacting particles that exist in scattering states are pions. Since in the
current chapter we will work under the approximation that the isotopic spin
symmetry is an exact symmetry of strong interactions, both the charged and
the neutral pion will be described as having the same mass. Generally, one
would expect that the elastic threshold is the threshold for the production
of two pions, but that is not completely correct, because sometimes the
two-pion intermediate states are not allowed. This a consequence of the
fact that we often consider isospin zero and isospin one components of the
electromagnetic current separately. (Sometimes this is forced upon us, but
often it is just a convenient choice.) To see how this works, consider some
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general state consisting of a pion and its anti-particle described in its center-
of-mass frame,

Ψ =
∑

t

∫
d3pχ(p, t; −p,−t) a†(p, t)a†(−p,−t) Ψ0, (4.4)

where Ψ0 is the vacuum state, a†(p, t) is the operator that creates the pion
of three-momentum p and isospin 3-component t and χ(p1, t1; p2, t2) is the
wave-function for this two-particle state. Note that for the pion the vari-
able t can have values −1, 0, and +1, corresponding to the particles π−,
π0, and π+, respectively, and that π− is the anti-particle of π+, and π0

is its own anti-particle. This is the reason why the isospin 3-components
in (4.4) are specified as t and −t. Now, pions are bosons, which means
that the creation operators a†(p, t) commute with each other. As a conse-
quence, we may replace χ(p, t; −p,−t) in (4.4) with its symmetrized version
{χ(p, t; −p,−t) +χ(−p,−t; p, t)}/2 without changing the state Ψ. In other
words, we can assume without the loss of generality that under the exchange
of both the momentum and the isospin variables the wave-function χ is sym-
metric. However, if the state Ψ is to be produced from a virtual photon it
must have the same total angular momentum as the photon: its total an-
gular momentum must be 1. But because pions are spin zero particles this
implies that the orbital angular momentum of the two-pion state Ψ must
be 1, and χ is therefore anti-symmetric under the exchange of the momen-
tum variables, χ(p, t; −p,−t) = −χ(−p, t; p,−t). It must therefore be also
anti-symmetric when only the isospin variables are exchanged. But a direct
product of two j = 1 representations of the group SU(2) decomposes into a
direct sum of one j = 2, one j = 1 and one j = 0 irreducible representations.
When we exchange the order of the two j = 1 systems that form the direct
product, the components of the irreducible representations with j = 2 and
j = 0 remain unchanged and the components of the j = 1 representation
are multiplied by −1. In other words, only the part with the total isospin
1 is anti-symmetric under the exchange of the isospin variables of the two
pions, the other two irreducible representations are symmetric. To summa-
rize, we found that if the state Ψ of (4.4) has the orbital angular momentum
l = 1, as it does if it is produced by a virtual photon, then its value of the
total isospin must be 1. This means that if a form factor corresponds to
the isovector part of the electromagnetic current — the part with isospin 1
— then its lowest threshold is indeed at s = 4m2

π, where mπ stands for the
pion’s mass. However, if a form factor corresponds instead to the isoscalar
part of the electromagnetic current — which is the isospin 0 component —
then two-pion intermediate states are not allowed. In such cases there is
no singularity at s = 4m2

π and the lowest threshold is located at s = 9m2
π,

which corresponds to the opening of the three-pion channel.
Note that the two-pion state (4.4) with χ that is anti-symmetric both un-

der t → −t and under p → −p has the same value of the charge conjugation
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parity as the photon. (If that was not the case, then two-pion intermediate
states would be forbidden even for isovector components of form factors.)
We can verify this by directly applying the charge conjugation operator C
on Ψ of (4.4)

CΨ =
∑

t

∫
d3pχ(p, t; −p,−t)

[
Ca†(p, t)C−1

] [
Ca†(−p,−t)C−1

]
CΨ0

=
∑

t

∫
d3pχ(p, t; −p,−t)

[
ξt a

†(p,−t)
] [
ξ−t a

†(−p, t)
]

Ψ0

=
∑

t

∫
d3pχ(p, t; −p,−t) a†(p,−t)a†(−p, t)Ψ0

=
∑

t

∫
d3pχ(p,−t; −p, t) a†(p, t)a†(−p,−t)Ψ0 = −Ψ, (4.5)

where we denoted by ξt the charge conjugation parity of the pion with
isotopic spin 3-component t. To obtain the third line from the second line
we used the fact that the product of the charge conjugation parities of a
particle and its anti-particle is always +1. This implies that ξtξ−t = 1. In
the last step we used the anti-symmetry of χ under the interchange of isospin
variables. The result CΨ = −Ψ means that the charge conjugation parity
of Ψ is −1, the same as that of the photon.

Both the elastic and the inelastic threshold of the U&A model are of the
square-root type. Together they therefore generate a four-sheeted Riemann
surface. In the core of the U&A model lies a particular transformation
that maps this four-sheeted Riemann surface in a one-to-one fashion onto a
single complex plane, in which the form factor is then constructed. We will
introduce this mapping in the next section.

4.2 Unfolding the Riemann surface

There are many ways to map a four-sheeted Riemann surface onto a single
complex plane. The U&A model employs a convenient choice of such a map,
but since that choice is not unique in any sense that I am aware of, I will
not attempt here to derive that mapping. Instead I will simply introduce
that mapping and describe its properties.

However, before we start discussing the transformation employed in the
U&A model, let us first briefly consider a simpler case, in which we assume
that the form factor F (s) is an analytic function with only a single branch
point. This will allow us to introduce in a more accessible setting some of
the elements that will be employed later in the U&A model. We assume here
that the (only) branch point of F (s) is of the square-root type, and that it
is located at s = s0 > 0. We choose the branch cut to go along the positive
real axis from s0 to infinity. In accordance with our earlier discussion we
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assume that for s > s0 the physical region can be reached by approaching
the branch cut on the physical sheet from above. (Note that the physical
sheet is the first sheet of the Riemann surface.) If we then cross the branch
cut from above, we appear on the second sheet of the Riemann surface, and
if we continue further along a circle around s0 in the clockwise direction —
that is, if we encircle the branch point on this second, unphysical sheet —
and then cross the branch cut from above once again, we return to the first
sheet and appear just below the branch cut. This is because the branch point
is assumed to be of the square-root type, which means that the Riemann
surface has only two sheets. The most straightforward way of mapping this
Riemann surface onto a single complex plane is to define the variable q as

q =
√
s− s0, (4.6)

where
√

· is the branch of the square root with the branch cut on the positive
real axis, defined in such a way that on its first sheet it maps positive real
numbers onto positive real numbers. This means that we have

√
reiϕ

∣∣
I. =

√
reiϕ/2, where 0 ≤ ϕ < 2π, (4.7)

where we used the subscript “I.” to indicate that this holds on the first sheet
of s = reiϕ. (And

√
r is just the usual positive square root of a positive real

number.) On its second sheet, this square root is instead
√
reiϕ

∣∣
II. =

√
rei(π+ϕ/2) = −

√
reiϕ

∣∣
I., where 0 ≤ ϕ < 2π. (4.8)

Clearly, the function (4.6) lives on a two-sheeted Riemann surface of s with
the branch point at s = s0, and with the branch cut going from s0 further
along the positive real axis. It maps the branch point to q = 0, and the
physical sheet of the Riemann surface — which corresponds to the first
sheet of

√
· — onto the upper half-plane of q. It maps the second sheet onto

the lower half-plane.
Note that at the branch point the map q(s) is not analytic and, in par-

ticular, it does not preserve angles there. This becomes very obvious if
we consider the real line on the first sheet of the Riemann surface, which
clearly is quite an important line for the application of the form factor F (s).
If s < s0 it is unambiguous whether we are on the first or the second sheet,
but if s > s0 we are right on the branch cut, so a greater care needs to
be taken. In accordance with the definition (4.7) the physical region corre-
sponds to the line that can be reached by approaching the branch cut on the
physical sheet from above. (For this reason it might be better to just say
that we are considering the line R + iϵ, ϵ → 0+, on the physical sheet of s.)
Now, if we inspect (4.6) we can easily see that q maps this line onto the curve
that starts at “+i∞” on the q-plane, goes along the imaginary axis straight
down to q = 0 — which corresponds to the branch point s = s0 — and from
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there continues along the positive real semi-axis to infinity. The fact that
at q = 0 this straight line suddenly breaks at a right angle illustrates that
q = q(s) is singular3 at s = s0.

Now, suppose that we wish to construct a model of F (s) on this two-
sheeted Riemann surface. One way we could do that is by constructing a
suitable function F̂ (q) defined on the complex plane of q, and then defining
F (s) = F̂ (q(s)). An advantage of this is that all the complications related
to the branch structure of the Riemann surface are automatically taken care
of by the transformation s → q(s) of (4.6). For example, if F̂ is analytic
everywhere on the q-plane, then F is an analytic function everywhere on the
Riemann surface of s, except for the single branch point at s0. According
to our previous discussion, however, this would not be the most appropriate
choice of F̂ . Indeed, F (s) should be analytic — but only on the physical
sheet! Hence, we would like to choose F̂ (q) that is analytic on the upper
half-plane of q, but on the second sheet we expect F (s) to have some sin-
gularities. In the spirit of the present chapter we want those singularities to
be resonance poles. Suppose that there is only a single resonance available,
of mass m > s0 and decay rate Γ. As we mentioned in Sec. 2.6, the “Breit–
Wigner” pole at s = (m− iΓ/2)2 is most directly accessed from the physical
region by moving downwards across the branch cut. It is therefore located
on the second sheet of s. Just as we expected, on the q-plane this pole is
located in the lower half-plane. We can calculate its position directly from
(4.6), but we need to be careful to choose the formula for the second sheet
of s — that is, we must use the square root (4.8). Denoting the position of
this pole by q1, we have

q1 =
√
m2 − Γ2/4 − s0 − imΓ

∣∣
II.,

which is located in the lower right quadrant of the q-plane. As we also
discussed in Sec. 2.6, this pole should have an associated “shadow” pole
located at the complex conjugate position. That is, the “shadow” pole is at
s = (m+ iΓ/2)2 on the sheet that is accessed from the physical sheet by
crossing the branch cut from below. In our case, this is again the second
sheet of s. Denoting the “shadow” pole’s position on the q-plane by q2, we
have

q2 =
√
m2 − Γ2/4 − s0 + imΓ

∣∣
II..

This point lies in the lower left quadrant of the q-plane. In fact, we can
easily see that q1 and q2 are located symmetrically at mirror positions with
respect to the imaginary axis: we have ℜ{q1} = −ℜ{q2} and ℑ{q1} = ℑ{q2}.
This can be expressed more economically as q2 = −q∗

1. Now, if we choose
their respective residues such that one is minus the complex conjugate of the

3As is well-known, analytic functions preserve angles. This is the reason why another
term that can be used to say that a function is analytic is to say that it is conformal.
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other, then resulting form factor will be real on the imaginary axis.4 But
the positive imaginary axis of q corresponds to the values of s < s0 on the
physical sheet, so we see that this choice of F̂ (q) leads to F (s) that satisfies
the condition of Hermitian analyticity.

Let us now without further delay proceed to the discussion of the map-
ping used in the U&A model. The Riemann surface now has four sheets,
which are generated by two branch points of the square-root type. The elas-
tic threshold is located at s = s0 and the inelastic threshold is located at
s = sin, and we assume that 0 < s0 < sin. We take care of the first branch
point in the exactly same way as we did in (4.6), that is, we transform from
s to q by

q =
√
s− s0, (4.9)

where the square root is the one of (4.6), that is, it satisfies (4.7) and (4.8).
However, this time we also need to incorporate the second branch point at
s = sin. Let us denote the value of q that corresponds to s = sin by qin,

qin = q(sin)
∣∣
I. =

√
sin − s0

∣∣
I. > 0. (4.10)

We will introduce the second branch cut by applying one more transforma-
tion, from q to W , so that together we are going to have a transformation
s → q(s) → W (q(s)). Now, if we just defined

W (q) =
√
q − qin,

in a direct analogy with (4.9) the new branch cut would be present on
the physical sheet of s if we approached the [s0,∞)-cut from above (and,
of course, towards some s > sin) — because that corresponds to values

4We assume that F vanishes at least as fast as |s|−1 for large arguments. This means
that F̂ vanishes at least as |q|−2 as |q| → ∞. Thus, if we integrate F̂ (q′)/(q′ − q) over a
large circle, we find

F̂ (q) = c1

q − q1
+ c2

q − q2
,

where c1 and c2 are the residues of F̂ at q1 and q2, respectively. Now, if c1 = −c∗
2 and if

we denote c1 = c then (recall that q2 = −q∗
1)

F̂ (q) = c

q − q1
− c∗

q + q∗
1
,

and so for q imaginary

F̂ (q)∗ = c∗

−q − q∗
1

− c

−q + q1
= F̂ (q), if ℜ{q} = 0.

That is, on the imaginary axis the function F̂ is real. (This is just a minor modification
of an argument related to the Schwarz’s reflection principle.) Note that this example also
shows that it can be reasonable to wonder if physical quantities such as F might be fully or
almost fully determined by their branch structure and locations of their poles and values
of their residues. An early exploration of this and related questions can be found in the
excellent article [21].
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of q that are in the upper half-plane and have a positive real component
ℜ{q} > qin — but the new branch cut would be absent if we approached
the cut from below, because that corresponds to values of q with negative
real part (satisfying ℜ{q} < −qin), and the square root (4.7),(4.8) does not
have any branch cut in the left half-plane. We can address this issue by
considering mappings that contain terms dependent not only on

√
q − qin,

but also on
√

−q − qin. (Because in
√

−q − qin the branch cut which starts
at s = sin is visible on the physical sheet if we approach the corresponding
location in the s-plane from below, though not if we approach it from above.)

The transformation employed in the U&A model is in a sense such a
mapping. It contains terms that are related to

√
q − qin and

√
−q − qin, but

it combines them in such a way that the first two sheets of s are mapped
onto the unit disk. The transformation reads

W (q) = i
(qin + q)

1
2 − (qin − q)

1
2

(qin + q)
1
2 + (qin − q)

1
2
. (4.11)

We will now proceed to discuss this rather complicated formula. First of
all, the form presented here is the one usually encountered in the literature.
Literature, however, does never seem to properly discuss the branch struc-
ture of this expression.5 Now, if in the physical region we move along the
real axis of s in the positive direction then at the point s = s0 we encounter
the lowest threshold. According to our convention we want the associated
branch cut to continue from s = s0 further along the positive real axis. Next,

5Let us take a step back to make sure we understand what does that mean. (Since
thinking about branches of rather complicated expressions such as (4.11) can become very
confusing.) The Riemann surface does not know anything about branch cuts or branches,
only about branch points. Branch cuts are only a tool — similar to coordinates — that
can be helpful when we want to speak about that Riemann surface but they do not have
any deeper physical or mathematical meaning. Hence, if we consider the function W (q(s))
given by (4.9) and (4.11) strictly as a map from the Riemann surface of s onto the W -
plane, then definitions of branch cuts and labeling of branches of the square roots

√
· and

(·)
1
2 are not substantial. The only thing that is affected by those conventions is where on

the W -plane are located the branch cuts of s. If we want the branch cuts to be located
as in Fig. 4.2, then we need to use definitions of square roots as specified in the main
text. Note, however, that just by themselves these branch cuts have absolutely no effect
on functions F̂ (W ) that we may define on the W -plane. To reiterate: the branch cuts are
nothing more than a part of the system of coordinates (composed of the variable s and
a discrete label that determines what sheet we are on) that we use to speak about the
points on the Riemann surface. Hence, if we make sure that the physical region is located
on the W -plane correctly [the location of the physical region is depicted in Fig. 4.2; note
that when, for some real s, we calculate the physical value of some form factor F (s) that
is defined using a function F̂ (W ) we need to know to what W does that s correspond,
and the answer is: among the four solutions W (q(s)) it is the one that lies in the physical
region of W ] and that the function F̂ (W ) is implemented correctly [which in our case
means that the poles must be at the correct spots, as depicted in Fig. 4.6] then we may
ignore the question of branch cuts altogether.
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as we move (still along the real line) to even higher values of s we eventu-
ally encounter also the second, inelastic threshold, which is at s = sin. In
our convention, its associated branch cut then also continues further in the
positive direction along the real axis. As we discussed above, the transfor-
mation q(s) of (4.9) already reproduces the first branch cut correctly. We
also mentioned that the terms

√
q − qin and

√
−q − qin, if employed together

in a suitable fashion, could then correctly reproduce the second branch cut.
But in (4.11) the square root has arguments qin − q and qin + q, rather than
q − qin and −q − qin. Since these two sets are related by the reversal of the
overall sign, we would expect that a different branch of the square root is
needed. In fact, it turns out that the convention that works as intended
is the following. In (4.9) we use the square root

√
· defined in (4.7),(4.8),

but in (4.11) we use the square root (·)
1
2 , that has the branch cut on the

negative real axis. More specifically, we have(
reiϕ

) 1
2 ∣∣

I. =
√
reiϕ/2, where − π ≤ ϕ < +π, (4.12)

and (
reiϕ

) 1
2 ∣∣

II. = −
(
reiϕ

) 1
2 ∣∣

I., where − π ≤ ϕ < +π. (4.13)

We adhere to this distinction between the two definitions of the square root
throughout this whole chapter:

√
· refers to (4.7),(4.8), and (·)

1
2 refers to

(4.12), (4.13). I caution anyone who decides to implement this model to
check that the branch structure is correct. (However, see also the footnote 5.)
In particular, it is a good idea to verify that the physical region of s (that
is, the line R + iϵ on the first Riemann sheet) is mapped onto the W -plane
as described below.

The complete transformation s → W (q(s)) defined by (4.9) and (4.11)
maps the four-sheeted Riemann surface of s onto the single complex plane of
W . Its branch structure is depicted in Fig. 4.2. As one can verify,6 it maps

6One way to do this is to implement the transformation in a computer and inspect its
plots. But, of course, one can also proceed analytically. A possible direction from which
one can attack this problem is to rewrite (4.11) as

W (q) = i
(qin + q)

1
2 − (qin − q)

1
2

(qin + q)
1
2 + (qin − q)

1
2

= i

(qin+q)
1
2

(qin−q)
1
2

− 1

(qin+q)
1
2

(qin−q)
1
2

+ 1
.

The complicated step is then to show that in this expression we can write
√

qin+q
qin−q

instead

of (qin+q)
1
2

(qin−q)
1
2

. In this presentation I skip this technical step. But if we take it for granted,

then we can analyze

W (q(s)) = i

√
qin+q(s)
qin−q(s) − 1√
qin+q(s)
qin−q(s) + 1

,
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the physical sheet onto the left half of the unit disk. The second sheet, which
is accessed from the physical sheet by crossing the branch cut between s0 and
sin from above, is mapped onto the right half of the unit disk. If we instead
cross the branch cut above the inelastic threshold we appear on the third
sheet, and this sheet is mapped onto left half-plane minus the unit disk. If,
from the third sheet we cross the branch cut between s0 and sin we appear on
the fourth sheet, and this sheet is mapped onto the right half-plane minus
the unit disk. The point s = s0 is mapped onto the points W = 0 and
W = ∞ and the point s = sin onto the points W = +i and W = −i. If,
in the physical region of s, we move along the real axis from minus to plus
infinity, the corresponding path in the W -plane starts at W = −1, which
corresponds to s = −∞, continues along the real axis to W = 0, which
corresponds to s = s0, then continues upwards along the imaginary axis to
W = +i, which corresponds to s = sin, and finally goes counterclockwise
along the unit circle from +i back to −1.

It will be useful to also know the inverse transformation to W (q(s)).
Note that from (4.11) we find

W − 1
W

= i
(qin + q)

1
2 − (qin − q)

1
2

(qin + q)
1
2 + (qin − q)

1
2

− (−i)(qin + q)
1
2 + (qin − q)

1
2

(qin + q)
1
2 − (qin − q)

1
2

= i
4qin
2q

, (4.14)

which (using (4.9) and (4.10)) means that[
W − 1

W

]2
= −4sin − s0

s− s0
. (4.15)

The inverse transformation, W → s, is therefore

s = s0 − 4(sin − s0)
[W − 1/W ]2

. (4.16)

Note that from this equation it is very easy to see what is the relation be-
tween values of W that correspond to the same value of s but on different
sheets. Since the variable W enters the right-hand side of (4.16) only in

as a successive application of the simple square root s → q(s), the spin transformation
q → u1(q) = q+qin

−q+qin
, another square root u1 → u2(u1) = √

u1, another spin transformation
u2 → u3(u2) = u2−1

u2+1 , and the multiplication by i, u3 → W = iu3. The point of all of
this is that each of those steps is easy to analyze. This goes without saying for the
square root and the multiplication by i. But spin transformations (also known as Möbius
transformations) are also simple to consider. As is well-known, they transform lines or
circles onto lines or circles (or, equivalently, circles onto circles on the associated Riemann
sphere). For details about this topic see, for instance, the textbook [22]. For an interesting
discussion of spin transformations in relativistic physics see the first chapter of [23].
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I. II.III. IV.

Figure 4.2: The branch structure projected onto the W -plane. This scheme
depicts the basic structure of the mapping s → W (q(s)), as given by (4.9)
and (4.11). Branch cuts are depicted by thick lines. As indicated in the
figure, the first sheet of the Riemann surface of s is mapped onto the left
unit half-disk, the second sheet onto the right half-disk, and the third and
the fourth sheet onto the left and right half-planes minus the unit disk,
respectively. The dashed line sketches the path taken by W as s goes from
−∞ to +∞ in the physical region. The path starts at W = −1, goes straight
to W = 0, then upwards to W = i and then counterclockwise along the circle
back to W = −1.

the combination [W − 1/W ]2, the value of s on the left-hand side is un-
changed if we substitute either W → −W or W → 1/W . That is, for each
solution W (s) of (4.16) there are three more solutions −W (s), 1/W (s), and
−1/W (s), each of them corresponding to a different sheet of the Riemann
surface of s. We could also recognize this directly from (4.11). Suppose we
start at some point of the Riemann surface on which the value of s is s1,
the value of q is q1 and the value of W is W1. Then, if we cross the branch
cut between s0 and sin, and return to the original s but on the other sheet,
the value of q changes from q1 to −q1. The equation (4.11) then implies
that W changes from W1 to −W1. Suppose, next, that instead of crossing
the branch cut between s0 and sin we cross it above the threshold sin. This
corresponds to crossing the branch cut associated with the elastic threshold
but also of the branch cut associated with the inelastic threshold. (Because
we decided to draw them one over another.) Crossing the branch cut asso-
ciated with the elastic threshold just reverses the sign of q. But crossing the
branch cut associated with the inelastic threshold has also an effect. Either
the sign of (qin − q)

1
2 changes, if the real part of q is positive, or the sign

of (qin + q)
1
2 changes, if the real part of q is negative. Either one of those

two cases leads to the same effect on W : W → −1/W . If we combine this
with the effect W → −W from crossing the “elastic” branch cut, the overall
effect of crossing the branch cut above s = sin is to change the value of W
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from W1 to 1/W1.

4.3 Constructing the model on the W -plane

We are now ready to construct the U&A model of the form factor. We will
do this by first constructing a suitable function F̂ (W ) defined on the W -
plane, and then defining the form factor F (s) — a meromorphic function
on the four-sheeted Riemann surface of s — by the relation

F (s) = F̂ (W (q(s))) . (4.17)

Here the mapping W (q(s)), which we have introduced in the previous sec-
tion, introduces into F two branch points of the square-root type. This
mapping is defined by the equations (4.9), (4.10), (4.11), in which the spe-
cific branches (4.7), (4.8) and (4.12), (4.13) of the square root are used.

In our approach, we will start from the VMD model (4.3). Our strategy
will be to first rewrite the VMD model in the form (4.17), which entails
finding a suitable function F̂ defined on the W -plane which — when used
in (4.17) — reproduces on the physical sheet the VMD model. Afterwards,
we will introduce non-zero decay rates for the resonances. As we will see,
this cannot be done directly with the VMD-model F̂ -function, because the
result of that would not satisfy the condition of Hermitian analyticity, and
would have resonance poles present on the physical sheet, just like the VMD
model (4.3) does if we use complex masses mr in its denominators. As we
will see, we are going to need to adjust the function F̂ to avoid these issues.

Let us consider a single term of the VMD model (4.3),

F
(r)
VMD(s) = m2

r

m2
r − s

, (4.18)

where we have removed the coefficient ar because at this point it is not going
to concern us. The subscript r corresponds to a single resonant particle
which is associated with this term of the VMD model. Of course, in general
we will want to consider the effect of several resonances, and in the U&A
model we deal with this in the same way as is done in the VMD model — we
will add together several terms, each corresponding to a single resonance.
Since our goal now is to express F (r)

VMD in terms of the variable W , we will
need to define some constants that correspond to special points on the W -
plane related to the function (4.18). First, the resonance pole is at s = m2

r

and there are four points associated with it on the W -plane. These are the
values of W (q(m2

r)) on the four branches of (4.9), (4.11), or — equivalently
— the four solutions of (4.16) for s = m2

r . We choose any one of these four
points and denote it by W (0)

r . The superscript (0) is meant to indicate that
at this stage we are still working in the approximation that the resonance is
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stable and its pole is at a real value of s. With this definition of W (0)
r the

equation (4.16) gives

m2
r = s0 − 4 sin − s0[

W
(0)
r − 1/W (0)

r

]2 . (4.19)

It will be very convenient to also define the point WN that corresponds to
the value s = 0, that is, WN = W (q(0)). Of course, there is again one such
a value of W for each sheet of s, and we will define WN to be that value of
W (q(0)) which corresponds to the physical sheet. This means that WN lies
on the interval (−1, 0) on the W -plane. We have

0 = s0 − 4 sin − s0
[WN − 1/WN ]2

. (4.20)

Using these two results together with the inverse map (4.16), we can
write

F
(r)
VMD = m2

r − 0
m2

r − s
=

 1[
W

(0)
r − 1/W (0)

r

]2 − 1
[WN − 1/WN ]2


/ 1[

W
(0)
r − 1/W (0)

r

]2 − 1
[W − 1/W ]2


= [W − 1/W ]2

[WN − 1/WN ]2
× W 2

N + 1/W 2
N −W

(0)
r

2
− 1/W (0)

r
2

W 2 + 1/W 2 −W
(0)
r

2
− 1/W (0)

r
2

= [1 −W 2]2

[1 −W 2
N ]2

×
W 4

N + 1 −W 2
N

(
W

(0)
r

2
+ 1/W (0)

r
2
)

W 4 + 1 −W 2
(
W

(0)
r

2
− 1/W (0)

r
2
)

= [1 −W 2]2

[1 −W 2
N ]2

×

(
W 2

N −W
(0)
r

2
)(

W 2
N − 1/W (0)

r
2
)

(
W 2 −W

(0)
r

2
)(

W 2 − 1/W (0)
r

2
) . (4.21)

Thus, we have found that

m2
r

m2
r − s

=
(

1 −W 2

1 −W 2
N

)2

×

(
WN −W

(0)
r

) (
WN +W

(0)
r

) (
WN − 1/W (0)

r

) (
WN + 1/W (0)

r

)
(
W −W

(0)
r

) (
W +W

(0)
r

) (
W − 1/W (0)

r

) (
W + 1/W (0)

r

) . (4.22)
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To summarize, what we have found is that if the constants W (0)
r and WN

are defined as is specified near the equations (4.19) and (4.20), and if W
and s satisfy the equation (4.16), then the VMD-model term m2

r/(m2
r − s)

equals the right-hand side of (4.22). Note that equality is satisfied for W
anywhere on the W -plane, provided that s has the value dictated by (4.16).
This means that if we put

F̂
(r)
VMD(W ) =

(
1 −W 2

1 −W 2
N

)2

×

(
WN −W

(0)
r

) (
WN +W

(0)
r

) (
WN − 1/W (0)

r

) (
WN + 1/W (0)

r

)
(
W −W

(0)
r

) (
W +W

(0)
r

) (
W − 1/W (0)

r

) (
W + 1/W (0)

r

) , (4.23)

then F (s) = F̂
(r)
VMD(W (q(s))) is a function defined on the four-sheeted Rie-

mann surface with branch points at s = s0 and s = sin that reproduces
on each sheet of the Riemann surface the function F

(r)
VMD(s) of (4.18). Of

course, unlike F (r)
VMD(s), the function F̂

(r)
VMD(W (q(s))) is not defined at the

points s = s0 and s = sin, where W (q(s)) is singular, but everywhere else the
two functions appear identical. In particular the function F̂

(r)
VMD(W (q(s)))

has no discontinuity across the branch cut except for the point s = m2
r ,

where the resonance pole is located. Nevertheless, even if the branch cuts of
F̂

(r)
VMD(W (q(s))) are in a sense “invisible”, they do exist and we will able to

make good use of them when we introduce a non-zero width of the resonance
in our next step. But before we do that, let us first better investigate the
function F̂

(r)
VMD(W ).

It is convenient to consider the function F̂
(r)
VMD of (4.23) as consisting of

two parts. The factor
[
(1 −W 2)/(1 −W 2

N )
]2 is called the asymptotic factor,

and we will discuss it later in this chapter. The remaining factor,(
WN −W

(0)
r

) (
WN +W

(0)
r

) (
WN − 1/W (0)

r

) (
WN + 1/W (0)

r

)
(
W −W

(0)
r

) (
W +W

(0)
r

) (
W − 1/W (0)

r

) (
W + 1/W (0)

r

) ,

is called the finite-energy factor. It is of the form

∏
p∈P

WN − p

W − p
, P = {W (0)

r ,−W (0)
r , 1/W (0)

r ,−1/W (0)
r }. (4.24)

As we can see, apart from the normalization terms in the numerators the
finite-energy factor is just the product of pole factors for the four solutions
of (4.16) for s = m2

r . This is the reason why it did not matter which of
those four solutions we singled out when we defined the constant W (0)

r near
the equation (4.19): in the function F̂

(r)
VMD all the four solutions appear,
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I. II.III. IV.

Figure 4.3: Resonance poles of the function F̂
(r)
VMD. Resonance poles lie on

the branch cuts, because resonances are treated here as if they were stable.
We illustrate one example of the case when the resonance lies below the
inelastic threshold — we depicted positions of the corresponding poles by
empty circles — and one example of the case when the resonance lies above
the inelastic threshold — those poles’ positions are depicted by full circles.

independent on the original choice of W (0)
r . Since we are still ignoring the

fact that the resonance decays, these resonance poles are located on the
branch cuts. As is depicted in Fig. 4.3, if s0 < m2

r < sin then on the W -
plane the poles are located on the imaginary axis, and if sin < m2

r then the
poles are located on the unit circle. [This is because, as we mentioned, the
physical region corresponding to the interval s0 < s < sin is mapped onto
the interval (0, i) of the W -plane. If W (0)

r lies in this interval, then −W (0)
r

lies in (−i, 0), 1/W (0)
r lies in (−i∞,−i), etc. The physical region interval

sin < s is mapped onto the upper left quadrant of the unit circle, and if
W

(0)
r lies there, then 1/W (0)

r = W
(0)
r

∗
, and the remaining poles also lie on

the circle.]
All that we have achieved so far is that we put the VMD model on our

four-sheeted Riemann surface. What we would like to do now is to introduce
the instability of the resonance, while making sure that the form factor
remains real below the lowest threshold and that there are no resonance
poles on the physical sheet. As we discussed in Sec. 2.6, the resonance pole
should be located at the value of s = sr given by

sr = (mr − iΓr/2)2, (4.25)

where Γ is the decay rate of the resonance. However, if we simply substituted
W

(0)
r → Wr in (4.23), where Wr would be the value

Wr = W (q(sr))
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on any of the sheets, the resonance poles would be located as illustrated
in Fig. 4.4. The four solutions of (4.16) for s = sr are still related by the
operations Wr → −Wr and Wr → 1/Wr and there is exactly one solution
present for each sheet of the associated Riemann surface. It is therefore
clear that this does not lead to a satisfactory form factor. First, there are
resonance poles on the physical sheet. (On the W -plane these are located in
the lower half of the left unit disk, because this is the part that corresponds
to the lower half-plane of s.) And furthermore, the form factor is no longer
real below the lowest threshold. This is because the physical region below the
lowest threshold corresponds to the interval (−1, 0) on the W -plane. Hence,
if F̂ (W ) is to be real on this interval the poles must located at complex
conjugate positions7, which — as we can see from Fig. 4.4 — they are clearly
not. If we take a step back we realize that none of these results should be a
surprise. When the decay rate was zero, the function F̂ (r)

VMD corresponded to
the VMD model (4.18). But F̂ (r)

VMD is analytic in the parameter W (0)
r (except

for the pole), just as the VMD model (4.18) is in the parameter m2
r . Hence, if

we set the decay rate to a positive value the function F̂ (r)
VMD must correspond

to the VMD model (4.18) but with sr = (mr − iΓr/2)2 substituted for m2
r .

And we already knew that this has a pole on the physical sheet and is not
real below the lowest threshold — after all, that is exactly the reason why
we are trying to formulate the U&A model! What we need to do now is
to take some inspiration from our discussion in Sec. 2.6 and make small
adjustments to positions of the poles in Fig. 4.4 in order to make the model
more satisfactory.

Before we introduce the needed adjustments let us first state what prop-
erties that we want our model to satisfy:

1. First, as we recognized already in Sec. 2.6, the property of Hermitian
analyticity requires that to each resonance pole there must exist a
complex conjugate “shadow” pole. We cannot therefore limit ourselves
to considering only poles at s = sr = (mr − iΓr/2)2. For each such
a pole we must include also its “shadow” pole, which can be accessed
from the physical region by taking the complex conjugate path to any
path by which we can access the resonance pole at s = sr. That
is, the “shadow” pole is located at s = s∗

r = (mr + iΓr/2)2, on the
sheet that from the physical region can be accessed by the complex
conjugate path to a path that can be taken to access the sheet where
its associated resonance pole at s = sr is located. Note that on the W -
plane the resonance pole and its associated “shadow” pole are located
at complex conjugate positions. (This follows from the fact that on the
Riemann surface the two poles can be reached by complex conjugate
paths and that complex conjugate paths on the Riemann surface are

7This follows from the Schwarz’s reflection principle.
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Figure 4.4: Resonance poles of the function F̂
(r)
VMD after the introduction of

a positive decay width. This figure illustrates possible locations to which
the resonance poles depicted in Fig. 4.3 move after we introduce a non-zero
decay rate.

mapped onto complex conjugate paths on the W -plane.)

2. Second, we do not want any poles to be present on the physical sheet.

3. We consider the VMD model to be a good approximation in the limit
Γ → 0+. More specifically, we require that for Γ = 0 our model and
the VMD model given by F̂

(r)
VMD coincide, and that the two models

approach each other in a continuous manner as Γ → 0+.

We will try to achieve this by adjusting the finite-energy factor (4.24). Note
that as we adjust the value of W (0)

r (or change the value of Γ) in (4.24)
the total number of poles remains unchanged (except for some special cases,
such as W (0)

r = 0, when some of the poles coincide or are pushed away
to the infinity). We expect the same to be true for the U&A finite-energy
factor. That means that as we vary Γ, the poles generally do not appear or
disappear, they only move on the W -plane. However, the property 2 implies
that for Γ > 0 some of the poles that are present in the VMD finite-energy
factor (4.24) must not be present in the U&A finite-energy factor, and the
property 1 implies that the U&A finite energy factor must contain some
poles that are not present in the VMD finite-energy factor. But for Γ = 0
both the factors should have the same poles. The simplest way to achieve
this is to select a suitable subset of VMD poles and make them — in the
U&A finite energy factor — to move on some different, carefully chosen
paths as Γ is gradually increased to positive values. For a fixed small value
of Γ > 0 this just means that to obtain the U&A model we slightly shift
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a subset of VMD poles to suitable locations on the W -plane. We will now
proceed to present how one does do that in the U&A model.

Let us start by inspecting the positions of the poles of F̂ (r)
VMD when Γ > 0.

These are depicted in Fig. 4.4. Empty circles indicate the positions of the
poles corresponding to s = sr for some particular value of m2

r that lies
between s0 and sin. The pole that lies in the right half of the unit disk is the
correct Breit-Wigner pole. On the Riemann surface of s this pole lies just
below the physical region, on the second sheet. However, its corresponding
“shadow” pole is missing. At the same time, there is an extra, unwanted pole
present in the left half of the unit disk. We need to remove this pole from
that half-disk, because we must not have any poles on the physical sheet.
We can do this by moving this pole to the right half-plane, symmetrically
with respect to the imaginary axis of W . This way the pole disappears
from the physical sheet and reappears on the second sheet at the position
s = s∗

r — as the “shadow” of the resonance pole! We still need to discuss
what to do with the poles on the third and the fourth sheet. The problem
with them is that they are not at complex conjugate positions. To solve
this, we move one of them symmetrically across the imaginary axis of W to
the position on the other sheet of s that corresponds to s = s∗

r . This way
we obtain another pair of complex conjugate poles. The only question is
whether we should move the pole that is on the fourth sheet (to the third
sheet) or the pole that is on the third sheet (to the fourth sheet). From what
has been said in this chapter both options are reasonable. However, in the
U&A model we move the pole that is on the third sheet, and place it on the
fourth sheet.8 Altogether, we move the poles as indicated in Fig. 4.5. We
use a similar approach also when m2

r > sin. Positions of the poles of F̂ (r)
VMD

for such a case and Γ > 0 are depicted in Fig. 4.4 by full circles. Just as
before, we move the pole that lies in the left half-disk across the branch cut
to the position corresponding to s = s∗

r , but this time we must move the
pole to the third sheet. (Recall our requirement that for small Γ > 0 the
adjustments in the poles’ positions should also be small.) This way that
pole becomes the “shadow” pole of the pole that has been already present
on the third sheet at s = sr. And similarly as before, we move the pole that
is on the second sheet to the fourth sheet to provide a “shadow” pole for the
pole that has already been there. Again, these adjustments are indicated by

8I think that a reasonable argument in favor of this choice is that if we gradually adjust
the coupling constant to make the resonance stable, as we were discussing in Sec. 2.6, we
want the stable particle poles to be present on the first and the third sheet, which means
that the resonance poles should be on the second and the fourth sheets. Historically,
however, this choice in the U&A model is a consequence of a heuristic argument used in
the model’s original derivation. There one adjusts the VMD function F̂ (r)

VMD in such a way
as to obtain a function that is manifestly Hermitian analytic, but which is equivalent to
the original VMD function if Γ = 0. Then one sets Γ > 0 and if the care is taken to
avoid the appearance of poles on the physical sheet, one acquires a configuration that is
presented here.
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I. II.III. IV.

Figure 4.5: How to pass from a Γ > 0 VMD model to the U&A model. When
decay rates are non-zero the VMD model starts manifesting certain un-
physical features. We can fix some of those by shifting some of the resonance
poles in the W -plane, as indicated by the arrows. The resulting form factor
is analytic on the physical sheet and real below the lowest threshold.

arrows in Fig. 4.5.
This concludes the introduction of the core aspects of U&A model. Just

as we indicated in (4.17) we construct the form factor F (s) as a function
on the four-sheeted Riemann surface in terms of a meromorphic function
F̂U&A(W ) defined on the W -plane as

F (s) = F̂U&A (W (q(s))) .

In analogy with the VMD model (4.3), the function F̂U&A(W ) is constructed
as a sum of terms, with each of the terms corresponding to a single resonance,

F̂U&A(W ) =
N∑

r=1
arF̂

(r)
U&A(W ). (4.26)

And, as we just described, the functions F̂ (r)
U&A are of the form

F̂
(r)
U&A(W ) =

(
1 −W 2

1 −W 2
N

)2 ∏
p∈P

WN − p

W − p
, (4.27)

where P is the set of positions of the poles of F̂ (r)
U&A. This set contains loca-

tions of two resonance poles — these are at the values of W corresponding
to s = sr = (mr − iΓ/2)2 — and their two associated “shadow” poles, which
are at the values of W corresponding to s = s∗

r = (mr + iΓ/2)2. As we
discussed above, if s0 < m2

r < sin, then these poles are from the second and
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I. II.III. IV.

Figure 4.6: Positions of poles of the function F̂
(r)
U&A. Empty circles indicate

the pole locations for a case when s0 < m2
r < sin, and the full circles indicate

their locations for a case when sin < m2
r .

the fourth sheet, and if sin < m2
r , then the poles are from the third and the

fourth sheet. Positions of these poles are illustrated in Fig. 4.6.
This ensures that the function F̂U&A(W ) yields a form factor F (s) =

F̂U&A(W (q(s))) that satisfies the following properties:

1. The form factor is analytic everywhere except for two branch points
of the square root type and a number of resonance poles (and their
“shadow” poles).

2. There are no poles on the physical sheet.

3. In the physical region the function is real below the lowest threshold.

There are two remaining properties that we wish to discuss in this chapter,
the normalization condition and the asymptotic behavior of the form factor.

4.3.1 Normalization condition in the U&A model

As we saw in the chapter 3, the value of a form factor at s = 0 is usually
fixed by a normalization condition of the form,

F (0) = C. (4.28)

Since the function F̂ (r)
U&A of (4.27) has been explicitly constructed to satisfy

F̂
(r)
U&A(WN ) = 1, and since in the physical region we have W (q(0)) = WN ,

the U&A model yields

F (0) = F̂U&A(WN ) =
N∑

r=1
arF̂

(r)
U&A(WN ) =

N∑
r=1

ar. (4.29)
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Thus, to satisfy the normalization condition (4.28) we just need to make
sure that

N∑
r=1

ar = C. (4.30)

4.3.2 Asymptotic behavior of the U&A model

There is one more general property that we want the U&A model to satisfy.
We want the model to follow the correct asymptotic behavior for large values
of |s|, although we will ignore the logarithmic corrections. Using quantum
field theoretical arguments, one can show [24, 25, 26] that a form factor F (s)
of a hadron that consists of nq valence quarks is expected to behave as

|F (s)| ∝ |s|1−nq for |s| → ∞. (4.31)

This means that electromagnetic form factors of mesons, such as the form
factor of the pion, are expected to vanish as |s|−1 for large values of |s|,
while form factors of baryons, such as the form factors of the proton, are
expected to vanish as fast as |s|−2.

The standard approach to ensure that the U&A model satisfies the
asymptotic property (4.31) starts from the observation that when |s| is large
then both the elastic and inelastic thresholds are far away. Their effects can
therefore be neglected and the effect of the resonance poles is asymptotically
the same as the effect of the corresponding pole in the VMD model. Hence,
for large values of |s| the U&A model (4.17), (4.26) and the corresponding
VMD model (4.3) follow the same behavior.

In the usual approach [27, 28] one therefore studies how to make the
VMD model to follow the correct asymptotics, and then directly applies the
same method to the U&A model. A detailed description of this procedure
can be found in [18, 28, 27]. Here I will address only the main ideas.

Note that the VMD model (4.3)

F (s) =
N∑

r=1
ar

m2
r

m2
r − s

contains a sum of terms that decrease each as s−1 for large values of |s|.
Hence, unless some special condition is satisfied, the VMD model is ex-
pected to decrease asymptotically as |s|−1. This is the expected asymptotic
behavior of form factors of mesons, which means that if we are constructing a
form factor of a meson, no special care is needed — the VMD model, as well
as the U&A model, satisfy the correct asymptotic property automatically.
But, of course, that does not mean that the VMD model cannot decrease
faster than |s|−1. A function of the form (4.3) can in principle vanish as
fast as |s|−N , where N is the number of resonance terms in the model. For
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example, if N = 2, the model (4.3) reads

F (s) = a1
m2

1
m2

1 − s
+ a2

m2
2

m2
2 − s

= −s
(
a1m

2
1 + a2m

2
2
)

+ (a1 + a2)m2
1m

2
2(

m2
1 − s

) (
m2

2 − s
) ,

and although for general values of the parameters a1, a2, m2
1, m2

2 this func-
tion decreases as |s|−1 when |s| becomes large, in the special case when
a1m

2
1 + a2m

2
2 = 0 the function vanishes as fast as |s|−2.

More generally, for a VMD model (4.3) with N resonance terms we can
write

F (s) =
N∑

r=1
ar

m2
r

m2
r − s

= AN−1s
N−1 + · · · +A1s+A0∏N

r=1 (m2
r − s)

, (4.32)

where the coefficients AN−1, ..., A0 are somewhat complicated expressions
that depend on the coefficients a1, ..., aN and the masses m2

1, ..., m2
N . We

get the asymptotic behavior |F (s)| ∝ |s|−K , for K an integer 1 ≤ K ≤ N , if
the K−1 coefficients AN−1, AN−2, ..., AN+1−K all vanish. This yields K−1
equations for N coefficients a1, ..., aN . Note that these equations come in
addition to the normalization equation (4.30). In particular, this means that
if we require a model that containsN resonance terms to have the asymptotic
dependence |s|−N , then the resulting N − 1 equations, together with the
single normalization condition, do in principle determine the coefficients a1,
...,aN uniquely, provided that the masses are known.

Although the procedure described above is straightforward, the expres-
sions for A1, ..., AN−1 are quite complicated and their manipulation can
be cumbersome. Luckily, we can easily derive an equivalent but simpler
set of algebraic constraints [27]. Suppose that |F (s)| ∝ |s|−K for large |s|,
and consider the integration contour depicted in Fig. 4.1, which we used
to derive the dispersion relation for the form factor. We can integrate over
this contour any of the functions F (s), sF (s), ..., sK−2F (s), and because
all of those functions vanish at least as fast as |s|−2 for large |s|, the part
of the integral over the large circle does not contribute (in the limit of the
infinitely large circle). From the assumption that the form factor F is ana-
lytic everywhere on the physical sheet, except for the positive real axis, we
then obtain the conditions∫ ∞

0
ds ℑ{F (s)} = 0, (4.33)∫ ∞

0
ds sℑ{F (s)} = 0, (4.34)

... (4.35)∫ ∞

0
ds sK−2 ℑ{F (s)} = 0. (4.36)
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Using now the expression (4.2) for the imaginary part of the VMD model
(4.3), we obtain the equations

N∑
r=1

arm
2
r = 0, (4.37)

N∑
r=1

ar

(
m2

r

)2
= 0, (4.38)

... (4.39)
N∑

r=1
ar

(
m2

r

)K−1
= 0. (4.40)

Under usual conditions, these equations form a set of K − 1 independent
equations. They were derived from the assumption that the VMD model
form factor follows the behavior |F (s)| ∝ |s|−K for large |s|. In other words,
this set of K − 1 equations represents a necessary condition for the VMD
model to follow that asymptotic behavior. However, as we have argued
above, the VMD model follows this asymptotic behavior if and only if the
K − 1 coefficients AN−1, AN−2, ..., AN+1−K are all zero. But since this is
also just a set of K − 1 independent equations, it is clear that the two sets
must be equivalent.9

The approach presented above may be quite natural, especially if one
starts from the assumption that the form factor should be determined mainly
by the character of its resonance poles. On the other hand, it also turns out
to be rather cumbersome. For this reason I will suggest here also another
approach, based on a modification of the formula (4.27) for the function
F̂

(r)
U&A(W ), which is used in the definition of the U&A model. As far as I

know this approach has not been suggested before, but it also does not con-
stitute a central point of this thesis. Beyond the short discussion provided
here I will not return to it in any other place of this work. As we will see, the
advantage of this approach over the established one presented above lies in
its great simplicity. However, I do not propose here any physical argument
in its favor.

From the equation (4.16)

s = s0 − 4(sin − s0)
[W − 1/W ]2

for the inverse map to W (q(s)), we can easily see that there are only two
points on the W -plane that are mapped to the infinity; these are W = 1 and
W = −1. Among them, only W = −1 can be approached from the physical

9I assume here that in both of the sets all K − 1 equations are independent. This
condition is normally satisfied.
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region. Furthermore, because[
W − 1

W

]2
= [W 2 − 1]2

W 2 = [W + 1]2 [W − 1]2

W 2 , (4.41)

we see from (4.16) that as W → −1

|s|−1 ∝ |1 +W |2, (for W → −1). (4.42)

If we now inspect the formula (4.27) for a single resonance term of the U&A
model,

F̂
(r)
U&A(W ) =

(
1 −W 2

1 −W 2
N

)2 ∏
p∈P

WN − p

W − p
,

we see that as W approaches the value −1, both the finite-energy factor∏
p∈P

WN −p
W −p and the part

(
[1 −W ]/[1 −W 2

N ]
)2 of the asymptotic factor both

approach a finite non-zero value. The only factor that determines the asymp-
totic behavior in the physical region is therefore the remaining part (1+W )2

of the asymptotic factor. Comparing this with (4.42) we see indeed that as
|s| → ∞ ∣∣∣F̂ (r)

U&A(W (q(s)))
∣∣∣ ∝ |s|−1.

We also see that if we change the power of the asymptotic factor from 2 to
2K,10 (

1 −W 2

1 −W 2
N

)2

→
(

1 −W 2

1 −W 2
N

)2K

,

then the asymptotic behavior of F̂ (r)
U&A becomes |s|−K . Hence, recalling that

the condition (4.31) says that for a form factor of a hadron that contains nq

valence quarks we have K = nq − 1, we can consider the modification

F̂
(r)
U&A,modified(W ) =

(
1 −W 2

1 −W 2
N

)2nq−2 ∏
p∈P

WN − p

W − p
, (4.43)

of the standard U&A resonance term (4.27). This breaks down the corre-
spondence between the VMD model and the U&A model, but we achieve
the desired asymptotic behavior without imposing any further restrictions
on the coefficients a1, ..., aN . Note also that this modification does not
violate any of the properties that we wanted the form factor to satisfy. The
resulting form factor is still analytic on the physical sheet, has two branch
points, is real below the lowest threshold, and the normalization at s = 0
remains unchanged.

10There are two main reasons why it seems reasonable to change the power of the
whole asymptotic factor, rather than only of (1 + W )2. First, it keeps the normalization
unchanged. Second, it changes the asymptotic behavior on all the four sheets in the same
way, rather than changing it to |s|−K on the first and the third sheet, and keeping it at
|s|−1 on the second and the fourth sheet.
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In Part III of this thesis I will present some of the applications of the
U&A model that I have worked on during my doctoral study. Compared
to the first two parts of the thesis, the third part is slightly more concise,
because many of the details can be readily found in the published papers.

We begin by discussing the running of the fine structure constant in the
chapter 5. After a general introduction of that concept in the section 5.1, we
will discuss its significance for the evaluation of the hadronic contribution
to the magnetic anomaly of the muon in the section 5.2. Here we will also
mention the possibility of evaluating this quantity from space-like data, and
briefly introduce the article [29], on which I collaborated during my doctoral
study, and which considered that method for the evaluation of the anomaly.
The discussion of the section 5.2 will also help us to appreciate some of the
recent experimental endeavors to measure the imaginary and real parts of the
running fine structure constant, which will be mentioned in the section 5.3.
Among the original goals of the thesis was a review of some theoretical
aspects of the running of the fine structure constant, namely of the relation
between its imaginary part and the total cross section of the annihilation of
the electron–positron pair in the time-like region, and the argument for the
reality of the running fine structure constant in the space-like region. We
will therefore continue by discussing these two topics in sections 5.4 and 5.5.
And lastly, in the section 5.6 I will mention some other related results that
I have worked on but which have not yet been published.

The last chapter of the thesis then consists of two much shorter sections.
The section 6.1 discusses the topic of the damped oscillatory structures
that were found in the data for the effective form factor of the proton by
A. Bianconi and E. Tomasi-Gustafsson [30]. I collaborated on two papers
[31, 32] that studied this topic, and which will also be introduced in that
section. The section 6.2 then discusses another topic that I collaborated on
during my doctoral work: the value of the ratio R = ϕ → K+K−/K0

LK
0
S of

the decay rates of the ϕ-resonance into the charged and neutral kaons. In
that section I will introduce the paper [33].
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Chapter 5

The running of the fine
structure constant

5.1 The running of the fine structure constant

5.1.1 Running coupling constants

One of the major puzzles of relativistic quantum field theory is the ap-
pearance of ultraviolet divergences in higher orders of perturbation theory
in physically relevant theories such as the quantum electrodynamics or the
standard model in four space-time dimensions. Those divergences arise from
certain regions of integration over the loop momenta, and can always be as-
sociated with particular one-particle-irreducible sub-graphs. The study of
this problem and associated methods is usually called the renormalization
theory.1 The standard way2 of dealing with the ultraviolet divergences is to
decompose the Lagrangian density of the theory into three parts

L = L0 + Lint + Lct, (5.1)

instead of decomposing it into the free and interacting parts only, as would
be suggested by the usual perturbation theory. The part Lct is called the
counterterm Lagrangian density. The counterterms present in Lct are meant
to cancel ultraviolet divergences that appear in the perturbation theory.

1The renormalization theory is addressed — although to a varying degree of clarity and
completeness — in most textbooks of the quantum field theory. A modern and readable
treatment entirely dedicated to this topic is presented in [34]. Some aspects of this topic
are also nicely introduced in [9, 35], which also present the modern “effective field theory”
perspective on these issues, including the interpretation of the standard model as a low-
energy approximation to a more fundamental theory.

2There is also another very common approach that was pioneered by K. Wilson, and
which is based in a fundamental way on the presence of some kind of an ultraviolet cutoff.
In this approach the coupling constants of the Lagrangian are cutoff dependent, with their
dependence assumed to be such as to make physically observable quantities independent
of the cutoff.

169
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A detailed formulation of this procedure is given by the Zimmermann’s
forest formula. Of course, in order for all of this to work, there must be a
counterterm of an appropriate structure present in the Lagrangian for each
one-particle-irreducible subgraph that is ultraviolet-divergent. In general, it
is not trivial to show that that is the case — mainly because the structure
of possible counterterms is directly restricted by assumed symmetries of the
Lagrangian in a way in which the structure of ultraviolet divergences might
not be.3 Nonetheless, we will not discuss these issues here, and for a more
proper explanation of this and related topics the reader is recommended to
consult [34].

What is important for our purposes is that the decomposition of the
Lagrangian density L into two parts, one consisting of its free and interaction
parts L0 +Lint together and the other of its counterterms Lct, is not unique.
The only requirement that we need to satisfy is that the counterterms have
infinite parts4 that cancel the infinities from ultraviolet divergent subgraphs.
We are, however, quite free to move finite quantities between L0 + Lint
and Lct as we wish. As a consequence, there is a freedom in what values
of renormalized couplings, masses or fields we use — and we can change
those without affecting any observable quantities, provided that we also
make appropriate adjustments of counterterms in order to keep the overall
Lagrangian intact. For example, suppose that the Lagrangian density L
contains the term −g0Φ4/4! where Φ is a real scalar field, and that we
divided this term between the interaction Lint and the counterterms Lct by
assigning to the interaction the quantity −gΦ4/4! and keeping what remains
as a counterterm. Hence, the counterterm is −gctΦ4/4!, where

gct = g0 − g.

(Here g is the renormalized coupling. We also assume for simplicity that
Φ represents the already renormalized field.) Now, if δg is some finite real
number, we can move the quantity −δgΦ4/4! from Lint to Lct. This amounts
to the re-definitions

g → g′ = g − δg,

gct → g′
ct = gct + δg.

Thus, although we now have a new value g′ of the coupling, observable
quantities remain unchanged because the overall Lagrangian has not been

3The problems appear if infinitesimal versions of the symmetry transformations are not
linear in fields. (If they all are linear, then Slavnov–Taylor identities imply that ultraviolet
divergences obey the symmetries of the Lagrangian.) An important case when they are
not linear is that of the BRST symmetry. It is therefore not simple to show that gauge
theories can be renormalized.

4The term “infinite part” must first be given a proper meaning by the use of some
form of regularization, such as for instance by using the dimensional regularization or by
formulating the theory on a lattice. At the final step, after the renormalization has been
appropriately applied, the regularizator should be removed.
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affected. Different methods of assigning finite parts between L0 + Lint and
Lct correspond to different renormalization prescriptions.

Now, any kind of renormalization prescription corresponds to some en-
ergy scale. Sometimes, that can be quite obvious, such as when we define
the renormalized couplings based on values of relevant Green’s functions
calculated at that energy. Other times, it can be more subtle, as in the case
of the physical renormalization prescription, when the scale is related to the
physical masses of the particles in the theory. In perturbation theory this
has important consequences, because if we use a renormalization prescrip-
tion that corresponds to some energy scale µ and calculate a quantity whose
characteristic energy scale is E, then individual terms in the perturbation
series will each contain one or more factors of ln(E/µ). When E >> µ (or
E << µ), those logarithms become very large, slowing down the conver-
gence of the perturbation series, or even invalidating it altogether. For this
reason, when calculating a quantity at an energy scale E it is important to
use couplings defined at some renormalization scale µ similar to the energy
E. That will tame the logarithms, and if the coupling gµ at that energy
scale is small enough, we are free to use the perturbation expansion. (If
|gµ| > 1 then there is no known way of carrying out perturbative calcula-
tions at that energy scale.) One way of looking at this is that as we change
the renormalization prescription some contributions move between different
terms in the perturbation series. Ideally, we want to use a prescription for
which the largest possible part of the overall value of the quantity is con-
tained in the first few terms of the series. Another perspective that can be
helpful when thinking about the renormalization energy scale is to notice
that when we choose a renormalization scale µ we effectively impose an ap-
proximate cutoff on transverse momenta larger than µ. Or, expressed from
yet another perspective, by choosing the renormalization scale µ we are ef-
fectively integrating out the degrees of freedom that are accessible only at
higher energies.

This is one of the reasons why effective couplings that correspond to
renormalization at some given energy scale µ play such an important role in
high energy physics. Suppose now, for simplicity, that there is only a single
coupling g0 present in the original Lagrangian, and denote its effective value
at the renormalization scale µ by gµ. If µ is inside the region where pertur-
bation theory works — that is, if |gµ| < 1 — then from the knowledge of
gµ at the scale µ we should be able to perturbatively calculate the effective
coupling gµ′ at some different energy scale µ′, provided that µ′ is not too dis-
tant from µ (so that the logarithm ln(µ′/µ) remains harmless). This implies
that there should exist a function F of µ′, defined in some neighborhood of
µ, that depends parametrically on µ, gµ and the various masses m present
in the theory, and which yields the value of gµ′ ,

gµ′ = F (µ′;µ, gµ,m). (5.2)
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The exact form of the function F depends both on the Lagrangian and the
precise definition of how does the renormalization scale µ determine gµ.

We are now going to sketch an important argument in which a central
role is played by dimensional analysis. For that reason it will be very con-
venient to work with dimensionless couplings.5 That is, we assume that in
the units of energy the coupling gµ has dimension zero. This simply means
that if the coupling g0 appearing in the original Lagrangian has dimension d,
then the corresponding effective coupling is defined as gµµ

d. For example, if
g0 appeared in the Lagrangian density in the term g0Φ3/3! (in which case we
would normally have d = 1), then the corresponding term in Lint would be
gµµ

d Φ3/3!. Now, if both gµ and gµ′ are dimensionless, dimensional analysis
implies that instead of (5.2) we can also write

gµ′ = G

(
gµ,

µ′

µ
,
m

µ

)
, (5.3)

where G is a dimensionless function of dimensionless variables. Differenti-
ating with respect to µ′ yields

d

dµ′ gµ′ = 1
µ

∂

∂y
G

(
gµ, y,

m

µ

) ∣∣∣∣
y= µ′

µ

. (5.4)

A deeper analysis would reveal that there should be no zero-mass singulari-
ties present in G. This means that for µ >> m we can use the approximation

d

dµ′ gµ′ = 1
µ

∂

∂y
G (gµ, y, 0)

∣∣∣∣
y= µ′

µ

, for µ >> m. (5.5)

Now we can set µ′ = µ to obtain a differential equation for gµ,

µ
d

dµ
gµ = ∂

∂y
G (gµ, y, 0)

∣∣∣∣
y=1

, for µ >> m. (5.6)

If we also use the conventional definition of the beta function

β(gµ) = ∂

∂y
G (gµ, y, 0)

∣∣∣∣
y=1

, (5.7)

we can re-write that equation in the following form

µ
d

dµ
gµ = β (gµ) , for µ >> m. (5.8)

5Note that in some of our earlier statements, such as when we compared the size of
the coupling with 1, we have been already implicitly assuming that the coupling was
dimensionless.
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This is a simple example of the Callan-Symanzik equation, or the renormal-
ization group equation. Beta functions can often be calculated in perturba-
tion theory, but the equation (5.8) leads to valuable insights even if that is
not the case.

We often refer to effective, renormalization-scale dependent coupling con-
stants as running coupling constants.

5.1.2 Renormalization of the electric charge

In this section we are interested in one particular case of a running constant,
the running fine structure constant. Recall how in the chapter 3 we found
that the operator of the electric charge Q commutes with generators of
the Poincaré group. This allowed us to show that the result of acting by
the operator Q on a single-particle asymptotic state Ψp,σ,n is given by the
equation (3.9),

QΨp,σ,n = q(phys)
n Ψp,σ,n,

where q(phys)
n is the physical electric charge of the particle n. Let us now

use the index l to label all elementary fields in the Lagrangian as Ψl(x).
The electromagnetic current Jµ(x) is associated with a particular global
symmetry, to which corresponds the infinitesimal transformation of the form

Ψl(x) → Ψl(x) + iϵ qlΨl(x). (5.9)

We do not sum over the index l on the right-hand side. In the formula (5.9)
the symbol ϵ represents a real infinitesimal constant and ql is the electric
charge associated with the field Ψl(x). Since this is an internal symmetry,
which leaves the Lagrangian density L intact, we can use the transformation
law (5.9) to construct an explicit formula for the electromagnetic current
density Jµ(x)

Jµ(x) = −i
∑

l

∂L(x)
∂ (∂µΨl(x))

qlΨl(x). (5.10)

The time component of this formula reads

J0(x) = −i
∑

n

PnqnΨn(x), (5.11)

where Pn(x) is the canonical conjugate of the canonical coordinate Ψn(x).
The index n is summed only over those values of l for which Ψl(x) is indeed
a canonical coordinate.6 We can now use the canonical commutation or

6Ignoring some subtleties the statement that Ψn(x) is a canonical coordinate does
simply mean that its time derivative ∂0Ψl appears in the Lagrangian. Then ∂L

∂(∂0Ψl)
corresponds to the conjugate momentum Pl. If ∂0Ψl does not appear in the Lagrangian
then ∂L

∂(∂0Ψl) = 0 and the field Ψl drops out from the summation over l in the zeroth
component of (5.10). That leads to the sum over n in (5.11).
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anti-commutation relations to show that for a canonical coordinate Ψn,

[J0(y, t),Ψn(x, t)]− = −qnΨn(y, t)δ3(y − x). (5.12)

If we integrate J0(y, t) over the whole space of y, and use the fact that
dQ/dt = 0, we obtain the commutation relation

[Q,Ψn(x)]− = −qnΨn(x). (5.13)

This can be interpreted as saying that when we apply the operator Ψn to
some state the value of its overall charge Q decreases by qn.

Consider now the matrix element of the commutation relation (5.13)
between the vacuum state Ψ0 and a single-particle state Ψp,σ,n. We can
write

− qn (Ψ0,Ψn(x)Ψp,σ,n) = (Ψ0, [Q,Ψn(x)]−Ψp,σ,n)

=
(
0 − q(phys)

n

)
(Ψ0,Ψn(x)Ψp,σ,n) , (5.14)

where in the last line we used the properties QΨ0 = 0 and QΨp,σ,n =
q

(phys)
n Ψp,σ,n, which were both derived near (3.9). If the field Ψn(x) anni-

hilates the particle n, then (Ψ0,Ψn(x)Ψp,σ,n) is not zero and we obtain the
condition

qn = q(phys)
n . (5.15)

At a first sight this might appear to be saying that the renormalized physical
charge q(phys)

n is the same as the charge qn of the corresponding field in the
Lagrangian, but we need to be more careful when interpreting this result.
The problem is that the global symmetry (5.9) does not define the overall
scale of electric charges ql, but only their relative values for different fields:
if we multiplied each ql by the same non-zero constant the transformation
(5.9) would still be a symmetry of the Lagrangian. This has a counterpart
in the fact that as far as only the global symmetry transformation (5.9)
is concerned, the overall scale of the electromagnetic current (5.10) is not
determined. To obtain the equation (5.15) we first had to fix some, from this
point of view a completely arbitrary scale of the current Jµ, and the equation
therefore only says that the relative physical charges of stable particles are
the same as the relative charges — determined by the transformation (5.9)
— of their corresponding fields. In fact, a completely analogous statement
holds also for composite particles.7 Nonetheless, if the charges ql in the

7Suppose that the particle Ψp,σ,n does not correspond to any elementary field in the
Lagrangian, but is instead annihilated by a product Φ of a number of elementary fields
and/or their adjoints. We can repeat the argument given above for an elementary particle
with only a few minor modifications. The commutation relation (5.13) would now instead
read

[Q,Φ] = −qΦ,
where q is the sum of qls for the elementary fields present in the field operator Φ minus
the sum of qls for the elementary field adjoints in the product. The condition (5.15) then
simply becomes qn = q.
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transformation law (5.9) stand for the bare, unrenormalized charges, then
the transformation should definitely be a symmetry of the Lagrangian. Our
result (5.15) can therefore be interpreted as stating that the charges of all
particles are renormalized by the same factor relative to their bare values,
independently of all other details regarding the particles. For example, the
charge of the electron, which corresponds to an elementary field and interacts
only electromagnetically and weakly, is renormalized by the same factor as
the charge of the proton, which is a composite particle that interacts also
with the strong force.

In order to say anything about the overall scale of the charges ql we
must actually introduce the electromagnetic interaction. We must therefore
consider the local version of the symmetry transformation (5.9), which is

Ψl(x) → Ψl(x) + iϵ(x) qlΨl(x). (5.16)

This is a gauge transformation because ϵ(x) is no longer a constant but
depends on the space-time coordinate x. As is well-known, in order to make
the action invariant under such local transformations we need to introduce
into the Lagrangian the photon gauge field Aµ, which transforms under the
gauge transformation as

Aµ(x) → Aµ(x) + ∂µϵ(x), (5.17)

and replace all derivatives ∂µΨl of the matter fields with their gauge-covariant
counterparts

DµΨl(x) = [∂µ − iqlAµ(x)] Ψl(x). (5.18)

Here, the symbols ql and Aµ are not meant to indicate any particular nor-
malization yet.

Now, as far as only the matter fields are concerned, we still cannot say
anything about the overall scale of the electric charge. This is because their
transformations (5.16) under the local symmetry depend on ϵ(x) only in the
combination qlϵ(x). This means that any redefinition of the overall scale of
electric charges can be absorbed into the corresponding redefinition of the
overall scale of ϵ(x). The gauge field, however, transforms under the local
symmetry as (5.17) — in a way that depends only on the parameter ϵ(x),
and not on the value of the electric charge. Hence, the scale of the gauge
field does in fact fix the overall scale of ϵ and consequently also the scale of
the electric charge.

To see how this works, suppose now that the transformation law (5.17)
holds for the bare field A

(0)
µ ,

A(0)
µ (x) → A(0)

µ (x) + ∂µϵ(x),

and that the derivative Dµ of (5.18) is gauge covariant when the gauge field
that appears in the derivative is bare and the charges ql there are the bare
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electric charges, which we denote by q(0)
l ,

DµΨl(x) =
[
∂µ − iq

(0)
l A(0)

µ (x)
]

Ψl(x). (5.19)

If we write the renormalized photon field Aµ(x) in terms of the bare field A(0)
µ

as
Aµ(x) = Z

− 1
2

3 A(0)
µ (x), (5.20)

then its gauge transformation is Aµ → Aµ + Z
−1/2
3 ∂µϵ. This shows that to

construct a gauge-covariant derivative in terms of the renormalized gauge
field we have no other choice than to substitute A(0)

µ (x) =
√
Z3Aµ(x) into

the expression (5.19) for Dµ,

DµΨl(x) =
(
∂µ − iq

(0)
l

√
Z3Aµ(x)

)
Ψl(x).

However, the coefficient of “−i times the gauge field” in the gauge-covariant
derivative corresponds to the charge, which implies that the renormalized
charge ql is equal to the quantity q(0)

l

√
Z3,

ql =
√
Z3 q

(0)
l . (5.21)

This shows that the electric charge is renormalized only by those effects that
renormalize the photon gauge field, and does not depend on any other radia-
tive correction.8 In other words, the running of the effective electric charge
depends only on the polarization of vacuum, or the full photon propagator.
For this reason, we are now going to briefly review some properties of that
propagator.

5.1.3 The photon propagator and the running fine structure
constant

Now that we have seen that the renormalization of the electric charge is
fully determined by radiative corrections to the photon propagator we need
to review some of its properties. We will denote the free propagator of the
photon by i∆µν(x, y)

i∆µν(x, y) = (Φ0,T {aµ(x)aν(y)} Φ0) , (5.22)

where Φ0 is the free-particle vacuum and aµ(x) is the gauge field expressed
in the interaction picture. The momentum-space free propagator i∆µν(q) is

8This can also be understood as a consequence of the Ward–Takahashi identities, which
imply that all the other radiative corrections to the electromagnetic vertex cancel out in
the limit when the external fermion lines are on the mass-shell and the four-momentum
transfer is zero. These identities follow from the current-conservation condition ∂µJ

µ = 0,
which means that this and the approach presented above are not really independent.
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= + 1PI + 1PI 1PI + . . .

Figure 5.1: This figures illustrates the decomposition of the full photon
propagator into an infinite series of terms containing one-particle-irreducible
insertions connected by free propagators. The symbol on the left-hand side
represents the full propagator. In terms of Feynman diagrams it corresponds
to the sum of all diagrams that have two external photon lines, and no other
external lines. (This sum also includes the free photon propagator.) On the
right-hand side we have an infinite series. The circle containing the label
“1PI” represents the sum of all one-particle-irreducible diagrams that have
two external photon lines and no other external lines, but with the external
photon propagators amputated. (Note that this “1PI” sum does not contain
the free propagator.) Hence, the n-th term in the series contains n− 1 such
sums of one-particle-irreducible subdiagrams, all of them connected by free
propagators and with an extra propagator at each end of the diagram.

given by the definition∫
d4x d4y eipxe−iqy (Φ0,T {aµ(x)aν(y)} Φ0)

= (2π)4δ4 (p− q) i∆µν(q). (5.23)

Here, q is the four-momentum entering the amplitude through the vertex at
y and p the four-momentum exiting at the vertex at x. Combining the last
two equations, we can write

i∆µν(x, y) = i

∫
d4q

(2π)4 ∆µν(q)e−iq(x−y). (5.24)

We will use the apostrophe to denote the full propagator variants of
∆µν(x, y) and ∆µν(q), that is, we will write

i∆′
µν(x, y) = (Ψ0,T {Aµ(x)Aν(y)} Ψ0) , (5.25)

i∆′
µν(x, y) = i

∫
d4q

(2π)4 ∆′
µν(q)e−iq(x−y), (5.26)

where Ψ0 is the true vacuum and Aµ(x) is the gauge field expressed in the
Heisenberg picture.

When we study the full propagator from the point of view of pertur-
bation theory it is very useful to express it in terms of appropriate one-
particle-irreducible diagrams.9 Recall that we say that a connected diagram

9There are several reasons for this, one of them being that ultraviolet divergences
and thus also counterterms correspond directly to appropriate one-particle-irreducible
diagrams.
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is one-particle irreducible if it is not possible to divide it into two discon-
nected parts by cutting through any single of its internal lines. In the context
of the photon propagator the relevant one-particle-irreducible diagrams are
those that contain exactly two external lines, both of them corresponding
to the photon. Let us denote by −i(2π)4Πµν(q) the sum of all such one-
particle-irreducible diagrams, expressed in the momentum space, but with
both external photon lines amputated. Here, q is the four-momentum flow-
ing through the external lines. We have extracted the factor of −i(2π)4 for
later convenience. Note, that (2π)4 would appear together with the over-
all four-momentum conservation delta-function that is associated with any
connected Feynman diagram, but which we suppose has already been ex-
tracted and does not figure in the expression −i(2π)4Πµν(q). Then, from the
usual rules for Feynman diagrams, we see that

[
i/(2π)4]∆′(s) corresponds

to the sum of diagrams that can be written in a familiar way as the free
propagator, plus the term that contains the one-particle-irreducible factor
−i(2π)4Πµν(q) with two free propagators connected at both ends, plus the
term containing two one-particle-irreducible factors connected by the free
propagator and with two more propagators each connected to one end of
the diagram, etc. (See Fig. 5.1.) This corresponds to the equation

i

(2π)4 ∆′
µν(q) = i

(2π)4 ∆µν(q)

+
[

i

(2π)4 ∆µα1(q)
] [

−i(2π)4Πα1α2(q)
] [ i

(2π)4 ∆α2ν(q)
]

+
[

i

(2π)4 ∆µα1(q)
] [

−i(2π)4Πα1α2(q)
] [ i

(2π)4 ∆α2α3(q)
]

×
[
−i(2π)4Πα3α4(q)

] [ i

(2π)4 ∆α4ν(q)
]

+ . . . . (5.27)

We can slightly simplify this series by canceling the “i/(2π)4”-terms asso-
ciated with propagators with the “−i(2π)4”-terms that stand in front of
one-particle-irreducible insertions. We obtain

∆′
µν(q) = ∆µν(q) + ∆µα1(q) Πα1α2(q) ∆α2ν(q)

+ ∆µα1(q) Πα1α2(q) ∆α2α3(q) Πα3α4(q) ∆α4ν(q) + . . . . (5.28)

For our purposes, it will be more convenient to rewrite this series as an
implicit equation for the full propagator,

∆′
µν(q) = ∆µν(q) + ∆µα1(q) Πα1α2(q) ∆′

α2ν(q). (5.29)

This equation might become more easy to understand if we temporarily stop
displaying the indices of ∆′, ∆, and Π, and treat those objects as matrices.
For now, we also cease displaying the four-momentum argument q. The
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equation (5.29) then simply reads ∆′ = ∆ + ∆Π∆′. We can also write it in
the form

∆′ − ∆Π∆′ = ∆. (5.30)

Assuming that 1 − ∆Π is invertible we can now obtain an explicit formula
for ∆′,

∆′ = [1 − ∆Π]−1 ∆. (5.31)

We also assume that ∆ and ∆′ themselves are invertible, which allows us
to re-write this result in a form that is even more convenient for explicit
calculations,

∆′−1 = ∆−1 [1 − ∆Π] = ∆−1 − Π. (5.32)

To move forward, we will need to employ a property that is sometimes
called the gauge-invariance of the S-matrix and which states that for any
matrix element Mµ1µ2...

βα (q1, q2, . . . ) defined by

(2π)4δ4 (pβ + q1 + q2 + · · · − pα) Mµ1µ2...
βα (q1, q2, . . . )

=
∫
d4x1d

4x2 . . . eiq1x1eiq2x2 . . .
(
Ψout

β ,T {Jµ
1 (x1)Jµ

2 (x2) . . . } Ψin
α

)
(5.33)

we have

q1µ1M
µ1µ2...
βα (q1, q2, . . . ) = q2µ2M

µ1µ2...
βα (q1, q2, . . . ) = · · · = 0. (5.34)

This follows from the current-conservation condition ∂µJ
µ = 0 and from the

fact that the electromagnetic current is itself an electrically neutral opera-
tor.10 Note that this property holds also for more general amplitudes: the
only requirement is that all external charged particles must be on the mass-
shell, but neutral external particles are all allowed to be off the mass-shell.

Here we are interested only in the simplest case of this formula, when
α and β both stand for the vacuum and there are only two current opera-
tors in the product. We can derive the relation between the corresponding
matrix element Mµν

00 and the full propagator i∆′
µν(q) if we consider both

quantities in perturbation theory. Since the gauge field is coupled only to
the electromagnetic current, we have

i∆′
µν(q) = i∆µν(q) − [i∆µα1(q)]Mα1α2

00 (q,−q) [i∆α2ν(q)]

+ [i∆µα1(q)] (−i(Z3 − 1))
[
q2ηα1α2 − qα1qα2

]
[i∆α2ν(q)] , (5.35)

where the minus sign in front of the second term has its origin in the two
factors of i, each of which is associated with one of the two electromag-
netic vertices that connect to the external photon propagators. The last
term corresponds to the single insertion of the gauge field renormalization

10For a derivation see, e.g., the chapter 10 of [9].
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counterterm, which needs now to be displayed explicitly.11 Comparing this
equation with (5.29) yields (in the matrix notation)

Π∆′ = −iM00∆ + (Z3 − 1)
[
q21 − qqT

]
∆. (5.36)

Multiplying this with q from the left (or, if we return the indices, contracting
with qα1) and using the gauge invariance condition (5.34) (together with
the fact that qα1

[
q2ηα1α2 − qα1qα2

]
= 0) on the right-hand side yields the

condition
q · Π∆′ = 0.

Assuming that ∆′ is invertible, this implies

qµΠµν(q) = 0. (5.37)

The most general tensor Πµν(q) that can be constructed from qµ and the
metric tensor and which satisfies this condition can be written in the form12

Πµν(q) = −
(
q2ηµν − qµqν

)
π(q2), (5.38)

where π(q2) is a scalar function. This equation together with (5.32) imply
that the full photon propagator can be expressed in terms of the function
π(q2). However, in order to obtain such a formula we first need to specify
of what form is the free propagator ∆.

The well-known complication related to the form of the free photon
propagator is that the function ∆µν(x − y) given by (5.22), as well as its
momentum-space variant, do not transform under Lorentz transformations
as tensors. This is because under Lorentz transformations the gauge field
aµ(x) transforms as a vector only up to a gauge transformation ∂µω(x),
where ω(x) is a field constructed from the creation and annihilation opera-
tors of the photon, and whose precise form depends on the Lorentz trans-
formation. For this reason we can consider only theories that have a gauge-
invariant action. As a consequence many quantities are determined only up
to a choice of gauge. Let us therefore work with a rather general formula
for the free photon propagator,

∆µν(q) = −
ηµν − ξ(q2) qµqν

q2+iϵ

q2 + iϵ
, (5.39)

11Earlier, when we were considering the sum of all one-particle-irreducible diagrams,
we did not need to display that single insertion of the counterterm explicitly, and it was
implicitly understood that its contribution has been included. That was quite consistent
with the definition of that quantity. It would not be consistent, however, to include it into
the second term of (5.35), since the diagrams represented by that term must contain two
electromagnetic current vertices.

12To see this, one can start with the general ansatz Πµν(q) = A(q2)ηµν + B(q2)qµqν

and apply the gauge-covariance condition.
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where the function ξ(q2) depends on a particular choice of gauge that we
choose to use.13 To use the formula (5.32) we first need to calculate ∆−1.
A straightforward way to do that is to use a general ansatz(

∆−1
)

µν
(q) = A(q2)ηµν +B(q2)qµqν ,

and solve the equation ∆∆−1 = 1 for A and B. We find(
∆−1

)
µν

(q) = −q2ηµν − ξ(q2)
1 − ξ(q2)

qµqν . (5.40)

Note that in the Landau gauge, when we have ξ(q2) = 1, this expression
diverges. This is not surprising, because in that gauge q · ∆(q) = 0, which
means that ∆ is not invertible. We are going to ignore this issue and simply
assume that ξ(q2) < 1. We can now insert this result together with the
expression (5.38) for Π into the equation (5.32) to obtain

(
∆′−1

)
µν

(q) = −
(
1 − π(q2)

)
q2ηµν −

(
ξ(q2)

1 − ξ(q2)
+ π(q2)

)
qµqν . (5.41)

Inverting this matrix then finally yields the explicit form of the full propa-
gator expressed in terms of the function π(q2),

∆′
µν(q) = −

ηµν −
[
ξ(q2)

(
1 − π(q2)

)
+ π(q2)

] qµqν

q2+iϵ

[1 − π(q2)] [q2 + iϵ]
. (5.42)

The gauge-dependent term now contains the factor
[
ξ(q2)

(
1 − π(q2)

)
+ π(q2)

]
instead of ξ(q2). This can be important in practical calculations but in a
gauge-invariant theory it should not have any physical consequences. Of a
greater importance is the factor 1 − π(q2) in the denominator, which has
measurable effects.

At this moment we might already try to answer some questions regarding
the properties of the function π(q2). Perhaps the most pressing one of those
is the question of the position of the pole of the full propagator (5.42). The
factor q2 + iϵ in the denominator vanishes at q2 = 0, so unless some other
factor in the propagator cancels this zero the full propagator should still have
a pole at q2 = 0. The only factor in (5.42) that could possibly cancel the
zero of q2 + iϵ is the factor 1 − π(q2) in the denominator. For this work the
function π(q2) would need to have a simple pole at q2 = 0. Now, the tensor
Πµν(q) corresponds to the sum of one-particle-irreducible diagrams, which
means that we expect it to have poles only at values of q2 that correspond
to masses of composite particles. Under usual circumstances there should
be no such a composite particle of mass zero, so we do not expect Πµν(q) to

13The most common choices are the Feynman gauge for which ξ = 0 and the Landau
(or Lorentz) gauge for which ξ = 1.
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have a pole at q2 = 0. Furthermore, Π(q)µν contains the term qµqνπ(q2), so
if π(q2) had a simple pole at q2 = 0, the same would hold for Πµν(q). This
suggests that π(q2) does not have a pole there. In other words, we do not
expect radiative corrections to give photon a mass. Another topic that we
can speak about right away is the normalization of π(q2) at q2 = 0. This
is because the renormalization prescription that we choose for the gauge
field Aµ determines the value of the propagator’s residue at its pole. Under
the physical renormalization prescription, which is also known as the mass-
shell prescription, we require that this residue be the same as that of the
free propagator. This corresponds to the normalization condition

π(0) = 0. (5.43)

Because the normalization condition (5.43) corresponds to the mass-shell
renormalization prescription for the photon gauge field, it also fixes the
renormalization prescription used for the electric charge. Let us label the
charge renormalized according to this prescription by e.

The matter fields couple to the gauge field only through terms that orig-
inate from gauge-covariant derivatives of matter fields. The form (5.18) of
those derivatives then ensures that in such interactions there is a single fac-
tor of the electric charge present at each end of the photon propagator. In
other words, in electromagnetic interactions there is a single factor of e2

associated with each photon propagator. This, combined with the fact that
the running of the effective charge depends only on radiative corrections to
the photon’s propagator, means that it is often more convenient to speak
about the running of the effective charge in terms of the energy dependence
of the factor e2 rather than of the charge e itself. There is an established
dimensionless constant that can be used to describe the strength of the elec-
tromagnetic interaction and which contains the factor e2: the fine structure
constant α, defined as14

α = e2

4π
. (5.44)

The numerical value of this constant is roughly 1/137.036.
Instead of the physical renormalization prescription for the gauge field

we could also consider some prescription characterized by a variable mass
scale µ. The formula (5.42) shows that the gauge invariant part of the full
propagator of the gauge field renormalized under the physical prescription
is the same as that of the free propagator except for the extra factor of

14This holds when we use the Heaviside–Lorentz units for the electric charge (which
effectively corresponds to us putting the vacuum permittivity ϵ0 and the vacuum perme-
ability µ0 both equal to 1) and also put ℏ = c = 1. More generally, we have

α = 1
4πϵ0

e2

ℏc
.
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(
1 − π(q2)

)−1. It is therefore natural to define the field A(µ)
µ (x) renormalized

at the scale µ by the relation

A(µ)
µ (x) =

√
1 − π(µ2)Aµ(x), (5.45)

where Aµ(x) is renormalized according the physical prescription. (I indicate
the renormalization scale by the superscript “(µ)”. The symbol “µ” appear-
ing as a subscript denotes the component of the four-vector A(µ).) The full
propagator of the field A(µ)

µ (x) at the point q2 = µ2 then has the same value
as does the free propagator. This prescription corresponds to the charge
e(µ) given by

e(µ) = e√
1 − π(µ2)

. (5.46)

Accordingly, the running fine structure constant α(µ2) is defined as

α(µ2) =

[
e(µ)

]2
4π

= α

1 − π(µ2)
= α

1 − ∆α(µ2)
, (5.47)

where it is customary in this context to denote π(q2) as ∆α(q2). We can
think about this definition as associating the factor

(
1 − π(q2)

)−1 that ap-
pears in the full propagator (5.42) not with the propagator itself but instead
with the two factors of the electric charge e that belong to the interac-
tion vertices to which the propagator is connected. Note also that ∆α(µ2)
represents the contribution of the one-particle-irreducible insertion into the
running of the fine structure constant.

In the usual canonical formalism it is required that the action be real,
for otherwise the principle of stationary action would yield too many field
equations.15 For this reason we normally require the bare coupling constants
that appear in the Lagrangian to be real. When speaking about renormal-
ized coupling constants this restriction becomes less strict, and in principle
we should be able to do calculations with complex renormalized couplings
just fine, as long as we make sure that the counterterms make the overall
action real. Nevertheless, such an approach leads to a number of complica-
tions and inconveniences, and for this reason it is usually better to apply

15In quantum field theory we often work with complex fields, but any such a complex
field can always be described in terms of two real fields corresponding to its real and
imaginary parts. If the action is real then the variational principle provides one equation
for each such a real field. One more clarification is at place here: the requirement that the
action be real does not always make it necessary for the Lagrangian to be real. The familiar
example is provided by the Lagrangian density L = iψ̄γµ∂µψ that is commonly used for
the Dirac field, and which is not Hermitian. The difference between that Lagrangian
density and its Hermitian conjugate, however, is a total derivative, and the resulting
action is therefore real. [Note that this Lagrangian density represents a massless field and
is expressed in the usual “PDG” notation, and not the notation which we used in the first
part of this thesis.]
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the formulas such as (5.46) or (5.47) only in those regions of µ2 where the
effective constants are real. (Which, for those two formulas would be for
values of µ2 that correspond to space-like four-momenta.) Another, related
option is to employ such formulas everywhere but to discard any possible
imaginary parts. There are, however, also many situation when it is useful
to speak about complex running constants and in this section we will ap-
ply the definition (5.47) as it is also in the region of µ2 corresponding to
time-like values of the momentum transfer, where α(µ2) is complex.

5.2 The fine structure constant and the muon’s
magnetic anomaly

One of the contexts in which the knowledge of the running of the fine
structure constant can be of great utility is the calculation of the magnetic
anomaly of the muon. We already saw in the subsection 3.5 how the mag-
netic anomaly of a spin 1/2 particle can be calculated from the value of the
Pauli form factor at zero momentum transfer. In the present subsection we
are going to discuss the special case of the magnetic anomaly of the muon.
We will focus on leading hadronic contributions to that quantity and their
relation to the running of the fine structure constant.

Let us, however, first take a few steps back and discuss the magnetic
moment of the muon in a greater generality. A massive particle of mass m
and electric charge q has a magnetic dipole moment µ that is proportional
to its spin s,

µ = g
q

2m
s. (5.48)

The dimensionless factor g that figures in this equation is called the g-
factor16 and in the subsection 3.5 we have already found the relation (3.82)
between g and the Pauli form factor that holds if the particle has spin 1/2.
Dirac, in his famous article [36] where he presented his relativistic quantum
mechanics of the spin 1/2 particle predicted the value g = 2 for the electron.
However, it became soon apparent that the true value of the electron’s g-
factor is not exactly equal to 2. One of the great successes of the new
theory of quantum electrodynamics in 1940s was the calculation of the lowest
order correction to the electron’s g-factor by Schwinger [37]. Since then the
magnetic moment of the electron has been calculated to several orders in
perturbation theory and also measured to a very high precision and both
quantities are in excellent agreement.17

16Sometimes g is also referred to as the gyromagnetic ratio. However, the same term is
elsewhere used to describe instead the whole ratio between the magnetic moment µ and
the spin s, that is, the full factor gq/2m. The latter terminology seems to me more correct,
and accordingly, I will try to use the name g-factor rather than gyromagnetic ratio for g
throughout this text.

17Considering the fact that the topic of the magnetic dipole moment has been so impor-
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had

Figure 5.2: The leading hadronic contribution to the magnetic moment.
The grey circle represents the strong-force contribution to the polariza-
tion of vacuum. If we interpret it as corresponding to the matrix ele-
ment (Ψ0,T {Jµ(x)Jν(y)} Ψ0) evaluated with only the strong interaction
switched on, then this contribution is of the order α2 relative to the tree
diagram.

In the case of the magnetic moment of the muon the situation is quite
different. The muon is about 207 times heavier than the electron and as a
consequence its magnetic moment is much more sensitive to the effects of the
weak and strong nuclear forces. In fact, at the precision that we have already
achieved in laboratory the measurements of the magnetic moment of the
muon are sensitive to all three forces of the standard model. This, coupled
with the fact that there is a long-standing tension between experimentally
measured values and theoretically calculated predictions, is the reason why
the topic of the muon’s magnetic moment attracts so much attention.

The fact that the measurement of the muon’s magnetic moment is sen-
sitive to all three forces of the standard model is a great advantage when it
comes to testing the standard model but it also leads to some difficulties on
the side of theoretical predictions. In particular, we must include into our
calculations the effects of the strong interaction, and are therefore forced to
confront the problem that in quantum chromodynamics we are unable to
apply perturbation theory when calculating low energy processes. We must
therefore look for some alternative approaches to estimate the strong-force
contribution to the magnetic anomaly.

tant in the development of relativistic quantum field theory, one may wonder why other
dipole moments, such as the electric or gravitational dipole moments, have played compar-
atively only minor roles in high energy physics. The reason is that for spin-1/2 particles
those two moments are minuscule, which is related to the fact that the operation of the
time reversal is very nearly a precise symmetry of physics. This is because in a relativistic
quantum field theory, if the operator T of time inversion is conserved then energy eigen-
states of any fermionic system must be at least twice degenerate. This phenomenon is
called Kramer’s degeneracy. A system containing a particle of a half-odd-integer spin in an
external static electric or gravitational (but not magnetic) field is time-reversal invariant,
but if that particle had any electric or gravitational dipole moment then the degeneracy
among its different spin states would all be lost. Such moments are therefore forbidden in
time-reversal invariant theories.



186 CHAPTER 5. THE FINE STRUCTURE CONSTANT

had

Figure 5.3: Another insertion of the hadronic vacuum polarization into the
diagram for the electromagnetic vertex. Even though this diagram is of the
same order in α as the diagram in Fig. 5.2 we can ignore it when calculating
the magnetic moment. This is because its contribution vanishes when the
four-momentum flowing through the external photon line is zero. (And for
the same reason we do not consider the diagram that is just as this one but
with the internal photon line which connects the two fermion lines removed.
That diagram is only O(α) relative to the tree diagram.)

The leading strong-force contribution to the magnetic anomaly is due
to the lowest order hadronic contribution to the polarization of vacuum.
The relevant diagram is depicted in Fig. 5.2. This diagram contains two
extra factors of the fine structure constant relative to the tree diagram.
Any contributions to the magnetic moment that contain hadronic vacuum
polarization insertions are directly related to the hadronic contribution to
the running of the fine structure constant. It is for this reason that α(s) is
important in the evaluation of the muon’s magnetic anomaly.

It might appear that there is another diagram that is of the same order
in α and that has the hadronic vacuum polarization insertion on the external
photon line, as is depicted in Fig. 5.3. This diagram would indeed contribute
if we were considering the Pauli form factor at an arbitrary value of the
four-momentum transfer q, but the magnetic moment is associated with the
value at q2 = 0, and because as a result of the condition (5.43) we have
π(q2)

∣∣
q2=0 = 0, this diagram has no influence on the magnetic moment.

It should be emphasized that the study of the contribution depicted in
Fig. 5.2 to the magnetic moment of the muon is of crucial importance be-
cause it currently represents the largest source of uncertainty in the overall
theoretical prediction. For a long time the only available approach to eval-
uate this contribution was to use analytic properties of the corresponding
form factor and the optical theorem to express this contribution in terms
of the total cross section for the annihilation of the electron–positron pair
into hadrons [38, 39, 40, 41]. In this approach there are therefore two in-
dependent places where experimental data enter into consideration. First,
it is necessary to measure the muon’s magnetic moment directly, so that
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this measurement can be compared with the theory. However, in order to
produce a theoretical prediction yet another set of data, consisting of cross
section measurements for the process e+e− → hadrons, is required so that
we can calculate the strong-force contribution to the magnetic moment.

Let us now briefly review some technical aspects of this approach to the
evaluation of the lowest order hadronic contribution to the muon’s mag-
netic anomaly aµ, depicted in Fig. 5.2. For details, the reader is encour-
aged to consult either the original sources [38, 39, 40, 41] or the book [42]
by F. Jegerlehner, which is dedicated to the topic of the muon’s magnetic
anomaly. The detailed calculation shows that this contribution can be ex-
pressed as

aHVP,LO
µ = α2

3π2

∫ ∞

4m2
π

ds
K(s)
s

R(s). (5.49)

Here, R is the ratio of the “undressed”18 total cross section of the annihila-
tion of electron-positron pair into hadrons to the Born cross section of the
process e+e− → µ+µ− calculated in the approximation of massless muons,

R(s) = σundressed
tot (e+e− → hadrons)

4πα2

3s

. (5.50)

The symbol K represents a kernel function, which is given by the integral

K(s) =
∫ 1

0
dy

y2 (1 − y)
y2 + s

m2
µ

(1 − y)
. (5.51)

This integral can be evaluated explicitly, and sometimes it is useful to con-
sider that solution in its explicit form, which is

K(s) = x2(2 − x2)
2

+ (1 + x2)(1 + x)2

x2

(
log(1 + x) − x+ x2

2

)

+ 1 + x

1 − x
x2 log(x), (5.52)

18The word “undressed” here means that the effects of the vacuum polarization on the
photon propagator should be removed. That is, we need to multiply the measured cross
section by the factor α2/α(s)2. (This discussion, as well as the derivation of (5.49) are
precise only if the cross section is actually for the process e+e− → γ∗ → hadrons, that
is, for the reaction mediated by a single intermediate virtual photon. It is usually a good
approximation to simply ignore diagrams that do not conform to this picture, because
their contribution to the cross section is of order α2 or higher relative to the contribution
of the process with only a single intermediate photon. The leading contribution is O(α2)
relative to the tree diagram, so their contribution is O(α4), which is one order of α higher
than the highest order contributions that are currently being significant relative to the
uncertainty in the evaluation of the highest order contribution (5.49).) Alternatively, we
can also use the original, “dressed” cross section in (5.50) but substitute α(s)2 for α2 in
the denominator of that equation.



188 CHAPTER 5. THE FINE STRUCTURE CONSTANT

where x =
√

1 − 4m2
µ

s is the velocity of the muon in the center-of-mass frame
of a system of two muons whose total four-momentum squared is s.

Using currently available cross section data the uncertainty in the eval-
uation of the contribution (5.49) turns out to be rather large, which makes
considerations of higher order corrections less critical from the practical
point of view. Nevertheless, the total value of the next order corrections is
not completely dominated by the uncertainty of (5.49), so it is still meaning-
ful to consider those corrections even from a purely pragmatic perspective.
Recall that the lowest order correction (5.49) is O(α2) relative to the tree
diagram. There are five distinct classes of O(α3) corrections that contain
hadronic contributions, depicted in figures 5.4–5.8. They were first calcu-
lated in [43, 44] and they are also discussed in [42]. The first class consists
of diagrams with the single vacuum polarization insertion as in Fig. 5.2 but
with one additional internal photon line. An example of such a diagram
is depicted in Fig. 5.4. Another class consists of diagrams with a single
hadronic vacuum polarization insertion and a single leptonic vacuum polar-
ization loop, both on the same internal photon line, as depicted in Fig. 5.5.
To account for contributions of these two classes of diagrams one can still
use an equation of the form (5.49) but with an appropriately adjusted kernel
function K. (See [43, 44] or [42].) The third class contains only one diagram,
which has two hadronic vacuum polarization insertions and is depicted in
Fig. 5.6. Its contribution can also be calculated from experimental cross
section data, although the corresponding equation contains two factors of R
and an adjusted kernel function,

aHVP, class 3
µ = 1

9

(
α

π

)3 ∫ ∞

4m2
π

ds

s

ds′

s′ R(s)R(s′)

×
∫ 1

0
dy

y4 (1 − y)[
y2 + s

m2
µ

(1 − y)
] [
y2 + s′

m2
µ

(1 − y)
] . (5.53)

The fourth class consists of all diagrams that correspond to Fig. 5.2 but with
an additional internal photon line inside the hadronic vacuum polarization
insertion. We can account for those contributions by calculating R(s) from
cross sections that are inclusive with respect to hard photons.19 The last
class of hadronic O(α3) diagrams contains the insertion of the subdiagram
that represents the hadronic light by light scattering instead of the vacuum
polarization. It is depicted in Fig. 5.8 and among all hadronic O(α3) dia-
grams it is the most problematic one. We will not discuss it here but will
briefly return to it at the end of the present section.

For decades the dispersive approach had been the only viable option to
calculate the leading order hadronic contributions. This started to change

19A discussion of this issue can be found in [42], or also [45, 46].
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Figure 5.4: An example of a “class 1” diagram for hadronic contributions to
the magnetic moment. This is one of several O(α3) diagrams that contain
a single hadronic vacuum polarization insertion and a single additional in-
ternal photon line.

had

Figure 5.5: A “class 2” diagram for hadronic contributions to the mag-
netic moment. This is one of several O(α3) diagrams that contain a single
hadronic vacuum polarization insertion and a single vacuum polarization
lepton loop.

had had

Figure 5.6: The “class 3” diagram for hadronic contributions to the magnetic
moment. This O(α3) diagram contains two hadronic vacuum polarization
insertions.
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had

Figure 5.7: A representation of a “class 4” diagram for hadronic contribu-
tions to the magnetic moment. This is one of several O(α3) diagrams that
contain a single hadronic vacuum polarization insertion with a single photon
line inside.

in recent years, when the purely computational methods of lattice QCD be-
gan to approach levels of precision comparable to the dispersive approach.
Particularly interesting is the recent work of Borsanyi et al. [47], which
claims to have reached a precision similar to the recent works which em-
ployed the dispersive approach. The value of the hadronic contribution that
they calculated shifted the overall prediction for the muon’s magnetic mo-
ment closer towards its observed value, significantly reducing the tension
between the theory and experiment. The discrepancy between the leading
order hadronic contributions calculated by the dispersive approach and that
computed in [47] is in the range of 2.0σ to 2.5σ. A further investigation
will be needed to explain this discrepancy. (The author’s suspicion is that
the root cause of the discrepancy lies in the bad quality of the available
cross section measurements of the electron–positron annihilation into pions
and into kaons, where the available dataset contains tensions between indi-
vidual experiments, suggesting that the authors of those experiments may
have underestimated their systematic errors.) In any case, it is very likely
that lattice QCD will play an increasingly important role in the evaluation
of hadronic corrections.20 These advances of lattice QCD, although very
interesting and highly promising, do unfortunately lie outside of the scope
of the present work and we will therefore not discuss them here any further.

There is, however, another recent development that is quite central to our
topic. One can motivate it by noting that one of the reasons for the relatively
small precision of the cross section data for the processes e+e− → hadrons,
which are needed in the already mentioned dispersive approach, is that in
the relevant energy region the total cross section exhibits abrupt fluctu-
ations due to the presence of resonances and normal thresholds. This is
related to the fact that the virtual photon created in the annihilation of
an e−e+-pair carries a time-like four-momentum and the problem would
therefore disappear if we could somehow estimate the hadronic contribu-

20For more recent results see also [48] and references cited therein.
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Figure 5.8: A diagram representing the hadronic light-by-light contribution
to the magnetic moment. This contribution is of the order α3 relative to
the tree diagram. Together with Fig. 5.2 and the O(α3) hadronic vacuum
polarization contributions, which are represented by diagrams in the fig-
ures 5.4–5.7, these are the most important diagrams in which the strong
force contributes.

tion from measurements in the space-like rather than time-like region. In
a sense, this is exactly what the new experiment MUonE suggested in [49]
aims to accomplish. In this approach, using the dispersion relation for the
polarization of vacuum, the hadronic contribution to the muon’s magnetic
moment is expressed in terms of the running fine structure constant α(s)
in the space-like region. The proposed experiment then aims to deduce
this running from very precise measurements of the cross section for elastic
scattering of high energy muons on atomic electrons. This proposal is an
iteration of an earlier suggestion by Calame et al. [50], where the Bhabha
scattering e−e+ → e−e+ was considered instead of the process eµ → eµ.
Proposals to measure the running of α(s) in space-like regions by the study
of Bhabha scattering are even older, and date at least to the year 2004 when
one such a proposal was given in [51]. Once the running of α(s) has been
measured, one needs to subtract from ∆α(s) its non-hadronic part in order
to obtain the hadronic contribution ∆αhad(s). The non-hadronic part can
be calculated very precisely in perturbation theory.

Let us now explain little bit better the main idea behind this approach.
We start from the formula (5.49) for the lowest order hadronic contribution
to aµ,

aHVP,LO
µ = α2

3π2

∫ ∞

4m2
π

ds
K(s)
s

R(s).

As we will discuss in greater detail in the section 5.4, the ratio R(s) is
directly related to the imaginary part of the hadronic contribution πhad(s)
to the vacuum polarization function,

ℑ
{
πhad(q2 + iϵ)

}
= −α

3
R(q2). (5.54)
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We can therefore rewrite (5.49) also as

aHVP,LO
µ = − α

π2

∫ ∞

4m2
π

ds
K(s)
s

ℑ
{
πhad(s+ iϵ)

}
. (5.55)

Notice that although the integration is still restricted to time-like values of
s, unlike R(s) the hadronic vacuum polarization function π(s)had is defined
also for space-like value of s. In the section 5.5 we will see that πhad(s)
should satisfy the once-subtracted dispersion relation

πhad(s) = s

π

∫ ∞

4m2
π

ds′

s′

ℑ
{
πhad(s′ + iϵ)

}
s′ − s

. (5.56)

If we now write in the integral (5.55) the kernel function (5.51) explicitly,

aHVP,LO
µ = − α

π2

∫ ∞

4m2
π

ds

s

∫ 1

0
dy ℑ

{
πhad(s+ iϵ)

} y2(1 − y)
y2 + (1 − y) s

m2
µ

,

we can see that the integral over s resembles the dispersion integral for πhad.
If we exchange the order of integration and slightly reorder the integrand
the correspondence becomes more clear,

aHVP,LO
µ = α

π

∫ 1

0
dy (1 − y)

−y2m2
µ

1−y

π

∫ ∞

4m2
π

ds

s

ℑ
{
πhad(s+ iϵ)

}
s+ y2m2

µ

1−y

. (5.57)

We can now see that although the original integral (5.55) was over time-
like values of s, the integration over s in this double integral is actually in
the form of the dispersion relation (5.56) and gives the value of πhad at the
space-like value of s = s̃(y) = −y2m2

µ

1−y ≤ 0,

aHVP,LO
µ = α

π

∫ 1

0
dy (1 − y)πhad(s̃(y)). (5.58)

As we mentioned earlier, the vacuum polarization function π(s) is directly
related to one-particle-irreducible effect on the running of the fine structure
constant, ∆α(s) = π(s). Hence, we can also write

aHVP,LO
µ = α

π

∫ 1

0
dx (1 − x)∆αhad(s̃(x)). (5.59)

This formula expresses aHVP,LO
µ directly in terms of the hadronic contri-

bution to the running of the fine structure constant in the space-like re-
gion. Note that when we vary the variable x between 0 and 1, the values
of s̃(x) = −x2m2

µ

1−x cover the whole negative semi-axis of s. This could pose a
problem for practical applications of the formula (5.59) because we cannot
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measure ∆α(s) at arbitrarily large values of space-like s. (Not even men-
tioning that we cannot use QED and perturbation theory at arbitrarily large
energy scales.) Luckily, this is where the factor 1 − x, which is present in
(5.59) comes into rescue: combined with the assumed asymptotic properties
of πhad(s) this factor ensures that by ignoring the part of the integral (5.59)
that corresponds to x between 1−δ and 1 for some small positive δ we incur
an error that can be bounded from above and made sufficiently small in a
practically feasible experiment.

In relation to this topic, during my doctoral study I collaborated on
the article [29], which considered these issues. In that work we used the
U&A model to describe measured cross section data for relevant processes
e+e− → hadrons, from which R(s) and thus also ℑ

{
πhad(s)

}
could be

calculated. These results were then used in the dispersion relation (5.56) to
predict the values of ∆αhad in the space-like region, which in turn were used
in (5.59) to calculate aHVP,LO

µ . We obtained the value

aHVP,LO
µ = (707.23 ± 4.81) × 10−10

for the lowest order hadronic contribution to the muon’s magnetic anomaly.
We then used predictions of the remaining contributions by other authors
to obtain the overall prediction of the standard model. Namely, we used the
value [52]

aQED
µ = (11658471.8951 ± 0.0080) × 10−10

for the QED contribution; the value [53]

aHVP,NLO
µ = (−9.87 ± 0.09) × 10−10

for hadronic vacuum polarization contributions of order O(α3), which are
represented by diagrams in the figures 5.4–5.7, and the value [53]

ahad,NNLO
µ = (1.24 ± 0.01) × 10−10

for O(α4) hadronic contributions; the value [54]

aHLbL
µ = (10.5 ± 2.6) × 10−10

for the O(α3) hadronic light-by-light contribution, which is represented by
the diagram in Fig. 5.8; and the value [55]

aEW
µ = (15.36 ± 0.1) × 10−10

for the weak force contribution. Thus, we have obtained the value [29]

aSM
µ = (11659196.4 ± 5.5) × 10−10 (5.60)
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for the standard model prediction of the muon’s magnetic anomaly. This de-
viated only by some 1.5σ from the 2021 world average experimental value [56]

aEXP, 2021 avg
µ = (11659206.1 ± 4.1) × 10−10. (5.61)

Let us briefly comment on this result. First, it may appear quite strik-
ing that the agreement with the average experimental value is so good, far
better than in the case of the usually considered theoretical prediction. But
that has nothing to do with us using the space-like approach (5.59). Instead,
it is related to the fact that when the U&A model was in past used (in the
dispersive approach (5.49)) to describe the cross section for the annihilation
of the electron–positron pair into hadrons then it tended to yield results
that were in better agreement with the experimentally measured value of
aµ than the consensual theoretical prediction. (See, for instance, [57].) It
is definitely possible that this is because the physical requirements of an-
alyticity, Hermitian reality, normalization, etc. that are “hardwired” into
the model do partially correct the (low-quality) experimental cross section
data. On the other hand, it is also possible that this improved agreement
with experiment is just a coincidence or a result of some systematic error in
the application of the model (considering that the model has always been
applied by the same relatively small group of people). Nevertheless, even
with all these qualifications the result (5.60) is interesting on its own. Sec-
ond, the way in which the space-like approach (5.59) was employed in this
article can only be regarded as an exercise that tested this approach and
not a genuinely new result because the method was somewhat circular: we
calculated space-like values of ∆αhad from time-like values of ℑ

{
πhad(s)

}
using the dispersion relation (5.56) and then employed the formula (5.59)
which calculates the anomaly from those space-like values but only because
it relies on the same dispersion relation (5.56) to relate them back to time-
like values of ℑ

{
πhad(s)

}
that figure in the original formula (5.49). Hence,

we used the same dispersion relation twice, first in the direction “time-like
region → space-like region” explicitly, and then in the opposite direction
implicitly when we used the formula (5.59). The result should be therefore
identical as if we had just calculated the anomaly directly from the time-like
formula (5.49).

5.3 Measuring the running of the fine structure
constant

As we have seen in previous subsections, the running of the fine structure
constant plays an important role in high energy physics. As is also true
with many other such quantities, our interest in studying and measuring
this quantity is twofold. On the one hand, a physical theory should be
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able to predict the value of α(s), and comparing such a prediction with
measurements is useful in testing the validity and limits of that theory and
our methods of calculation. In principle, it could even provide hints pointing
in the direction of a better, more fundamental theory. On the other hand,
α(s) itself enters into the calculation of many other measurable quantities,
and once it is known — either from a calculation, a measurement, or a
combination of both — it can be used to predict those quantities. We
encountered an example of this in the previous section when we discussed
the magnetic anomaly of the muon.

It is therefore worthwhile to attempt to measure the running of α(s). In
the present section I will very briefly mention two such attempts. One of
them is the proposed MUonE experiment [49], which we already mentioned
in the previous section, and which has the ambition to measure the running
of α(s) in the space-like region. The other one is an experiment that has
been already carried out by the KLOE-2 Collaboration at DAΦNE and
which measured both the real and imaginary parts of α(s) in the time-like
region [58].

Let us start with the KLOE experiment [58]. This experiment used the
initial state radiation technique to measure the process e+e− → µ+µ−γ(γ),
in which the virtual photon created in the annihilation of the e+e−-pair
carried a time-like momentum in the energy range between 0.6 GeV and
0.975 GeV. The final state µ+µ−γ(γ) contains one or more photons. One
of those photons is the initial state radiation photon used to determine the
center-of-mass energy that the e+e−-pair had at the moment of its annihi-
lation. At the precision achieved by this experiment one needs to take into
account both the initial and final state radiation, and in [58] these effects
were considered at the next-to-leading order using the PHOKHARA Monte
Carlo event generator (see, e.g., [59, 58] and the references cited therein).
At the achieved precision it was still possible to ignore the contribution of
diagrams that contain two or more intermediate virtual photons, and under
this approximation the ratio of the observed cross section to the Born cross
section provides direct information on the magnitude of α(s),

dσexp
(
e+e− → µ+µ−(γ)

)
/d

√
s

dσBorn
MC (e+e− → µ+µ−(γ)) /d

√
s

=
∣∣∣∣α(s)
α

∣∣∣∣2 . (5.62)

The justification of this formula follows from the fact that while the Born
cross section (ignoring now the final state radiation photons) is calculated
from the diagram depicted in Fig. 5.9 that we will study in the next section,
the experimental cross section – at least in the applied approximation — is
given by the same diagram but with the intermediate free photon propagator
∆µν replaced by its full variant ∆′

µν .
In the next section we will also see that the imaginary part of α(s) can

be determined by measuring the total cross section for the process e+e− →
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γ∗ → “anything”. In particular, the hadronic contribution to ∆α(s), which
cannot be calculated perturbatively at this energy scale, can be determined
by the measurement of the process e+e− → γ∗ → “hadrons”. In the next
section we will review the derivation of this relation between the imaginary
part of ∆αhad(s) and the total cross section for the process e+e− → γ∗ →
“hadrons”. This relation can be expressed in the form (5.100)

ℑ
{

∆αhad(s)
}

= −α

3
R(s), (5.63)

where the function R has been defined in (5.50) as the ratio of the total cross
section for the process e+e− → γ∗ → “hadrons” to the total Born cross sec-
tion for the process e+e− → µ+µ−. The remaining leptonic contributions
to ℑ {∆α(s)} can be calculated in perturbation theory. Once we have mea-
sured both the modulus |α(s)| and determined the imaginary part of ∆α(s)
it is easy to extract also the real part of ∆α(s). From the definition (5.47)
we find

α

α(s)
= 1 − ∆α(s), (5.64)

which implies that∣∣∣∣ α

α(s)

∣∣∣∣2 = 1 + |∆α(s)|2 − 2ℜ {∆α(s)} . (5.65)

If we now express |∆α(s)|2 on the right-hand side as the sum of the squares
of the real and imaginary parts of ∆α(s) we find∣∣∣∣ α

α(s)

∣∣∣∣2 − (ℑ {∆α(s)})2 = (1 − ℜ {∆α(s)})2 , (5.66)

where both quantities that appear on the left-hand side are presumed to be
known. Hence, since we know that 1 − ℜ {∆α(s)} > 0, we can write

ℜ {∆α(s)} = 1 −

√∣∣∣∣ α

α(s)

∣∣∣∣2 − (ℑ {∆α(s)})2. (5.67)

Let us now turn our attention to the MUonE experiment. This experi-
ment was proposed in 2017 [49], although the main idea has been presented
already two years earlier in [50]. A more detailed description of the technical
aspects of the experiment can be found in the letter of intent [60]. In 2018 a
test run of the experiment was carried out in CERN, the discussion of which
can be found in [61, 62]. And finally, the most recent update regarding the
main experiment appears to be [63].

As was explained in the previous section, the MUonE experiment aims
to measure the running fine structure constant α(s) in the space-like region.
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The quantity ∆α(s) contains contributions from the QED and from the
weak and strong nuclear forces,

∆α(s) = ∆αQED(s) + ∆αweak(s) + ∆αhad(s). (5.68)

Contributions from the QED and weak force can be calculated perturba-
tively with very high precision. One can therefore obtain ∆αhad(s) by sub-
tracting from the measured quantity ∆α(s) the theoretically calculated val-
ues of ∆αQED(s) and ∆αweak(s). In this way we can obtain an independent
evaluation of this problematic quantity.

The main promise of this new experiment is that it will provide a new way
to directly measure the leading order hadronic contribution to the magnetic
moment of the muon, using the equation (5.59),

aHVP,LO
µ = α

π

∫ 1

0
dx (1 − x)∆αhad(s̃(x)),

with s̃(x) defined as

s̃(x) = −
x2m2

µ

1 − x
. (5.69)

The contribution aHVP,LO
µ is the dominant source of error in the overall pre-

diction of aµ. Furthermore, as we mentioned in the previous subsection,
there also seems to be a discrepancy between the calculation of the lowest
order hadronic contribution based on the old dispersive approach and the
results coming from lattice QCD. In fact, the lattice QCD prediction of [47]
is in acceptable agreement with the experiment. This suggests the possibil-
ity that the source of the long-lasting discrepancy between the theoretical
predictions of aµ and its experimental value might be hidden somewhere
in the dispersive calculation. If nothing else, it is not hard to imagine the
possibility that the measured cross section data for the annihilation of e+e−

into pions and into kaons, which enter into that calculation, are not reli-
able enough and suffer from underestimated systematic errors. It would be
therefore very desirable to have another, independent experimental way to
estimate the leading order hadronic contribution to aµ.

It should be noted that in order for the MUonE experiment to yield any
useful results it must achieve a very high precision. To estimate the required
precision, consider the ratio R̃ of the cross section for the process e+e− →
“hadrons” to the same cross section but with only the electromagnetic and
weak contributions to the running of α(s) included. Considering only the
contribution of the diagrams containing a single intermediate full photon
line, these two cross sections are the same except for the factor of |α(s)|2,
which for one of them is evaluated with strong interactions switched on and
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for the other one with strong interactions switched off. This leads to

R̃LO(s) = dσLO(s; ∆αhad ̸= 0)/ds
dσLO(s; ∆αhad = 0)/ds

=
[

1 − ∆αQED(s) − ∆αweak(s)
1 − ∆αQED(s) − ∆αweak(s) − ∆αhad(s)

]2

=

 1
1 − ∆αhad(s)

1−∆αQED(s)−∆αweak(s)

2

≊
[
1 + ∆αhad(s)

]2
≊ 1 + 2∆αhad(s).

(5.70)

The quantity ∆αhad(s) varies only mildly across the kinematic range covered
in this experiment and in the region that contributes most to the magnetic
anomaly its value is of the order of 10−3. For this measurement of the
hadronic contribution to aµ to be useful, a precision of at least O(10−2)
is needed. Therefore a precision of O(10−5) in the measurement of the
differential cross section must be achieved in this experiment. (See, for
instance, [63].)

Note that in the equation (5.70) we have implicitly used the fact that
in the space-like region the quantity ∆α(s), as well as the individual contri-
butions ∆αQED(s), ∆αweak(s), and ∆αhad(s), are all real. The differential
cross section dσLO(s)/ds depends only on the absolute value |α(s)|, and does
not tell us anything about the phase of α(s) just by itself. If we considered
the possibility that the individual contributions to ∆α(s) could be complex,
then under the same approximation that we used in (5.70) that equation
would instead read

R̃LO(s) =

∣∣∣∣∣∣ 1
1 − ∆αhad(s)

1−∆αQED(s)−∆αweak(s)

∣∣∣∣∣∣
2

≊
∣∣∣1 + ∆αhad(s)

∣∣∣2 ≊ 1 + 2ℜ
{

∆αhad(s)
}
.

This would not invalidate the rough estimate of the required precision that
has been presented in the previous paragraph, but the interpretation and
usefulness of the results of such an experiment would be dependent on our
ability to say something about the phase of αhad(s). It is therefore a good
thing that we know that in the relevant region αhad(s) is real. We provide
a proof of this property in Sec. 5.5.

Before we close this topic, let us note that only a few measurements of
α(s) in the space-like region have been accomplished to date. A notable
example is the measurement of α(s) from the small-angle Bhabha scattering
by the OPAL collaboration [64]. This experiment was based on the proposal
suggested earlier in [51]. The MUonE experiment is in principle very similar,
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e−
p

e+
p′

q = p+ p′

µ−

k′
µ+

k

Figure 5.9: The tree diagram for the process e+e− → µ+µ−.

but instead of the Bhabha scattering it considers the process21 µ+e → µ+e.
One of the advantages of this approach is that since the two particles have
very different masses, it is in a sense easier to analyze the final state data.

5.4 Imaginary part of the hadronic contribution
to the vacuum polarization

We encountered the relation (5.54) between R(s) and the imaginary part of
πhad(s) already in the section 5.2, where we used it to calculate the lowest
order hadronic contribution to the magnetic anomaly from cross section
measurements of the processes e+e− → hadrons. In the present section we
are going to look at the equation (5.54) a little bit more closely. This is an
elementary topic, but in addition to filling in some details it will also help
us to fix notation, since in this third part we are using the more standard
notation, which is used also by the Particle Data Group. For a reference, this
notation was also employed, for instance, in the books [14] or [42]. In our
treatment we are going to be entirely straightforward, and will use only the
most basic formulation of the optical theorem, which relates cross sections
to forward scattering elements of the S-matrix.

Before we start with the main calculation, it might be useful to first
calculate the total cross section for the process e+e− → µ+µ− in the Born
approximation, with all the fermion masses set to zero. This is the quantity
in the denominator of the definition (5.50) of R. There is only a single tree
diagram that corresponds to this process, depicted in Fig. 5.9. We will work
in the center-of-mass frame, and denote the four-momentum of the incoming
electron by p = (|p|,p), and the four-momentum of the outgoing muon by
k = (|k|,k). (Note that we are already making use of the approximation
that me = mµ = 0.) The four-momenta p′ and k′ of the incoming positron
and outgoing anti-muon, respectively, are therefore p′ = Pp = (|p|,−p) and
k′ = Pk = (|k|,−k). (Here, P represents the Lorentz transformation of
space inversion.) Also, we have |p| = |k|. The four-momentum q flowing
through the intermediate photon line is q = (2|p|, 0) = (

√
s, 0), where s is

21Note that µ− +e− → µ− +e− and µ+ +e+ → µ+ +e+ are for our purposes equivalent.
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one of the Mandelstam variables, s = (p+ p′)2. The usual Feynman rules22

then associate with the diagram Fig. 5.9 the M-matrix given by

iM
(
p, σ; p′, σ′ → k, σ̃; k′, σ̃′)

=
[
ū(k, σ̃) (−ieγµ) v(−k, σ̃′)

] −iηµν

s+ iϵ

[
v̄(−p, σ′) (−ieγν)u(p, σ)

]
. (5.71)

We have used the Feynman gauge for the propagator. Note that although we
neglect the masses of the electron and the muon, that approximation is really
justified only if s >> m2

µ > m2
e > 0, which means that we should ignore any

possible infra-red singularity at s = 0. For this reason we will assume that
s > 0 and we can therefore drop the “iϵ” term in the denominator of the
photon propagator. We can re-write (5.71) in a slightly simplified form

M = e2

s

[
ū(k, σ̃)γµv(−k, σ̃′)

] [
v̄(−p, σ′)γµu(p, σ)

]
, (5.72)

where we now display the M-matrix simply as M . Using the standard ma-
nipulations23 we can write

|M |2 = e4

s2 Tr
{
[u(k, σ̃)ū(k, σ̃)] γµ [v(−k, σ̃′)v̄(−k, σ̃′)

]
γν}

× Tr
{[
v(−p, σ′)v̄(−p, σ′)

]
γµ [u(p, σ)ū(p, σ)] γν

}
. (5.73)

Our aim is to calculate the total cross section, so we will sum over the spin
z-components σ̃ and σ̃′ of the final particles. We also average over all four
distinct spin configurations of the initial particles. We denote the resulting
quantity by |M |2,

|M |2 = 1
4

∑
σ,σ′,σ̃,σ̃′

|M |2 . (5.74)

This allows us to make use of the properties∑
σ

u(p, σ)ū(p, σ) = /p+m, (5.75)

and ∑
σ

v(p, σ)v̄(p, σ) = /p−m, (5.76)

22In our current convention they are specified for instance in the Appendix A of [14].
23See any textbook of quantum field theory for details. We use[

ū(k, σ̃)γµv(−k, σ̃′)
]† =

[
v̄(−k, σ̃′)γµu(k, σ̃)

]
,

and a similar equation for the other factor; and the usual trick

[ūγµv] [v̄γνu] = Tr {[ūγµv] [v̄γνu]} = Tr {uūγµvv̄γν} ,

where in the last step we used the cyclic property of the trace.
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where m stands for the mass of the fermion corresponding to the coefficient
functions u, v. In our case mµ = me = 0, so we obtain the following simple
result,

|M |2 = e4

4s2 Tr
{
/kγµ/̂kγν

}
Tr
{
/̂pγµ/pγν

}
, (5.77)

where /̂p and /̂k represent γµPµ
νp

ν and γµPµ
νk

ν , respectively. Employing
now another standard result,

Tr {γµγνγργσ} = 4 (ηµνηρσ − ηµρηνσ + ηµσηρν) , (5.78)

we have
Tr
{
/kγµ/̂kγν

}
= 4

(
kµ (Pk)ν + kν (Pk)µ − ηµν s

2

)
, (5.79)

where we have used k · Pk =
(
k0)2 + k2 = 2|k|2 = s/2. Similarly

Tr
{
/̂pγµ/pγν

}
= 4

(
(Pp)µ pν + (Pp)ν pµ − ηµν s

2

)
. (5.80)

The product of those two traces is

Tr
{
/kγµ/̂kγν

}
Tr
{
/̂pγµ/pγν

}
= 16

[
2 (k · Pp)2 + 2 (k · p)2

]
, (5.81)

which means that

|M |2 = 8e4

s2

[
(k · Pp)2 + (k · p)2

]
. (5.82)

Now, to make even better use of our approximation of massless fermions
we write p · k = −(p − k)2/2 = (p − k)2 /2, where the time component
of p − k vanishes because we are in the center-of-mass frame. Similarly,
Pp · k = −(Pp− k)2/2 = (p + k)2 /2. If we denote by θ the angle between
p and k, we obtain

p · k = 1
2

(
p2 − 2p · k + k2

)
= |p|2 (1 − cos θ) = s

4
(1 − cos θ) , (5.83)

and

Pp · k = 1
2

(
p2 + 2p · k + k2

)
= |p|2 (1 + cos θ) = s

4
(1 + cos θ) . (5.84)

Using this in (5.82) yields

|M |2 = e4

2

[
(1 + cos θ)2 + (1 − cos θ)2

]
. (5.85)

If the incoming particles are massless, then the differential cross section in
the center-of-mass frame is given by [14]

dσ

dΩ

∣∣∣∣
C.M.

= 1
64(p0)2

1
(2π)2 |M |2 = 1

64π2s
|M |2. (5.86)
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e−
p

e+
p′

q = p+ p′had

e−

p
e+

p′

Figure 5.10: The s-channel forward scattering diagram for the process
e+e− → e+e−. At the lowest order in electromagnetism, this is the only
(hadronic) forward scattering diagram for which the amplitude is not zero.

Thus, we found that

dσ

dΩ

∣∣∣∣
C.M.

= e4

128π2s

[
(1 + cos θ)2 + (1 − cos θ)2

]
. (5.87)

Now, ∫
dΩ (1 ± cos θ)2 = 2π

∫ 1

−1
(d cos θ) (1 ± cos θ)2 = 16π

3
, (5.88)

which means that after we integrate the differential cross section over the
angular variables we obtain the final result

σBorn
total

(
e+e− → µ+µ−

)
= e4

12πs
= 4πα2

3s
. (5.89)

Let us now move on to the calculation of the M -matrix for the forward
scattering of the e+e−-pair at the lowest order in the electromagnetic in-
teraction, but using the one-particle-irreducible insertion (5.38) restricted
to hadrons. That is, we consider the forward scattering to the lowest order
in electromagnetism but to all orders in strong interactions. We will again
work in the approximation of massless fermions and consider the scatter-
ing in the center-of-mass frame. As before, we denote the four-momentum
of the incoming electron by p = (|p|,p). The incoming positron has the
four-momentum p′ = Pp = (|p|,−p) and since we are now restricting our
attention to the forward scattering, the outgoing electron and positron have
four-momenta p and p′. We denote q = p+ p′.

There are now two relevant Feynman diagrams, one corresponding to
the s-channel process and the other one to the t-channel process, depicted in
Fig. 5.10 and Fig. 5.11, respectively. However, the four-momentum flowing
through the photon line in the t-channel diagram is zero, and this diagram



5.4. IMAGINARY PART OF THE FUNCTION πhad 203

e−

e−

p
p

e+
p′
p′
e+

had

q = 0

Figure 5.11: The t-channel forward scattering diagram for the process
e+e− → e+e−. Because the process is a forward scattering the four-
momentum transfer q is zero. The value of the t-channel diagram therefore
vanishes, because πhad(0) = 0.

therefore does not contribute, since πhad(0) = 0. We can therefore limit our
attention to the diagram Fig. 5.10 only. Its corresponding contribution is

iM
(
p, σ; p′, σ′ → p, σ; p′, σ′) =

[
v̄(−p, σ′) (−ieγµ)u(p, σ)

] −iηµα

s

×
[
−iπhad(s)

{
−
(
sηαβ − qαqβ

)}] −iηβν

s

[
ū(p, σ) (−ieγν) v(−p, σ′)

]
,

(5.90)

where, according to our discussion in the subsection 5.1.3, we inserted the
value24 −iΠαβ

had(q) for the hadronic vacuum polarization insertion and used
the formula (5.38) to express Παβ

had(q) in terms of the function πhad(s). We
can rewrite this result more simply as

M = e2

s2π
had(s)

[
v̄(−p, σ′)γµu(p, σ)

] [
ū(p, σ)γνv(−p, σ′)

]
(sηµν − qµqν) .

(5.91)
This will be more convenient to calculate if we rewrite it in terms of a trace,

M = e2

s2π
had(s)Tr

{
v(−p, σ′)v̄(−p, σ′)γµu(p, σ)ū(p, σ)γν} (sηµν − qµqν) .

(5.92)
Next, we average over the spin z-components, which yields

M = 1
4
e2

s2π
had(s)Tr

{
/̂pγ

µ
/pγ

ν
}

(sηµν − qµqν) , (5.93)

or, using our earlier result (5.80),

M = e2

s2π
had(s)

(
(Pp)µ pν + (Pp)ν pµ − ηµν s

2

)
(sηµν − qµqν) . (5.94)

Recalling now that (Pp)µ pµ = s/2 we obtain

M = e2

s2π
had(s)

(
−s2 − 2 (p · q) (Pp · q) + q2 s

2

)
. (5.95)

24Note that in order to conform to the Feynman rules of the Appendix A of [14] we had
to cancel the (2π)4-factor in the vacuum polarization insertion with the (2π)−4 factor in
one of the propagators.
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However, since q2 = s and (p · q) = (Pp · q) = s/2, we obtain the final result

M = −e2πhad(s) = −4παπhad(s). (5.96)

Note that this quantity is of the order e4 in the electromagnetic coupling,
because two orders of e are hidden inside πhad(s).

In the center-of-mass frame the optical theorem can be expressed in the
form [14]

ℑ {M (α → α)} = 2
√
s |p|σtotal (α → anything) , (5.97)

where p is the three-momentum of either of the two particles in the center-of-
mass frame. In our case, when the particle is massless, we have |p| =

√
s/2.

Applying this to (5.96) yields

−4παℑ
{
πhad(s)

}
= 2

√
s

√
s

2
σBorn

total

(
e+e− → hadrons

)
. (5.98)

The cross section on the right-hand side must correspond to the Born ap-
proximation, because it must be in the fourth order in e. There are only
hadrons in the final state, because the other final states correspond to con-
tributions to ℑ {π(s)} where leptons and electroweak bosons are in the in-
termediate states. We can rewrite this as

ℑ
{
πhad(s)

}
= −α

3
σBorn

total
(
e+e− → hadrons

)
4πα2

3s

, (5.99)

or, even more simply,

ℑ
{
πhad(s)

}
= −α

3
R(s), (5.100)

which is the formula (5.54) which we have used earlier in the section 5.2.

5.5 Spectral representation of the photon propa-
gator

In this section we are going to investigate some of the analytic properties of
the running fine structure constant α(s). In particular, we will provide an
argument for the statement that α(s) is real in the space-like region, and
derive the dispersion relation (5.56) for the function π(q2). Recall that the
quantities α(s), π(q2) and the full propagator of the photon i∆′

µν(q) are all
related by the equation (5.42),

∆′
µν(q) = −

ηµν −
[
ξ(q2)

(
1 − π(q2)

)
+ π(q2)

] qµqν

q2+iϵ

[1 − π(q2)] [q2 + iϵ]
,
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the identification π(s) = ∆α(s), and the equation (5.47),

α(s) = α

1 − ∆α(s)
.

Our first goal is to show that the propagator ∆′
µν(q) is real for space-like

values of q. In fact, this is just a special case of the Hermitian analyticity that
we mentioned earlier in Sec. 2.5, but compared to the more general properties
of Hermitian analyticity or generalized unitarity, the reality condition for
the propagator is easier to prove. Probably the most straightforward way
to address this issue is to use the Källén–Lehmann spectral representation
of the full propagator. This is a standard topic that is covered in most
textbooks of quantum field theory, and I will therefore attempt to be brief
in its presentation.

What we are really interested in is the photon propagator, or the two-
point function

i∆′
µν(x, y) = (Ψ0,T {Aµ(x)Aν(y)} Ψ0) . (5.101)

The study of this function is complicated by the fact that the field Aµ

does not transform as a four-vector under Lorentz transformations. For this
reason, it will be a little bit more convenient to consider instead the Green’s
function

(Ψ0,T {Jµ(x)Jν(y)} Ψ0) , (5.102)

where Jµ is the electromagnetic current. Unlike the gauge field, the opera-
tor Jµ is Lorentz covariant. Furthermore, it is Hermitian and satisfies the
current conservation condition ∂µJ

µ = 0. These properties will make our
work easier. Now, the gauge field A couples only to the current J , and
this means that the two Green’s functions (5.101) and (5.102) are closely
related. By considering them in perturbation theory one can see that the
relation between those two Green’s functions can be expressed in terms of
the equation (5.35),

i∆′
µν(q) = i∆µν(q) − [i∆µα1(q)]Mα1α2

00 (q,−q) [i∆α2ν(q)]

+ [i∆µα1(q)] (−i(Z3 − 1))
[
q2ηα1α2 − qα1qα2

]
[i∆α2ν(q)] . (5.103)

5.5.1 A naive derivation of the spectral representation

In order to obtain the spectral representation for the two-point function
(5.102) we need first to consider instead the fixed-ordered vacuum expecta-
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tion value25

(Ψ0, J
µ(x)Jν(0)Ψ0) . (5.104)

To obtain the spectral representation of this fixed-order matrix element we
start by inserting between the operators Jµ(x) and Jν(0) a sum over a
complete set of physical states {Ψn} of definite momenta,

PµΨn = pµ
nΨn. (5.105)

Then we can use the translation property (2.104) to write

(Ψ0, J
µ(x)Jν(0)Ψ0) =

∑
n

e−ipnx (Ψ0, J
µ(0)Ψn) (Ψn, J

ν(0)Ψ0)

=
∑

n

e−ipnx (Ψ0, J
µ(0)Ψn) (Ψ0, J

ν(0)Ψn)∗ . (5.106)

Note that the meaning of the sum “
∑

n” is fixed by the normalization con-
dition and Lorentz transformation properties of the set {Ψn}. If we denote
by nΛ the four-momentum and spin labels of the state that is obtained by
the Lorentz transformation Λ acting on the state Ψn, then if the set {Ψn}
was constructed according to the convention that we are currently using for
asymptotic states — that is, following the covariant normalization — then
we have

U(Λ)Ψn = ΨnΛ . (5.107)

Accordingly, to keep the sum over intermediate states Lorentz invariant, the
sum must contain for each particle an integral with the Lorentz invariant
measure ∫

d3p
(2π)32

√
p2 +m2 . (5.108)

The factor (2π)−3 is present only to conform to our current normalization
convention and will not concern us here.

An important step now is to express (5.106) in the form

(Ψ0, J
µ(x)Jν(0)Ψ0) =∫

d4p e−ipx
∑

n

δ4 (p− pn) (Ψ0, J
µ(0)Ψn) (Ψ0, J

ν(0)Ψn)∗ . (5.109)

The point of rewriting it in this form is that the expression∑
n

δ4 (p− pn) (Ψ0, J
µ(0)Ψn) (Ψ0, J

ν(0)Ψn)∗

25To discard the explicit dependence on the coordinate y we made use of the translation
property (2.104), which implies that

(Ψ0, J
µ(x)Jν(y)Ψ0) = (Ψ0, J

µ(x− y)Jν(0)Ψ0) ,

and then renamed x− y to x.
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is a tensor function of p, which we will denote by J µν(p). It is not too
difficult to see that J µν(p) is indeed a tensor, or, in other words, that
J µν(Λp) = Λµ

αΛν
βJ αβ(p). We have

J µν(Λp) =
∑

n

δ4 (Λp− pn) (Ψ0, J
µ(0)Ψn) (Ψ0, J

ν(0)Ψn)∗

=
∑

n

δ4
(
Λp− ΛpnΛ−1

) (
Ψ0, U(Λ)−1Jµ(0)U(Λ)ΨnΛ−1

)
×
(
Ψ0, U(Λ)−1Jν(0)U(Λ)ΨnΛ−1

)∗
, (5.110)

where we expressed pn as the result of the Lorentz transformation Λ acting
on the four-momentum corresponding to the state nΛ−1 , and in a similar way
we wrote Ψn = U(Λ)ΨnΛ−1 . We also used the Lorentz invariance property
of the vacuum state, Ψ0 = U(Λ)Ψ0. Now, because Jµ is a vector operator,
it transform as

U(Λ)−1Jµ(x)U(Λ) = Λµ
νJ

ν(Λ−1x). (5.111)
Furthermore, under the covariant normalization the sum

∑
n is Lorentz in-

variant, so we can just as well write it as the sum over nΛ−1 . Altogether, we
find

J µν(Λp) =∑
nΛ−1

δ4
(
Λp− ΛpnΛ−1

) (
Ψ0,Λµ

αJ
α(0)ΨnΛ−1

) (
Ψ0,Λν

βJ
β(0)ΨnΛ−1

)∗

= Λµ
αΛν

β

∑
nΛ−1

δ4
(
p− pnΛ−1

) (
Ψ0, J

α(0)ΨnΛ−1

) (
Ψ0, J

β(0)ΨnΛ−1

)∗

= Λµ
αΛν

βJ αβ(p), (5.112)

where we also made use of the fact that the measure d4p is Lorentz invariant,
so that

δ4
(
Λp− ΛpnΛ−1

)
= δ4

(
p− pnΛ−1

)
.

Now, if we apply the current conservation condition ∂µJ
µ(x) = 0 to (5.109),

we find that J µν must satisfy the condition

pµJ µν(p) = 0. (5.113)

But because J µν is a tensor that depends only on p, this condition implies
that it must be of the form

J µν(p) =
(
pµpν − p2ηµν

)
F (p),

where F (p) is some scalar function of p. F can, therefore, depend only on
p2 and for time-like values of p also on the sign of p0.26 In fact, F (p) must

26Note that we are considering now only transformation properties with respect to
restricted Lorentz transformations. In particular, when in (5.110) we expressed pn as
ΛpnΛ−1 we assumed that Λ does not reverse the direction of time.



208 CHAPTER 5. THE FINE STRUCTURE CONSTANT

be proportional to θ(p0), because all the physical states in the sum

J µν(p) =
∑

n

δ4 (p− pn) (Ψ0, J
µ(0)Ψn) (Ψ0, J

ν(0)Ψn)∗ (5.114)

have non-negative energy, p0
n ≥ 0. Hence, if p0 < 0 then J µν(p) should

vanish. We can therefore write

J µν(p) = 1
(2π)3

(
pµpν − p2ηµν

)
ρ(p2)θ(p0), (5.115)

where we extracted the factor (2π)−3 for later convenience. Now, using the
definition (5.114) and the formula (5.115), we can immediately infer some
important properties of the spectral function ρ. First, the definition (5.114)
implies that any diagonal component of J µν must be real and non-negative.
The formula (5.115) then implies that ρ(p2) must also be real and non-
negative. The fact that ρ(p2) is real follows immediately from the fact
that all other factors in (5.115) are real. And if we consider any diagonal
component of the formula (5.115) a little bit more closely, we can also easily
notice that ρ cannot be negative. For instance, if we look at the component
00 of (5.115), the property p0p0 − p2η00 = (p0)2 − p2 = p2 ≥ 0, together
with J 00 ≥ 0, implies that ρ(p2) ≥ 0. And lastly, if for some p2 there is no
physical state n such that p2

n = p2, then (5.114) implies that ρ(p2) = 0. In
particular, ρ(p2) = 0 for all p2 < 0, since physical states carry only null or
time-like four-momenta.27

If we now insert (5.115) back into (5.109), we obtain

(Ψ0, J
µ(x)Jν(0)Ψ0) = 1

(2π)3

∫
d4p e−ipx

(
pµpν − p2ηµν

)
ρ(p2)θ(p0).

(5.116)
To proceed further we need to express ρ(p2) in (5.116) as

ρ(p2) =
∫ ∞

0
dµ2δ(p2 − µ2)ρ(µ2)

and exchange the order of integration over d4p and dµ2. Two remarks are
at place here. First, note that in specifying in the above equation the inte-
gration of µ2 as starting at 0 and going to +∞ we made use of our earlier
observation that ρ(µ2) = 0 for µ2 < 0. Second, strictly speaking changing
the order of integration is not allowed here (see [9]). For this reason we will
later derive the reality property also by other methods. For now, however,
let us ignore this issue and interchange the order of integrals anyway. We

27This is the reason why the factor θ(p0) in the formula (5.115) does not ruin the Lorentz
covariance properties of J µν(p). The sign of p0 is generally not invariant under restricted
Lorentz transformations, but J µν(p) is non-zero only for p null or space-like, and for such
four-momenta the sign of p0 indeed is invariant.
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obtain

(Ψ0, J
µ(x)Jν(0)Ψ0)

=
∫ ∞

0
dµ2ρ(µ2) 1

(2π)3

∫
d4p e−ipx

(
pµpν − p2ηµν

)
δ(p2 − µ2)θ(p0)

=
∫ ∞

0
dµ2ρ(µ2)

(
−∂µ∂ν + ηµν∂2

) 1
(2π)3

∫
d4p e−ipxδ(p2 − µ2)θ(p0),

(5.117)

where the derivatives are with respect to the coordinate x. Thus, our final
result is

(Ψ0, J
µ(x)Jν(0)Ψ0) =

∫ ∞

0
dµ2ρ(µ2)

(
−∂µ∂ν + ηµν∂2

)
∆(µ)

+ (x), (5.118)

where ∆(µ)
+ (x) stands for the familiar function

∆(µ)
+ (x) = 1

(2π)3

∫
d4p e−ipxδ(p2 − µ2)θ(p0)

=
∫

d3p
(2π)32

√
p2 + µ2 e−i

√
p2+µ2x0+ip·x. (5.119)

The function ∆(µ)
+ (x), when multiplied by θ(x0) and combined with its space-

time inverted counterpart, yields the free propagator of the scalar field

θ(x0)∆(µ)
+ (x) + θ(−x0)∆(µ)

+ (−x) = i∆(µ)
F (x). (5.120)

Here, ∆(µ)
F is the Feynman propagator

∆(µ)
F (x) =

∫
d4q

(2π)4
e−iqx

q2 − µ2 + iϵ
. (5.121)

We can carry out a completely analogous analysis also of the matrix
element

(Ψ0, J
ν(0)Jµ(x)Ψ0) . (5.122)

Instead of (5.109), we find

(Ψ0, J
ν(0)Jµ(x)Ψ0) =

∫
d4p eipxJ µν(p), (5.123)

where J µν(p) is given by

J µν(p) =
∑

n

δ4 (p− pn) (Ψn, J
µ(0)Ψ0) (Ψn, J

ν(0)Ψ0)∗ . (5.124)
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Just as before with J µν we can show that J µν is a tensor function of p, and
because of the current conservation condition and the positivity of energy
of physical states it must be of the form

J µν = 1
(2π)3

(
pµpν − p2ηµν

)
ρ(p2)θ(p0). (5.125)

Now, from the formulas (5.115) and (5.125) we see that both J µν and J µν

are symmetric under the interchange of µ and ν. But that implies that the
right-hand sides of their definitions (5.114) and (5.124) are equal to each
other. For instance, after we exchange the indices in (5.124) we can use the
Hermiticity of the current J to obtain the right-hand side of (5.114). This
implies that J µν = J µν , and therefore28

ρ(p2) = ρ(p2). (5.126)

If we now carry out the steps that led from (5.116) to (5.118), but starting
with (5.123), we obtain

(Ψ0, J
ν(0)Jµ(x)Ψ0) =

∫ ∞

0
dµ2ρ(µ2)

(
−∂µ∂ν + ηµν∂2

)
∆(µ)

+ (−x). (5.127)

We can combine the results (5.118) and (5.127) to obtain

(Ψ0,T {Jµ(x)Jν(0)} Ψ0)

=
∫ ∞

0
dµ2ρ(µ2)

(
−∂µ∂ν + ηµν∂2

) [
θ(x0)∆(µ)

+ (x) + θ(−x0)∆(µ)
+ (−x)

]
=
∫ ∞

0
dµ2ρ(µ2)

(
−∂µ∂ν + ηµν∂2

)
i∆(µ)

F (x). (5.128)

This is the Källén–Lehmann spectral representation of the two-point func-
tion (5.102) that we were looking for,

(Ψ0,T {Jµ(x)Jν(0)} Ψ0) =∫ ∞

0
dµ2ρ(µ2)

∫
d4q

(2π)4
i
(
qµqν − ηµνq2) e−iqx

q2 − µ2 + iϵ
. (5.129)

We can now insert this result into the equation (5.35)

i∆′
µν(q) = i∆µν(q) − [i∆µα1(q)]Mα1α2

00 (q,−q) [i∆α2ν(q)]

+ [i∆µα1(q)] (−i(Z3 − 1))
[
q2ηα1α2 − qα1qα2

]
[i∆α2ν(q)] .

28Even if Jµ was not Hermitian we would still be able to proceed, but we would need to
use the condition of local commutativity and the symmetry property ∆(µ)

+ (x) = ∆(µ)
+ (−x)

which holds if x is space-like.
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If we use the Feynman gauge for the propagator, we find

∆′
µν(q) = −ηµν

q2 + iϵ
+

−ηµν + qµqν

q2+iϵ

q2 + iϵ

[∫ ∞

0
dµ2ρ(µ2) 1

q2 − µ2 + iϵ
− (Z3 − 1)

]
.

(5.130)
We are considering the full propagator ∆′

µν(q) in the physical renormaliza-
tion scheme, which means that the gauge-invariant part of its residue at
q2 = 0 must be the same as that of the free propagator. In other words,
when q2 = 0 the expression in the square brackets must vanish, which al-
lows us to express the constant Z3 in terms of the spectral function ρ(µ2).
Instead of (5.130), we can write

∆′
µν(q) = −ηµν

q2 + iϵ
+

−ηµν + qµqν

q2+iϵ

q2 + iϵ

[∫ ∞

0
dµ2ρ(µ2) 1

q2 − µ2 + iϵ
+
∫ ∞

0
dµ2 ρ(µ2)

µ2

]
. (5.131)

Now, the only way this expression can yield a complex value is if either q2 in
the denominator factor q2+iϵ or q2−µ2 in the denominator factor q2−µ2+iϵ
vanishes, because those are the only circumstances under which the “iϵ”-
terms matter, and everything else in that formula is real. But for q space-like
we have q2 < 0, which means that none of the denominators vanishes and
the “iϵ”-terms play no role. Hence, the value of (5.131) is manifestly real for
space-like values of q. This, together with the formula (5.42), implies that
in the space-like region π(q2) = ∆α(q2) is real.

This might be a good place to take a step back and compare more closely
our result (5.131) to the expression (5.42) for the full photon propagator that
we found earlier. In (5.131) we used the Feynman gauge, which means that
in (5.42) the function ξ(q2) is identically zero, and that formula therefore
reads

∆′
µν(q) =

−ηµν + π(q2) qµqν

q2+iϵ

[1 − π(q2)] [q2 + iϵ]
. (5.132)

Comparing the coefficients of ηµν we find

1
1 − π(q2)

= 1 +
∫ ∞

0
dµ2ρ(µ2)

[ 1
q2 − µ2 + iϵ

+ 1
µ2

]
, (5.133)

or

π(q2) =
∫∞

0 dµ2ρ(µ2)
[

1
q2−µ2+iϵ

+ 1
µ2

]
1 +

∫∞
0 dµ2ρ(µ2)

[
1

q2−µ2+iϵ
+ 1

µ2

] . (5.134)

Thus we can also see that the factor π(q2)/(1 − π(q2)) that stands in front
of the qµqν/[q2 + iϵ]2 in (5.132) is the same as the corresponding factor∫∞

0 dµ2ρ(µ2)
[

1
q2−µ2+iϵ

+ 1
µ2

]
in (5.131), indicating that our manipulations



212 CHAPTER 5. THE FINE STRUCTURE CONSTANT

have been internally consistent. However, one should be cautious when
making judgments regarding the properties of ∆′

µν(q) or π(q2) from the re-
sults (5.131)–(5.134), because we derived those results using mathematically
unsound arguments. For this reason we will now present another argument
that π(q2) is real in the space-like region.

5.5.2 Derivation of the spectral representation by dispersion-
theoretical methods

The argument that we are going to present now relies on standard dispersion
theoretical methods, and the approach presented here more or less follows
the treatment of a different problem presented in [9], although I attempt to
discuss some details that seem to be often ignored in the literature. We will
be interested in the analytic properties of the Green’s function Mα1α2

00 (q,−q).
To avoid any confusion, let us recall that in (5.33) we defined this function
as

(2π)4δ4 (q1 + q2) Mµν
00 (q1, q2)

=
∫
d4x1 d

4x2 eiq1x1eiq2x2 (Ψ0,T {Jµ(x1)Jν(x2)} Ψ0) . (5.135)

The translation invariance of the matrix element on the right-hand side
implies that

∫
d4x1 d

4x2 eiq1x1eiq2x2 (Ψ0,T {Jµ(x1)Jν(x2)} Ψ0)

=
∫
d4x2 d

4x1 eiq1(x1−x2)ei(q2+q1)x2 (Ψ0,T {Jµ(x1 − x2)Jν(0)} Ψ0)

=
∫
d4x2 d

4x eiq1xei(q2+q1)x2 (Ψ0,T {Jµ(x)Jν(0)} Ψ0)

= (2π)4δ4 (q1 + q2)
∫
d4x eiq1x (Ψ0,T {Jµ(x)Jν(0)} Ψ0) .

That is, instead of (5.135) we can use the simpler definition

Mµν
00 (q,−q) =

∫
d4x eiqx (Ψ0,T {Jµ(x)Jν(0)} Ψ0) . (5.136)
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Let us start by showing that the quantity Mµν
00 (q,−q) is a tensor function

of q.29 We have

Mµν
00 (Λq,−Λq) =

∫
d4x ei(Λq)x (Ψ0,T {Jµ(x)Jν(0)} Ψ0)

=
∫
d4x ei(Λq)x

(
Ψ0, θ(x0)

[
U(Λ)Jµ(x)U(Λ)−1

] [
U(Λ)Jν(0)U(Λ)−1

]
+ θ(−x0)

[
U(Λ)Jν(0)U(Λ)−1

] [
U(Λ)Jµ(x)U(Λ)−1

]
Ψ0

)
, (5.137)

where we have used the Lorentz invariance of the vacuum to suitably in-
sert the operators U(Λ), U(Λ)−1. The point of these steps is that we
want to express the right-hand side as an integral over Λ−1x, and we have
U(Λ)Jµ(x)U(Λ)−1 = Λµ

αJ
α(Λ−1x) and U(Λ)Jν(x)U(Λ)−1 = Λν

βJ
β(0).

We would also like to write θ
((

Λ−1x
)0) and θ

(
−
(
Λ−1x

)0) instead of θ(x0)
and θ(−x0), but that requires some discussion, because the sign of x0 is
not Lorentz invariant. However, a restricted Lorentz transformation Λ can
change the sign of x0 only if x is space-like, and for such values of x the
order of Jµ(x) and Jν(0) is immaterial, because of the property of local
commutativity. For that reason we are indeed allowed to change θ(x0) and
θ(−x0) to θ

((
Λ−1x

)0) and θ
(
−
(
Λ−1x

)0) in (5.137). After we apply these
steps in (5.137) we find

Mµν
00 (Λq,−Λq) =

∫
d4x ei(Λq)x

(
Ψ0, θ

((
Λ−1x

)0
)

Λµ
αJ

α(Λ−1x)Λν
βJ

β(0)

+ θ

(
−
(
Λ−1x

)0
)

Λν
βJ

β(0)Λµ
αJ

α(Λ−1x)Ψ0

)
= Λµ

αΛν
β

∫
d4
(
Λ−1x

)
eiq(Λ−1x)

(
Ψ0, θ

((
Λ−1x

)0
)
Jα(Λ−1x)Jβ(0)

+ θ

(
−
(
Λ−1x

)0
)
Jβ(0)Jα(Λ−1x)Ψ0

)
, (5.138)

where we used the Lorentz invariance of the measure d4x and the property
Λq · x = q · Λ−1x. But this means that

Mµν
00 (Λq,−Λq) = Λµ

αΛν
βM

αβ
00 (q,−q). (5.139)

The gauge invariance property (5.34) then implies that Mµν
00 (q,−q) is of the

form
Mµν

00 (q,−q) =
(
qµqν − ηµνq2

)
M̃(q), (5.140)

where M̃ is a scalar function of q. Thus, it can depend on q2 and in principle
also on the sign of q0. However, unlike the functions J µν and J µν that we

29Recall that when we speak about quantities being “tensors” we presently consider
their transformation properties only with respect to restricted Lorentz transformations.
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encountered earlier, the function M̃ is symmetric under the inversion of q.
We have

Mµν
00 (−q, q) =

∫
d4x ei(−q)·x (Ψ0,T {Jµ(x)Jν(0)} Ψ0)

=
∫
d4x ei(−q)·x (Ψ0,T {Jµ(0)Jν(−x)} Ψ0) , (5.141)

because of the translation invariance of the Green’s function

(Ψ0,T {Jµ(x)Jν(0)} Ψ0) .

If we now substitute x → −x and use the property d4x = d4(−x), we obtain

Mµν
00 (−q, q) =

∫
d4(−x) ei(−q)·(−x) (Ψ0,T {Jν(x)Jµ(0)} Ψ0)

=
∫
d4x eiq·x (Ψ0,T {Jν(x)Jµ(0)} Ψ0) = Mνµ

00 (q,−q). (5.142)

If we combine this result with the formula (5.140) we find that M̃(−q) =
M̃(q). Thus, M̃(q) depends only on q2 and not on the sign of q0, and instead
of (5.140) we can write

Mµν
00 (q,−q) =

(
qµqν − ηµνq2

)
M(q2). (5.143)

To gain insight into analytic properties of Mµν
00 (q,−q) we will use the

method which we have briefly described at the end of Sec. 2.1. We can
rewrite the time-ordered product T {Jµ(x)Jν(0)} in two different ways, ei-
ther as

T {Jµ(x)Jν(0)} = Jµ(x)Jν(0) − θ(−x0) [Jµ(x), Jν(0)] , (5.144)

or as

T {Jµ(x)Jν(0)} = Jν(0)Jµ(x) + θ(x0) [Jµ(x), Jν(0)] . (5.145)

The point of this is that because of the condition of local commutativity
(also known as microscopic causality) the commutator terms vanish for x
space-like. This, combined with the step function factors that appear in
front of those commutators, restricts the support of those terms to values of
x that are either in the causal future or the causal past of the point x = 0.
More specifically, the support of the term θ(−x0) [Jµ(x), Jν(0)] is restricted
to past-pointing null or time-like vectors x, or, in the notation of Sec. 2.3,
it is restricted to V̄−. The support of θ(x0) [Jµ(x), Jν(0)] is restricted to
future-pointing null or time-like values of x, that is, to x ∈ V̄+. The results
that we discussed in Sec. 2.3 then imply that the Laplace transform∫

d4x eiqx
(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
(5.146)
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is analytic for all q in the tube Γ−, that is, for those four-vectors q that
have arbitrary real components but whose imaginary part is inside the past
light-cone. In other words, it is analytic on the set of four-vectors q of the
form q = k + il, where k and l are real four-vectors, with k being otherwise
arbitrary and l satisfying the conditions l2 > 0 and l0 < 0. We also saw that
such a Laplace transform is bounded by a polynomial for large values of q.
Similarly, the support of θ(x0) [Jµ(x), Jν(0)] is restricted to x ∈ V̄+, which
implies that the Laplace transform∫

d4x eiqx
(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
(5.147)

is analytic in the tube Γ+ and polynomially bounded for large q.
Now, we already know that Mµν

00 is of the form (5.143),

Mµν
00 (q,−q) =

(
qµqν − ηµνq2

)
M(q2),

and if we use the decomposition (5.144), we find that(
qµqν − ηµνq2

)
M(q2) = Mµν

00 (q,−q) =∫
d4x eiqx (Ψ0,T {Jµ(x)Jν(0)} Ψ0) =

∫
d4x eiqx (Ψ0, J

µ(x)Jν(0)Ψ0)

+
∫
d4x eiqx

(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
. (5.148)

We have already encountered the matrix element that appears in the first
term of the rightmost expression: it can be expressed in terms of the for-
mula (5.116),

(Ψ0, J
µ(x)Jν(0)Ψ0) = 1

(2π)3

∫
d4p e−ipx

(
pµpν − p2ηµν

)
ρ(p2)θ(p0).

We can thus easily evaluate the integral,∫
d4x eiqx (Ψ0, J

µ(x)Jν(0)Ψ0) = 2π
(
qµqν − q2ηµν

)
ρ(q2)θ(q0). (5.149)

Now, when we insert (5.149) into (5.148) we find that the commutator term
must be of the form∫

d4x eiqx
(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
=
(
qµqν − ηµνq2

)
M−(q2, sgn(q0)), (5.150)

where M− depends both on q2 and the sign of q0.
Similarly, our earlier results (5.123) and (5.125) show that

(Ψ0, J
ν(0)Jµ(x)Ψ0) = 1

(2π)3

∫
d4p eipx

(
pµpν − p2ηµν

)
ρ(p2)θ(p0). (5.151)
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Using the Hermiticity of the current J , combined with the symmetry of
the above expression under the interchange of µ and ν, we also found that
ρ(p2) = ρ(p2). This implies∫

d4x eiqx (Ψ0, J
ν(0)Jµ(x)Ψ0) = 2π

(
qµqν − q2ηµν

)
ρ(q2)θ(−q0). (5.152)

If we combine this with the variant of (5.148) that we obtain if we use (5.145)
instead of (5.144),(

qµqν − ηµνq2
)
M(q2) = Mµν

00 (q,−q) =
∫
d4x eiqx (Ψ0, J

ν(0)Jµ(x)Ψ0)

+
∫
d4x eiqx

(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
, (5.153)

we find that∫
d4x eiqx

(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
=
(
qµqν − ηµνq2

)
M+(q2, sgn(q0)). (5.154)

Let us now take a step back so that we do not get confused. Just a moment
ago we claimed that the left-hand sides of (5.150) and (5.154) are analytic
functions of q in Γ− and Γ+, respectively. But on the right-hand sides of
those equations there appear factors that depend on the sign of q0, which
clearly is not analytic in q. This is because the equations (5.150) and (5.154)
are valid only for real four-vectors q, because to derive them we used (5.149)
and (5.152), which are valid only for real q. The tubes Γ− and Γ+ do
not contain the real hyperplane of q, and the equations (5.150) and (5.154)
represent only the boundary values of functions analytic in the regions Γ−
and Γ+, respectively.

Now, the question arises, what do the equations (5.150) and (5.154) tell
us about the form of

∫
d4x eiqx

(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
in Γ−, re-

spectively the form of
∫
d4x eiqx

(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
in Γ+? Let us

focus first on the case of
∫
d4x eiqx

(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
. Con-

sider some closed connected region R of the real hyperplane of q on which
none of the components of

(
qµqν − ηµνq2) vanishes and which does not inter-

sect the hyperplane q0 = 0. Since q are real, we can use the formula (5.150)
but since sgn(q0) has the same value on the whole region R, the function
M−(q2, sgn(q0)) depends only on q2 there. Let us denote it by M̃−(q2). On
this region,

(
qµqν − ηµνq2) M̃−(q2) is the boundary value of a function ana-

lytic in the tube Γ−, which we temporarily denote by Fµν(q). But the region
R is closed and

(
qµqν − ηµνq2) does not vanish on it, which means that there

exists some open neighborhood (in the complex space of q) N of R on which(
qµqν − ηµνq2) does not vanish. Hence, the function Fµν(q)/

(
qµqν − ηµνq2)

is analytic on the open set Γ− ∩ N and M̃−(q2) is its boundary value. (Al-
though it might not be a function and exist only as a tempered distribution.)
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But that means that the function Fµν(q)/
(
qµqν − ηµνq2), defined on Γ−∩N ,

is an analytic function only of q2. Thus, on Γ− ∩ N the function Fµν(q) is
of the form∫

d4x eiqx
(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
=
(
qµqν − ηµνq2

)
M−(q2), (5.155)

where M−(q2) is an analytic function on Γ− ∩ N . But since the left-hand
side is an analytic function on the whole tube Γ−, it must be possible to
continue M−(q2) onto the whole tube and the formula (5.155) holds on the
whole of Γ−. Using the same argument, we can show that∫

d4x eiqx
(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
=
(
qµqν − ηµνq2

)
M+(q2) (5.156)

is valid on the whole tube Γ+ and M+(q2) is an analytic function there.
Now, the equations (5.150) and (5.154) show that when q approaches a

time-like or null point30 on the real hyperplane then the functions M±(q2)
have different limits in the half-space q0 > 0 than in the half-space q0 < 0.
This implies that M±(q2) are not analytic on the whole plane of q2, and
have a branch cut there. As defined here, the branch cut goes along the real
semi-axis q2 ≥ 0 and M±(q2) have different values depending on whether
they approach the branch cut from above or from below.

Now that we have established that the tensor functions which we are
studying are all of the form(

qµqν − ηµνq2
)

× “a scalar function of q2 and sgn(q0)”,

we can simplify the analysis by focusing only on a particular one-dimensional
subset of the tubes Γ+ and Γ−. We choose an arbitrary future time-like
vector l, l0 > 0, that is normalized to satisfy l2 = 1, and restrict our
attention to four-momenta q of the form ωl, where ω is a complex number.
If ℑ {ω} > 0 then q ∈ Γ+ and if ℑ {ω} < 0 then q ∈ Γ−. That is,

Fµν
− (ω) =

∫
d4x eiωl·x

(
Ψ0,−θ(−x0) [Jµ(x), Jν(0)] Ψ0

)
, (5.157)

considered now as a function of ω is analytic and bounded by a polynomial
in the lower half-plane of ω and

Fµν
+ (ω) =

∫
d4x eiωl·x

(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
(5.158)

30We can see that this dependence on sgn(q0) exists only for causal four-vectors q by
considering the Lorentz transformation properties of Mµν

00 (q,−q) and the other quantities
that appear after we use the decomposition (5.144) or the decomposition (5.145). Because
all those quantities transform as tensors under restricted Lorentz transformations, there
can be no dependence on sgn(q0) when q is space-like. Below, we will see that this is
correct also by another consideration.
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is analytic and polynomially bounded in the upper half-plane of ω. Using
now the equations (5.155) and (5.156) we can write

Fµν
− (ω) = (lµlν − ηµν)ω2M−(ω2), (5.159)

if ω is in the lower half-plane, and

Fµν
+ (ω) = (lµlν − ηµν)ω2M+(ω2), (5.160)

if ω is in the upper half-plane. Accordingly, the functions M−(ω2) and
M+(ω2) are analytic on the whole ω2-plane except for the real positive axis,
ω2 ≥ 0. They are also bounded by a polynomial. In fact, it turns out
that we can provide a full characterization of the function Mµν

00 (q,−q) by
considerations of either one of the functions M−(ω2) and M+(ω2). To make
the presentation more simple, let us now pick one of those two functions,
say M+(ω2), and focus our attention only on it. If we instead used M−(ω2)
the treatment would be completely analogous.

Before we continue I would like to briefly discuss one point that can be
somewhat confusing.31 In the following discussion we are going to study the
function M+, and we will be particularly interested in its values at real ω2.
According to the equation (5.160), the function M+(ω2) is defined only when
ω is in the upper half-plane. But that means that on the definition domain
of M+(ω2), ω2 can never attain a positive real value. Clearly, to speak about
the value of M+ for ω2 > 0 we need to consider some suitable limit, which
corresponds to q = ωl approaching the real hyperplane. However, unlike
positive real values, negative real values of ω2 can be attained inside the
definition domain of M+(ω2). Let us focus our present discussion on this
case. To obtain a negative real value of ω2 in the upper half-plane of ω, ω
must be purely imaginary. This corresponds to a four-vector q = +i|ω|l,
which is deep inside the tube Γ+, far off the real hyperplane. Ultimately,
however, we are interested in real four-momenta: that is, in the boundary
value of M+ as given in the equation (5.154). How do we know that for a
real q, with q2 < 0, these values are the same as those for purely imaginary
ω, far off the real axis? The answer consists of two components, both of
which we have already used, at least implicitly, earlier. First, in Sec. 2.3 we
discussed Theorem 5 which says that if we approach from inside the tube
Γ+ the real hyperplane of q then the corresponding limit of M+(q2) is the
value M+(q2, sgn(q0)) defined by the equation (5.150). Second, inside Γ+ the
function M+(q2) is analytic and depends only on q2. Thus, as we approach a
space-like real q, the function M+(q2) must approach the same value which it
attains at the imaginary four-vector q = +i|ω|l. A similar argument applies
for a real q with q2 > 0, except that there is no corresponding ω at which
M+(ω2) attains that value, and we have two different limits, depending on
the direction from which we approach the positive real axis of q2.

31I apologize for repeating some of the arguments mentioned earlier.
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ω2

Figure 5.12: The integration contour that can be used to obtain the dispersion
relation (5.161) for the function M+(ω2). The integration contour consists
of four parts. First, a straight line segment that goes right above the real
axis, starts at ω′2 = −δ+iϵ and ends at ω′2 = +R+iϵ. (Here δ, ϵ, and R are
all real positive numbers, 0 < ϵ, δ << R.) Second, a large circle of radius
R that starts at ω′2 = +R + iϵ and takes a counterclockwise circular path
to ω′2 = +R − iϵ. Third, a straight line segment just below the real axis,
from ω′2 = +R− iϵ to ω′2 = −δ − iϵ. Fourth, a small semicircle of radius ϵ
that starts at ω′2 = −δ− iϵ and goes clockwise to ω′2 = −δ+ iϵ. (Of course,
δ and ϵ must be chosen small enough, and R large enough, for the point
ω′2 = ω2 to be located inside the contour of integration.) We then increase
the radius R to infinity, R → +∞, at which limit the integral over the
large circle vanishes. (Assuming that we made appropriate subtractions.)
To obtain (5.161) we then consider the limit of ϵ, δ → 0+.
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As we have seen, M+(ω2) is analytic in the whole plane of ω2 except
for the positive real axis, ω2 ≥ 0. We also know that M+(ω2) is bounded
by a polynomial for large values of |ω2|, which means that can formulate
for it a dispersion relation. To keep the discussion as simple as possible,
let us assume for now that M+ → 0 as |ω2| → ∞. We will return to the
general case later. Let us choose a value of ω2 such that ω2 /∈ [0,+∞) and
integrate M+(ω′2)/(ω′2 −ω2), as a function of ω′2, over the contour depicted
in Fig. 5.12. As one can see in the figure, the contour start at ω′2 = −δ+ iϵ,
where δ and ϵ are very small positive real numbers, continues along a straight
line just above the real axis to ω′2 = +R+iϵ, where R >> δ, ϵ > 0, then takes
nearly a full circle of radius R in the counterclockwise direction to the point
ω′2 = +R − iϵ, after which it goes along a straight line just below the real
axis to the point ω′2 = −δ − iϵ, and finally it closes with a small semicircle
of radius ϵ going clockwise to ω′2 = −δ+ iϵ. We then stretch the large circle
to infinity. In this limit the integral over this large circle vanishes. We also
take the limit of ϵ → 0+. The integral over the small semicircle vanishes,
because there is no singularity at ω2 = −δ, and the part of the integral over
the straight line segments becomes the integral of the discontinuity along
the interval [−δ,+∞). Now, on the interval [−δ, 0) the discontinuity is zero,
but we formally retain this limit to make sure that any possible singularity
at ω′2 = 0 is included. In this formulation this happens through the integral
of the discontinuity, which might not be a regular function. Altogether, we
obtain the dispersion relation32

M+(ω2) = 1
2πi

lim
δ→0+

∫ ∞

−δ
dξ2M+(ξ2 + iϵ) −M+(ξ2 − iϵ)

ξ2 − ω2 . (5.161)

Now, even though M+ itself is defined only for ω2 that are not on the
positive real semi-axis, the limits of M+(ξ2 + iϵ) and M+(ξ2 − iϵ) for ϵ → 0+

do exist. Since the function M+(ω2) corresponds to values of ω that are in
the upper half-plane, if ω2 = ξ2 + iϵ approaches the positive real axis this
corresponds to the limit ω = +|ξ| + iϵ. That is, ω approaches the positive
real semi-axis, and the corresponding limit of M+ is therefore the boundary
value M+(ω2,+1) defined in (5.154). If, on the other hand, ω2 = ξ2 − iϵ
approaches the positive real axis from below, then this corresponds to the
limit ω = −|ξ| + iϵ. That is, ω approaches the negative real semi-axis and
the corresponding limit of M+ is the boundary value M+(ω2,−1). In order

32Alternatively, we could also consider the function Fµν(ω) defined by

Fµν(ω) =
{

Fµν
+ (ω) if ℑ{ω} > 0,

Fµν
− (ω) if ℑ{ω} < 0.

This function is analytic in whole plane of ω except for the real axis. We could then
consider the integration contour depicted in Fig. 5.13 to obtain a dispersion relation di-
rectly for Fµν(ω). The discontinuity across the real axis is given by the equations (5.148),
(5.153), (5.149), and (5.152).
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to calculate the discontinuity M+(ξ2 + iϵ) −M+(ξ2 − iϵ) across the positive
real semi-axis, we therefore need to evaluate M+(ξ2,+1) −M+(ξ2,−1). For
this purpose, we can use the equation (5.153),(

qµqν − ηµνq2
)
M(q2) = Mµν

00 (q,−q)

=
∫
d4x eiqx (Ψ0, J

ν(0)Jµ(x)Ψ0) +
(
qµqν − ηµνq2

)
M+(q2, sgn(q0)),

where we put q = ±|ξ|l. Now, the left-hand side of this equation does not
change under the inversion of its argument, q → −q. This implies that

ξ2 (lµlν − ηµν)
[
M+(ξ2, sgn(ξ) = +1) −M+(ξ2, sgn(ξ) = −1)

]
=
∫
d4x ei(−|ξ|l)x (Ψ0, J

ν(0)Jµ(x)Ψ0)

−
∫
d4x ei(+|ξ|l)x (Ψ0, J

ν(0)Jµ(x)Ψ0) . (5.162)

Using now the result (5.152),∫
d4x eiqx (Ψ0, J

ν(0)Jµ(x)Ψ0) = 2π
(
qµqν − q2ηµν

)
ρ(q2)θ(−q0),

we see that this discontinuity equals

M+(ξ2, sgn(ξ) = +1) −M+(ξ2, sgn(ξ) = −1)

= 2πρ(ξ2)
[
θ
(
−q0

) ∣∣∣∣
q=−|ξ|l

− θ
(
−q0

) ∣∣∣∣
q=+|ξ|l

]
= 2πρ(ξ2). (5.163)

The dispersion relation (5.161) can therefore be written also as

M+(ω2) = −i lim
δ→0+

∫ ∞

−δ
dξ2 ρ(ξ2)

ξ2 − ω2 . (5.164)

This dispersion relation can be used to calculate the value of M+(q2) for
any four-vector q. The only remaining ambiguity is that to calculate the
value for a real time-like q2, we can approach the cut on the positive real
axis from two directions, leading to two different results.

Now we are ready to formulate our result for the quantity Mµν
00 (q,−q).

As we saw earlier, when we use the decomposition (5.145) to rewrite the
time-ordered product that appears in Mµν

00 (q,−q), then for a real four-vector
q we obtain the formula (5.153). Using then equations (5.152) and (5.154),
we can write that formula in the form

Mµν
00 (q,−q) =

(
qµqν − ηµνq2

)
M(q2) = 2π

(
qµqν − q2ηµν

)
ρ(q2)θ(−q0)

+
(
qµqν − ηµνq2

)
M+(q2, sgn(q0)), (5.165)
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where M+(q2, sgn(q0)) is the appropriate boundary value of M+(q2). As
we have already discussed, for real space-like values of q2 < 0 this means
that M+(q2, sgn(q0)) is directly the function M+(q2) given by the dispersion
relation (5.164), and does not depend on the sign of q0. Note that this is
consistent with the equation (5.165). There the quantity Mµν

00 (q,−q) that
figures on the left-hand side is invariant under the interchange q → −q and
thus cannot depend on the sign of q0. But for q space-like the first term
on the right-hand side, 2π

(
qµqν − q2ηµν

)
ρ(q2)θ(−q0), vanishes, because for

q2 < 0 we have ρ(q2) = 0. The equation (5.165) therefore implies that
in the space-like region the second term must not depend on the sign of
q0. For a real time-like q2 > 0, on the other hand, the matter is slightly
more complicated. The left-hand side of (5.165) does not depend on the
sign of q0, but both terms on the right hand side do. When we approach
the branch cut of the function M+(q2) from above, that limit corresponds
to the positive value of q0 = ξl0. The first term on the right-hand side
then vanishes, because in that limit θ(−q0) = 0. If, on the other hand,
we approach the branch cut of M+(q2) from below, then the first term on
the right-hand side yields the value 2π

(
qµqν − q2ηµν

)
ρ(q2). This is exactly

what is needed to cancel the discontinuity across the branch cut of M+(q2),
which by the methods that we introduced in Sec. 2.5 can be calculated from
the dispersion relation (5.164) as

M+(q2 + iϵ) −M+(q2 − iϵ) = −i (2πi) Res
(
ρ(ξ2)
ξ2 − q2 ; ξ2 = q2

)
= 2πρ(q2).

In other words, we have(
qµqν − ηµνq2

)
M+(q2 + iϵ)

= 2π
(
qµqν − q2ηµν

)
ρ(q2) +

(
qµqν − ηµνq2

)
M+(q2 − iϵ),

which shows that the left-hand side of (5.165) is indeed invariant under the
inversion of its argument, just as it had to be. Of course, this is not surpris-
ing, because the dispersion relation (5.164) has been formulated explicitly
to yield the discontinuity which ensures this property.

To summarize, we found that if we approach the branch cut of M+(q2)
from above, we obtain the quantity which after supplying the factor

qµqν − ηµνq2

corresponds directly to Mµν
00 (q,−q). Thus, instead of (5.165), we can simply

write
Mµν

00 (q,−q) =
(
qµqν − ηµνq2

)
M+(q2 + iϵ). (5.166)

Note that although this equation has been derived only for real four-vectors
q, the right-hand side is an analytic function of q for all values of q2, except
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for the possible presence of singularities along the positive real axis q2 ≥ 0.33

If we substitute into (5.166) our dispersion relation (5.164), we obtain

Mµν
00 (q,−q) =

(
qµqν − ηµνq2

)
lim

δ→0+

∫ ∞

−δ
dµ2 iρ(µ2)

q2 − µ2 + iϵ
, (5.167)

where we renamed the variable ξ2 to µ2 and extracted a factor of −1 from
the denominator in order to obtain the form identical to our earlier re-
sult (5.129). We could now repeat our earlier discussion, which followed the
result (5.129), to show that the full photon propagator, as well as α(s), are
real in the space-like region.

The argument that we just presented constitutes a mathematically rigor-
ous proof of the reality of the full propagator in the space-like region. How-
ever, there is a problem with it: we assumed that M+(q2) → 0 as |q2| → ∞,
so that we could formulate an unsubtracted dispersion relation for M+(q2).
But the only thing that we really know is that M+(q2) is bounded by a poly-
nomial, so in general we must account for the possibility that subtractions
are necessary. As we discussed in the first part of this thesis, and as we
will illustrate on a simple example below, when we formulate a subtracted
dispersion relation the final formula depends on a number of undetermined
subtraction constants, and it is not obvious that those subtraction constants
do not ruin the reality property of the propagator. (These subtraction con-
stants are not determined by the analytic properties that are used in the
formulation of dispersions relations, such as the extent of the region of ana-
lyticity or asymptotic properties of the function. It is of course possible that
they might be determined or at least constrained by some other means.) As
we will now show, the truth is that the reality property of the propagator
is completely independent of the presence of possible subtractions. In the
above proof for the unsubtracted case we actually failed to explicitly notice
the reason why the propagator must be real in the space-like region. Let us
now set this issue right. First, notice that nowhere in the derivation of the
formula (5.166),

Mµν
00 (q,−q) =

(
qµqν − ηµνq2

)
M+(q2 + iϵ), (5.168)

did we use any asymptotic properties of M+(q2). This formula therefore
holds generally, and it implies that we can determine the reality property

33Nothing that has been said so far does really determine where exactly the branch
cut starts. We do not really know where and how many branch points are there, except
that our earlier discussion suggests that there should be a branch point for each normal
threshold. In any case, the answer to this question should be fully determined by the
exact form of the function ρ(q2). If we start at a space-like value of q2 < 0 and gradually
move along the real axis to larger values of q2, the lowest branch point should be at the
point where ρ(q2) ceases to be zero. In the full standard model, which contains massless
particles in physical states, this should happen already at q2 = 0. On the other hand, if
we calculate the quantity Mµν

00 (q,−q) in a theory that contains only the strong force, then
the lowest branch point should be at the two-pion threshold.
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of the propagator by investigating the function M+(q2). From our earlier
discussion that followed (5.129) we know that in order for the propagator
to satisfy the reality condition, the same condition must be satisfied by
the function −iM+(q2).34 That means that we need M+(q2) to satisfy the
relation

−iM+(z∗) = [−iM+(z)]∗ . (5.169)
Also notice that our earlier description of the analytic structure of M+(q2)
does still apply, even if M+(q2) does not vanish for |q2| → ∞. In particular,
it remains true that M+(q2) is analytic in the whole complex plane of q2

except for the positive semi-axis q2 ∈ [0,∞), where its discontinuity is de-
termined by the spectral function ρ(q2). Consider now the equation (5.154),
which holds for real four-momenta q, and which has been derived indepen-
dently of any assumptions about the asymptotic properties of M+(q2) for
large arguments. The equation reads∫

d4x eiqx
(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)
=
(
qµqν − ηµνq2

)
M+(q2, sgn(q0)). (5.170)

Recall that M+(q2,+1) corresponds to the limit when we approach the real
axis from above, and M+(q2,−1) corresponds to the limit when we approach
the real axis from below. When q2 < 0, both those limits are the same, and
M+(q2, sgn(q0)) does not depend on the sign of q0. Now, it is easy to see
that this equation implies the desired property (5.169) of M+(q2). When we
complex conjugate the equation (5.170), we obtain(

qµqν − ηµνq2
)
M+(q2, sgn(q0))∗

=
∫
d4x e−iqx

(
Ψ0, θ(x0) [Jµ(x), Jν(0)] Ψ0

)∗

=
∫
d4x e−iqx

(
θ(x0) [Jµ(x), Jν(0)] Ψ0,Ψ0

)
=
∫
d4x ei(−q)x

(
Ψ0, θ(x0) [Jν(0), Jµ(x)] Ψ0

)
= −

(
qµqν − ηµνq2

)
M+(q2,−sgn(q0)). (5.171)

From this we see that M+(q2) satisfies the property

M+(q2,−sgn(q0)) = −M+(q2, sgn(q0))∗. (5.172)

The function −iM+(q2) therefore satisfies (5.169), from which follows the
reality property of the photon propagator. In fact, since for q2 < 0 the
function M+(q2, sgn(q0)) does not depend on sgn(q0), we can see right away
that in the space-like region −iM+(q2) must be real.

34This follows directly from the equation (5.35). We are also going to see an example
of this property explicitly at the end of the present section.
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ω

Figure 5.13: The integration contour that could be employed instead of the
one depicted in Fig. 5.12 if we wanted to formulate a dispersion relation
directly for the function Fµν(ω) that is defined as Fµν

+ (ω) in the upper half-
plane of ω and as Fµν

− (ω) in the lower half-plane of ω.

There are still two remaining issues that we ought to discuss before we
close this topic. The first one is the derivation of subtracted variants of the
dispersion relation (5.161). As we have already mentioned, since we only
know that M+(ω2) is bounded by a polynomial, we might need to consider a
dispersion relation with one or more subtractions.35 This possibility makes
the treatment somewhat more complicated, but it does not stop us from
formulating a dispersion relation of some kind. We know that there exists
an integer N > 0, such that if P (ω2) is a polynomial of the N -th degree
then M+(ω2)/P (ω2) → 0 when |ω2| → ∞. We can therefore formulate
the dispersion relation for M+(ω2)/P (ω2) instead of M+(ω2) and proceed
otherwise in exactly the same way as we did before. The only difference is
that when we integrate

M+(ω′2)
P (ω′2)(ω′2 − ω2)

(5.173)

over the contour depicted in Fig. 5.12, we obtain an additional residue for
each zero of P (ω′2) that lies inside of the contour of integration.

For illustration, let us consider the simple case of special interest, when
P (ω2) = ω2. Now, since the zero of P (ω′2) is outside of the contour of
integration, namely at ω′2 = 0, we could just directly write down a dispersion
relation similar to (5.164). Note, however, that M+(ω′2)/P (ω′2) contains a
pole factor at ω′2 = 0, which means that the discontinuity will not be a
regular function there. It is not completely straightforward to investigate

35This suggests that our earlier derivation of the Källén–Lehmann representation may
indeed be flawed, since no subtractions appear in the equation (5.129).
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the effect of this new pole directly, because there can be various singularities
on the positive real axis and we also expect there to be a branch cut. But
there is a trick that allows us to avoid all these issues and remain in the
realm of an elementary complex analysis. Instead of ω′2 we consider the
polynomial P (ω′2) = ω′2 + α, where α is a small and positive real number.
That is, we move the zero of P slightly to the left of the point ω′2 = 0. If
we choose α > δ then the zero is inside of the contour of integration, and
we can evaluate its contribution by the application of the basic version of
the residue theorem. Afterwards, we want to take the limit α → 0+, while
maintaining the relation α > δ > 0.

Let us follow this approach a little bit further. We fix a small real α,
satisfying α > δ > 0. According to our assumption, M+(ω2)/

(
ω2 + α

)
→ 0

when |ω2| → ∞, so if we integrate (5.173), with P (ω′2) = ω′2 + α, over the
contour in Fig. 5.12 and send R → ∞, we obtain

lim
δ→0+

∫ ∞

−δ

dξ2

ξ2 + α

2πρ(ξ2)
ξ2 − ω2 = 2πiM+(ω2)

ω2 + α

+ 2πiRes
(

1
ω′2 + α

M+(ω′2)
ω′2 − ω2 ;ω′2 = −α

)
. (5.174)

Now, at the space-like ω′2 = −α the function M+(ω′2) is analytic, which
means that the residue on the right-hand side is simplyM+(−α)/

(
−α− ω2).

Thus, if we maintain α > δ > 0 and take the limit α → 0+, we obtain the
result that can be written as

M+(ω2) − lim
α→0+

M+(−α) = −iω2 lim
δ→0+

∫ ∞

−δ

dξ2

ξ2
ρ(ξ2)
ξ2 − ω2 . (5.175)

Or, if we assume some regularity properties of M+(ω2) that we have not
really demonstrated, we may write this equation more simply as

M+(ω2) −M+(0) = −iω2
∫ ∞

0

dξ2

ξ2
ρ(ξ2)
ξ2 − ω2 . (5.176)

We can now obtain an equation for Mµν
00 (q,−q) analogous to (5.167), but

for once-subtracted dispersion relation (5.175),

Mµν
00 (q,−q) = i

(
qµqν − ηµνq2

)
×
[
q2
∫ ∞

0

dµ2

µ2
ρ(µ2)

q2 − µ2 + iϵ
− iM+(0)

]
. (5.177)

If we now use this result in the equation (5.35) for the full propagator,
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just as we did in (5.130), we obtain

∆′
µν(q) = −ηµν

q2 + iϵ
+

−ηµν + qµqν

q2+iϵ

q2 + iϵ

[
q2
∫ ∞

0

dµ2

µ2
ρ(µ2)

q2 − µ2 + iϵ

− iM+(0) − (Z3 − 1)
]
. (5.178)

Now, again, since we are considering the full propagator ∆′
µν(q) in the physi-

cal renormalization scheme, the gauge-invariant part of the residue at q2 = 0
must be the same as that of the free propagator. From this point of view
the subtraction constant M+(0) is related to the renormalization scheme.
Note, however, that it is very important that we have already demonstrated
above that the constant −iM+(0) is real.36 For q2 = 0 the expression in the
square brackets must vanish, so we obtain a single condition for the value of
the constant −iM+(0) − (Z3 − 1). In fact, since for q2 = 0 we should have[

q2
∫ ∞

0

dµ2

µ2
ρ(µ2)

q2 − µ2 + iϵ

]
q2=0

= 0,

in the physical renormalization scheme we put

Z3 = 1 − iM+(0). (5.179)

This leads to

∆′
µν(q) = −ηµν

q2 + iϵ
+
[
−ηµν + qµqν

q2 + iϵ

] ∫ ∞

0

dµ2

µ2
ρ(µ2)

q2 − µ2 + iϵ
. (5.180)

This brings us to the second issue, which is the derivation of the dis-
persion relation for the one-particle-irreducible function π(q2). By the same
method that we used below the equation (5.130), we see that

1
1 − π(q2)

= 1 + q2
∫ ∞

0

dµ2

µ2
ρ(µ2)

q2 − µ2 + iϵ
, (5.181)

which means that the function π(q2) should possess the same analytic and
reality properties as does the function M+(q2). That means that we can use
the same contour of integration as we did in the derivation of (5.175). Now,
the perturbation theory suggests that we need to use once-subtracted dis-
persion relations, in order to suppress large logarithms. Thus, the dispersion
relation must be of the form (5.175), except that instead of 2πρ(µ2) we use

36Recall that M+(0) represents lim
α→0+

M+(−α) combined with the assumption that

M+(q2) is continuous at q2 = 0. What we know is that for α > 0 the function −iM+(−α)
is real, and this is very important, for otherwise we would not be able to achieve a physical
renormalization of the propagator using a real renormalization constant Z3.



228 CHAPTER 5. THE FINE STRUCTURE CONSTANT

the more general form 2iℑ
{
π(µ2 + iϵ)

}
for the discontinuity, and that we

can use the physical renormalization condition π(0) = 0. Thus, we obtain
the dispersion relation

π(q2) = q2

π

∫ ∞

0

dµ2

µ2
ℑ
{
π(µ2 + iϵ)

}
µ2 − q2 + iϵ

. (5.182)

If we specialize to the theory of strong force only, we obtain the dispersion
relation (5.56), that we have employed earlier in Sec. 5.2.

5.6 Utilizing the U&A model
In the remaining part of this section I will introduce some of the results that
I have obtained in collaboration with my colleagues, and which we plan to
publish in the article [65]. This work was originally inspired by the recent
paper of Stamen et al. [66], in which the authors constructed models of
electromagnetic form factors of charged and neutral kaons and used them
to calculate several quantities of interest. These quantities were the corre-
sponding charge radii, the correction to the Dashen’s theorem, the lowest
order contribution of kaons to the muon’s magnetic anomaly aµ, and the
contribution of light-by-light kaon boxes to aµ. Models constructed by Sta-
men et al. in [66] are appropriate as approximate phenomenological models,
but there is a reasonable perspective from which they do not appear very
attractive. Their models for isoscalar and isovector components of kaon
form factors are in their core each different, and this difference is due to
practical convenience rather than underlying physics. A more dangerous
aspect of their approach is that they combine two mutually exclusive ap-
proaches within a single model, namely the dispersion theoretical approach
based on the Omnès function [67] and the VMD model.37 While this does
not by any means invalidate their work, we thought it could be worthwhile
to redo their analysis using the more universal approach of the U&A model.
Furthermore, in addition to kaon form factors we also calculated the same
four quantities from the form factor of the charged pion.

Another specificity of our approach was that we decided to fit our model
on exclusively time-like experimental values. This was despite the fact that

37These two approaches each describe the same thing from a different point of view.
The Omnès function approach describes the form factor in terms of its discontinuity, as
determined by relevant asymptotic physical states, while the VMD approach approximates
the form factor using poles of vector meson resonances. A resonance is not an asymptotic
state, and corresponds instead to a particular superposition of such states. If one combines
those two approaches, one encounters various troubles related to possible double counting.
Now, this is not say that it is impossible to combine them correctly, but they are in any
case exclusive: once we account for some contribution by one approach we should not do
so again by the other approach. From a practical point of view, however, and especially
in an approximate model, it is possible to keep these issues under control, and it might
make a good sense to use an approach such as the one presented in [66].
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three out of four above-mentioned quantities which we aimed to calculate
depended on space-like values of form factors. Our reasoning was that it is
quite challenging to measure space-like values of the form factors of the pion
and kaons. For the charged pion and the charged kaon the main experimen-
tal method is the scattering of those mesons on atomic electrons, which is
complicated by the fact that the mass of the target electron is much smaller
than the mass of the projectile: some 280 times smaller in the case of π e
scattering and nearly thousand times smaller for the K e scattering. Fur-
thermore, the interpretation of such measurements is also complicated by
the presence of the external field of the target nucleus. (And the measure-
ment of space-like values of the form factor of the neutral kaon is even more
difficult.) One could observe these difficulties in early measurements of the
charge radius of the pion, which all yielded quite disparate values.38 For
the charged kaon form factor there are only two available sets of space-like
data [71, 72], and they are of relatively low precision. We therefore decided
to estimate our model parameters on selected time-like data and use the an-
alytic continuation inherent the U&A model to predict space-like values of
form factors. These predicted values of the form factor of the charged kaon
are depicted here in Fig. 5.14, where we also display the available experimen-
tal data. Unlike kaon form factors, which we constructed anew, we adopted
the model of the charged pion form factor from an earlier work [73], on which
I did not collaborate, but which also fitted the model on only time-like data.

At the level of precision appropriate for this work it is possible to operate
under the approximation that isospin is a precise symmetry of strong inter-
actions.39 This allows us to relate the form factor FK± of the charged kaon
to the form factor FK0 of the neutral kaon. Under isotopic spin transforma-
tions the operator of the electromagnetic current transforms as the sum of a
component that transforms as a scalar and a component that transforms as
a vector. That is, we can write J = Js + Jv, where Js is the isoscalar and
Jv the isovector component. Each form factor can be accordingly decom-
posed into an isoscalar and an isovector component. This, combined with
the fact that the pair K+ and K0 forms the isospin doublet {ΨK+ ,ΨK0},
and K− and K̄0 the doublet {−ΨK̄0 ,ΨK−}, can then be used to show that
the isoscalar and isovector parts of the charged kaon form factor and the
isoscalar and isovector parts of the neutral kaon form factor are closely re-
lated. As one can verify, both form factors can be expressed in terms of

38In 1977 Adylov et al. [68] published the value ⟨r2⟩π± = 0.61 ± 0.16 fm2 and Dally et
al. [69] the value ⟨r2⟩π± = 0.31 ± 0.04 fm2. Later, in 1982, Dally et al. [70] published the
value ⟨r2⟩π± = 0.439 ± 0.030 fm2.

39There is an exception that during the fitting of the model for the pion form factor one
must account in cross section data for the contribution of the isospin violating electro-
magnetic decay ω(782) → π+π−. Details can be found, for instance, in [73], from which
we adopted the pion model.
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Figure 5.14: Predictions of the model (the black solid line) plotted against
available charged kaons data from the space-like region: Dally et al. [71],
Amendolia et al. [72]. These data were not used to determine model param-
eters. The blue dotted line is the “neutral fit” and the green dotted line the
“charged fit” from Stamen et al. [66]. (Taken from [65].)

their common isoscalar part F s
K and their common isovector part F v

K as

FK±(s) = F s
K(s) + F v

K(s), (5.183)
FK0(s) = F s

K(s) − F v
K(s). (5.184)

Our assumption that isospin is a precise symmetry of the strong force
implies that isoscalar form factor F s

K couples only to isoscalar resonances,
and the isovector form factor F v

K only to isovector resonances. Unfortu-
nately, there is no clear-cut way to decide which resonances to include in
the model and which not. In principle, all resonances that carry the correct
quantum numbers should be included, but available data are not sufficient to
determined all their parameters. For any given form factor, some resonances
contribute more than other and, furthermore, if a resonance pole is located
far away from the region of interest then its effect is strongly suppressed. For
this reason we usually want to decide carefully which resonances to include
and which to omit. Unless there is some specific reason to do otherwise,
the natural rule of thumb is to include as few resonances as possible while
maintaining a good description of data. In practice, one usually makes the
decision based on the inspection of data which will be used to estimate the
model parameters, and by experimenting with various reasonably looking
choices. In our work [65] we decided to include all three resonances ϕ, ϕ′, ϕ′′

into our model of F s
K , and leave all their parameters free. This is because

kaons carry non-zero strangeness so one expects them to couple strongly the
ϕ resonances. We noticed in data an indication of a possible contribution of
the ω′′(1650) resonance, which we therefore also included, but with its mass
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fixed at 1.67 GeV and only its width left as a free parameter. We excluded
the resonance ω′(1420), whose contribution was not at all apparent in the
data. Furthermore, in order to correctly describe data at the low energy
it is in general necessary to include the ground state resonances. Thus, we
also included the ω(782)-resonance, with its parameters fixed at the values
from [74]. Thus, the model of F s

K used in our work [65] contains resonances
ω, ϕ, ϕ′, ω′′ and ϕ′′, with the mass and width of ω and the mass of ω′′ fixed.
In the model of the isovector part of the kaon form factor we considered all
three relevant ρ-mesons, and fixed the parameters of the ground resonance
ρ at their values from [74].

With this selection of resonances, one can then proceed and construct
the model according to the rules described in the chapter 4. For the isoscalar
component F s

K(s) the function F̂ s
K(W ), corresponding to the function F̂U&A

of (4.26) and (4.27), is given by

F̂ s
K(W ) =

(
1 −W 2

1 −W 2
N

)2 ∑
i=ω,ϕ,ϕ′,ω′′,ϕ′′

fiKK

fi

∏
p∈{±Wi,±W ∗

i }

WN − p

W − p
. (5.185)

The relation between s and W is given by the equations (4.9), (4.10), and
(4.11), with s0 = 9m2

π and sin determined by the fit of data. The form
factor F s

K(s) is then given by the function F̂ s
K(W (q(s))). The form (5.185)

corresponds to the case when √
sin < mi for all included resonances, which

is the condition that happened to hold for our fit. For the isovector part the
corresponding function F̂ v

K was of the form

F̂ v
K(W ) =

(
1 −W 2

1 −W 2
N

)2 [
fρKK

fρ

∏
p∈{Wρ,W ∗

ρ ,1/Wρ,1/W ∗
ρ }

WN − p

W − p

+
∑

i=ρ′,ρ′′

fiKK

fi

∏
p∈{±Wi,±W ∗

i }

WN − p

W − p

]
. (5.186)

Here the map from the four-sheeted Riemann surface of s to W is given
again by (4.9), (4.10), (4.11), but this time with s0 = 4m2

π and a different
value of sin, again determined by the fit. The form above is for the case
when mρ <

√
sin < mρ′ ,mρ′′ . We adopted the model of Fπ± from [73].

Among the available measurements of the process e+e− → K0K̄0 we
chose to use data measured by collaborations CMD-2 [75], CMD-3 [76],
BaBar [77], and BESIII [78]. For the process e+e− → K+K− we consid-
ered data by CMD-3 [79], BaBar [80, 81], and BESIII [82]. Publications
[75, 80, 78, 82] presented “undressed” data; that is, data with the vacuum
polarization effect on the virtual photon line removed. The remaining publi-
cations presented only “dressed” cross sections with the vacuum polarization
effects included. Since for our purposes “undressed” form factors were ap-
propriate, we removed the vacuum polarization effects from [79, 76, 77, 81]
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Figure 5.15: The U&A model (5.185), (5.186) with parameters from Ta-
ble 5.1 displayed against all the experimental charged kaon data that were
used to fit the model. The y-axis is depicted in the logarithmic scale. Labels
correspond to the following sources: CMD3 [79], BaBar2013 [80], BaBar2015
[81], BESIII [82]. (Taken from [65].)

before further analysis. Furthermore, because our model assumes the con-
servation of the isospin symmetry, it was important to remove all final state
radiation effects from data of charged kaons. We did that using the final
state radiation factor 1 + α

π η. The reader can find a discussion of final state
radiation corrections, as well as the explicit form of the η function, in [45]
or [46]. The original reference is [83], with a misprint corrected in [84]. The
parameters of our fit are displayed in the Table 5.1. Plots of the fit, displayed
against the data, can be found in figures Fig. 5.15, Fig. 5.16, Fig. 5.17, and
Fig. 5.18.

After we constructed the models of F s
K and F v

K , defined by (5.185) and
(5.186), respectively, and estimated their parameters as depicted in Ta-
ble 5.1, we used those models (together with the charged pion model of
[73]) to calculate several quantities of interest. Below, I am going to briefly
present our results.

5.6.1 Charge radii

One of the quantities that we calculated were the charge radii of the charged
pion and of the charged and neutral kaons. The mean squared charge radius
of a spin zero particle is defined in terms of the derivative of its electromag-
netic form factor,

⟨r2⟩ = 6dF (s)
ds

∣∣∣∣
s=0

. (5.187)
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Figure 5.16: The U&A model (5.185), (5.186) with parameters from Ta-
ble 5.1 displayed against all the experimental neutral kaon data that were
used to fit the model. The y-axis is depicted in the logarithmic scale. La-
bels correspond to the following sources: CMD2 [75], CMD3 [76], BaBar
[77], BESIII [78]. (Taken from [65].)
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Figure 5.17: The model displayed against the data of charged kaons near
the ϕ-resonance peak. (Taken from [65].)
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Figure 5.18: The model displayed against the data of neutral kaons near the
ϕ-resonance peak. (Taken from [65].)

Table 5.1: Parameters obtained in [65] for the model of the kaon form factors
described the equations (5.185) and (5.186).

name value name value
ss

0 0.1753190 GeV2 (fixed) sv
0 0.0779196 GeV2 (fixed)

ss
in 0.6125 ± 0.0001 GeV2 sv

in 1.7720 ± 0.0035 GeV2

fωKK/fω 0.1977 ± 0.0013
mω 0.78266 GeV (fixed) Γω 0.00868 GeV (fixed)

fω′′KK/fω′′ 0.1580 ± 0.0034
mω′′ 1.67 GeV (fixed) Γω′′ 0.329 ± 0.017 GeV

fϕKK/fϕ 0.32427 ± 0.00059
mϕ 1.0190367 ± 0.0000079 GeV Γϕ 0.004139 ± 0.000015 GeV

fϕ′KK/fϕ′ −0.1833 ± 0.0033
mϕ′ 1.6396 ± 0.0019 GeV Γϕ′ 0.2322 ± 0.0079 GeV
mϕ′′ 2.2063 ± 0.0025 GeV Γϕ′′ 0.1000 ± 0.0051 GeV

fρKK/fρ 0.5308 ± 0.0013
mρ 0.75823 GeV (fixed) Γρ 0.14456 GeV (fixed)

fρ′KK/fρ′ −0.1308 ± 0.0080
mρ′ 1.467 ± 0.020 GeV Γρ′ 0.796 ± 0.020 GeV
mρ′′ 1.8640 ± 0.0093 GeV Γρ′′ 0.481 ± 0.018 GeV
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We have obtained the following values [65]

⟨r2⟩π± = 0.428 ± 0.010 fm2, (5.188)
⟨r2⟩K0 = −0.123 ± 0.010 fm2, (5.189)
⟨r2⟩K± = 0.403 ± 0.005 fm2. (5.190)

The uncertainties of these quantities, as well as of other results presented
below, were estimated with the help of a Monte Carlo method. According
to the published statistical and systematic errors of the experimental data,
we generated a number of datasets, and fitted each of those with our model.
From each of such a fit we then calculated all the quantities of interest, and
used those results to estimate the errors.

Note that while the value (5.188) for the charge radius of the pion is in
agreement with its PDG average value [74]

⟨r2⟩π± |[74] = 0.434 ± 0.005 fm2, (5.191)

the values for kaon charge radii obtained here have significantly larger mag-
nitude than their respective PDG averages

⟨r2⟩K± |[74] = 0.314 ± 0.035 fm2. (5.192)

and
⟨r2⟩K0 |[74] = −0.077 ± 0.010 fm2, (5.193)

As we discuss in the article, a possible explanation for this discrepancy could
be that while the PDG averages (5.192) and (5.193) include measurements
carried out directly in the space-like region, we avoided all space-like data,
and relied solely on the analytic continuation from the time-like region.

5.6.2 Correction to the Dashen’s theorem

When Dashen investigated the consequences of the approximate chiral SU(3)×
SU(3) symmetry of strong interactions [85], he predicted that the differ-
ence between the electromagnetic contributions to the squared mass of the
charged pion and the squared mass of the neutral pion

(∆m2
π)EM = (m2

π±)EM − (m2
π0)EM, (5.194)

should be the same as the corresponding difference (∆m2
K)EM = (m2

K±)EM−
(m2

K0)EM for the charged and neutral kaons. The corrections are, however,
quite large. We define the quantity ϵ, which describes the size of those
corrections, as

ϵ = (∆m2
K)EM

(∆m2
π)EM

− 1. (5.195)
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To evaluate these corrections, Stamen et al. [66] employed the Cotting-
ham formula [86, 87]. They determined the electromagnetic masses using
the relation(

m2
p

)
EM

= α

8π

∫ ∞

0
ds [Fp(−s)]2

(
4W + s

m2
p

(W − 1)
)

(5.196)

for the electromagnetic mass of a spin 0 particle p. Here, Fp(−s) is the
particle’s electromagnetic form factor evaluated at the space-like value −s,
and W =

√
1 − 4m2

p/s. When we substituted into this formula our models
of form factors we obtained the values [65]

(m2
K±)EM = (1.99 ± 0.03) × 10−3GeV2, (5.197)

(m2
K0)EM = (4.3 ± 1.1) × 10−5GeV2, (5.198)

(m2
π±)EM = (1.183 ± 0.023) × 10−3GeV2, (5.199)

for the electromagnetic masses. Note that (m2
π0)EM vanishes, because the

form factor of the neutral pion is identically zero. From these results we
then calculated [65]

(∆m2
K)EM = (1.95 ± 0.03) × 10−3GeV2, (5.200)

(∆m2
π)EM = (1.183 ± 0.023) × 10−3GeV2, (5.201)

ϵ = 0.65 ± 0.06, (5.202)

where we estimated the error of ϵ by adding the errors linearly.

5.6.3 Pion and kaon box contributions to the magnetic anomaly
of the muon

Another application that we considered was the calculation of the contri-
bution to the muon’s magnetic anomaly aµ of the pion and kaon box dia-
grams for hadronic light-by-light scattering. This corresponds to the dia-
gram Fig. 5.8 of the subsection 5.2. We implemented the procedure described
in [88, 89] and obtained the following values [65]

aK±−box
µ = (−0.451 ± 0.022) × 10−11, (5.203)

aK0−box
µ = (−4.6 ± 1.4) × 10−15, (5.204)

aπ±−box
µ = (−16.0 ± 0.2) × 10−11. (5.205)

The values for the charged kaon and the charged pion are in agreement with
the corresponding values obtained in [66] and [89]

aK±−box
µ |[66] = (−0.484 ± 0.011) × 10−11, (5.206)

aπ±−box
µ |[89] = (−15.9 ± 0.2) × 10−11. (5.207)
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The contribution of neutral kaons that we have obtained is an order of
magnitude larger than that of [66]

aK0−box
µ |[66] = (−0.50 ± 0.45) × 10−15. (5.208)

It is not clear to us how to interpret this discrepancy. The relative errors
of both results do, however, indicate that this quantity may be difficult to
determine from available data.

5.6.4 Lowest order contributions to the muon’s magnetic
anomaly

We also considered evaluating the lowest order contributions of the processes
e+e− → K+K− and e+e− → KSKL to the value of aµ, corresponding to the
diagram Fig. 5.2. In the end we decided not to include these results in [65],
because unlike the previous three sets of quantities, this one is calculated
from time-like values of the form factors. Nevertheless, I will mention those
results at least here. Using the equations (5.49), (5.50), and (5.51), with the
integration region spanning from the thresholds to s = (1.05 GeV)2, and
using our models of form factors to calculate the corresponding values of
R(s), I obtained the results

aHVP,LO
µ

[
e+e− → K+K−,

√
s ≤ 1.05 GeV

]
= (188.7±3.2)×10−11, (5.209)

and

aHVP,LO
µ

[
e+e− → KSKL,

√
s ≤ 1.05 GeV

]
= (115.4 ± 2.2) × 10−11. (5.210)
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Chapter 6

Other applications of the
Unitary and Analytic model

6.1 Damped oscillatory structures in the effective
form factor of proton

Another topic on which I collaborated was the study of the periodic os-
cillatory structures that were originally found in the data for the effective
form factor of the proton by Andrea Bianconi and Egle Tomasi-Gustafsson
[30]. These authors, as well several other researchers, have speculated that
those oscillations might represent interference patterns resulting from re-
scattering processes between the newly-formed hadrons. (See, e.g., [30, 90].)
We investigated this issue from a different point of view and published our
results in several papers. I collaborated on two of those, [31, 32]. Because
both these manuscripts have been already published and all the details can
be found there, I will limit myself here to only a short introduction of this
topic and a brief discussion of the possible interpretation of our findings.

As we saw in Chapter 3, the interaction of a spin-1/2 particle such as the
proton with a single virtual photon can be described in terms of two form
factors. If we decide to use the electric form factor G(p)

E (s) and the magnetic
form factor G(p)

M (s), then the total cross section σtot
(
e+e− → pp̄

)
for the

annihilation of the electron–positron pair into the proton–anti-proton pair
can be written as

σtot
(
e+e− → pp̄

)
= 4πα2

3s
Cpβp(s)

[∣∣∣G(p)
M (s)

∣∣∣2 +
2m2

p

s

∣∣∣G(p)
E (s)

∣∣∣2] , (6.1)

where βp(s) =
√

1 − 4m2
p

s is the velocity of the proton in the center-of-mass
frame and Cp is the Sommerfeld–Gamow–Sakharov Coulomb enhancement
factor, which can be used to account for the final state radiation effects in the
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low energy limit.1 Note that in this equation the form factors correspond to
quantities that result from strong interactions only. This is why we needed
to include the effects of the final state electromagnetic radiation explicitly.
Furthermore, the cross section σtot

(
e+e− → pp̄

)
is “undressed”. This means

that the vacuum-polarization effects on the propagator of the intermediate
photon should be removed. One can see this from the fact that on the right-
hand side of (6.1) there appears the factor 4πα2/3s instead of 4πα(s)2/3s.2

At present it is still quite challenging to carry out measurements that
would allow us to extract the values of the electric and magnetic form factors
individually. For this reason it is often useful to work with the concept of the
so-called effective form factor F (p)

eff (s) of the proton, defined by the equation

σtot
(
e+e− → pp̄

)
= 4πα2

3s
Cpβp(s)

[
1 +

2m2
p

s

] ∣∣∣F (p)
eff (s)

∣∣∣2 . (6.2)

This equation would follow from (6.1) if the condition∣∣∣G(p)
E (s)

∣∣∣ =
∣∣∣G(p)

M (s)
∣∣∣ =

∣∣∣F (p)
eff (s)

∣∣∣ (6.3)

was satisfied for all s ≥ 0. (Or at least for all s above the threshold for the
production of two protons.) In general, however, the electric and magnetic
form factors G(p)

E (s) and G(p)
M (s) are equal only at s = 0. Once can therefore

interpret the formula (6.2) as an approximation in which we extend this
condition to non-zero values of the center-of-mass energy s.

Bianconi and Tomasi-Gustafsson [30] fitted the experimental data for
the effective form factor of the proton by the function3

∣∣∣F (p)
eff (q2)

∣∣∣ = A

(1 + q2

m2
a
)
[
1 − q2

0.71 GeV2

]2 , (6.4)

with the free parameters estimated as as A = 7.7 GeV−4 andm2
a = 14.8 GeV2.

Afterwards, they subtracted the fit from the data, and noticed that when
one inspects the ensuing residues as a function of the magnitude p of the
three-momentum of either one of the final particles in a frame in which the
other particle is at rest, then the residues display a regular damped oscil-
latory pattern. This is depicted in Fig. 6.1, taken from [30]. The authors
suggested that these oscillations might result from interference effects of
re-scattering processes between outgoing hadrons.

1Of course, we could just as well use the more precise final state radiation factor 1+ α
π
η

that we briefly mentioned in the section 5.6. In the region where experimental data are
available the difference between these two alternatives is not substantial.

2According to our result (5.89), 4πα2/3s is the lowest order total cross section for the
process e+e− → µ+µ−, in the approximation that all those leptons are massless.

3The authors claim that they also investigated what happens if one uses several other
simple functions, and their results appeared to be quite robust with respect to the choice
of the precise form of the model.
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Figure 6.1: The figure (a) depicts time-like values of the effective form factor
of proton that were investigated in [30]. The red line represents the fit (6.4).
The figure (b) displays the oscillatory pattern that appears when the fit
depicted in the figure (a) is subtracted from the data. The variable p on the
x-axis is the magnitude of the three-momentum of one of the protons in a
frame in which the other proton is at rest. (Taken from [30].)

Our group explored a different kind of interpretation of the observed
pattern. We investigated the possibility that these patterns were simply
an artifact that appeared as a result of the authors of [30] using an inade-
quate phenomenological model (6.4) to fit the data. One expects the data
to include various “bulges” due to the presence of vector meson resonances,
and it is, of course, not surprising that if one fits such data with a simple
monotonous function such as (6.4) then oscillations appear in the residues.
(Although it is not clear why such oscillations would show a periodic regu-
lar pattern.) We therefore described the data with the U&A model to see if
the oscillations appear also in the residues of this more appropriate model.
The residues of the U&A model showed no discernible oscillations [32]. Fur-
thermore, since the hypothesis presented in [30] was not in any obvious way
dependent on the fact that the final particles were protons, one would expect
the same phenomenon to appear also for other hadrons. For this reason we
also investigated form factors of pions and kaons. (I collaborated on the
study of the kaon form factors [31].) When we described the data with a
simple model, that was similar to the model (6.4) used by Bianconi and
Tomasi-Gustafsson in [30], we indeed observed an oscillatory pattern in the
residues to the fit. (But that is not surprising, since in that case the pattern
was clearly just a by-product of an inadequate model.) But when we de-
scribed the same data by the U&A model, those oscillations seemed to have
disappeared. For details, please see the paper [31]. This result together with
the further exploration presented in [32] suggest that the patterns described
in [30] might indeed represent just an accidental side effect of describing
data with an overly simplistic model such as (6.4). Let me mention that
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we were not the only group to argue for this kind of interpretation. For
instance, the authors of [91] have presented a very similar argument.

So where does this leave us? In my opinion it is safe to say that our
work — as well as the work of several other authors including [91] —
has demonstrated that the oscillatory patterns detected by Bianconi and
Tomasi-Gustafsson in [30] can be adequately described by fitting the data
by more complex models. It must be emphasized that these more complex
models — such as the U&A model used by us or the extended VMD model
employed in [91] — stand on quite solid physical foundations. For instance,
as we saw in the chapter 4 the U&A model is based on a number of gen-
eral physical requirements, including the analyticity on the physical sheet, a
low-energy approximation of the correct branch structure, the Hermitian
analyticity, or the presence of resonance poles. Compared to the U&A
model, the model (6.4) of [30] seems somewhat arbitrary, and motivated
chiefly by its simplicity and an approximate agreement with data. From
this point of view one could claim that because the oscillations disappear
when a physically more adequate U&A model is applied, those oscillations
do not have any physical significance beyond what is already captured by the
U&A model. Continuing this line of reasoning, the simplest interpretation
would then be that the oscillations result from the presence of resonances.
If that was true, it still would be interesting, however, to study the alleged
periodicity in those oscillations — are they really periodic and if yes, what
does it mean for resonances? On the other hand, taking a step back, one
could also argue that the U&A model has a much larger number of free
parameters, and our work was nothing but an exercise in curve-fitting. To
answer this objection one must demonstrate that the U&A model (or any
other model) that manages to fit those oscillatory patterns does so using
a physically admissible values of its free parameters. Unfortunately, many
of those parameters, in particular the masses and widths of resonances, are
currently not known with a sufficient precision. There is also another, some-
what more fundamental research direction, that one could follow to explore
this topic. That is the question of whether these two competing explana-
tions, one of the oscillations as an interference pattern from re-scattering
processes and the other one of the oscillations as the effect of resonances,
do really represent two distinct phenomena. For instance, it is known that
the near-threshold resonances can be understood (at least in a toy model) in
terms of a constructive interference when the low-energy quark–anti-quark
pair periodically bounces back to the location of where it was created. (See,
e.g., Chapter 4 of [7] and references cited therein.) So perhaps the fact that
the oscillatory patterns can be described by the U&A model or the extended
VMD model does not in any sense imply that the interpretation suggested
by Bianconi and Tomasi-Gustafsson is wrong. However, it is quite likely
that to answer this question we need first to achieve a better understanding
of the process of hadronization itself.



6.2. THE RATIO R = ϕ → K+K−/K0
LK

0
S 243

6.2 The ratio R = ϕ → K+K−/K0
LK0

S

In this last section I will briefly present another topic on which I worked
during my doctoral study. Just as in the previous section, I will only briefly
introduce the topic and discuss some of its significance or interpretation,
but I will skip most of the technical details of the work itself, which can be
found in the already published article [33].

Our work [33] was concerned with the ratio of the probability that the
ϕ(1020) resonance decays into a pair of charged kaons to the probability
that it decays into a pair of neutral kaons. The processes ϕ → K+K− and
ϕ → K0K̄0 are two dominant decay modes of the resonance ϕ(1020) and we
denote the ratio of their respective probabilities by R. This number can be
expressed also in terms of their respective branching ratios,

R = BR(ϕ → K+K−)
BR(ϕ → K0K̄0)

. (6.5)

The reason why we were interested in this quantity is that there has been
a long-lasting discrepancy between its measured value and its theoretical
predictions. From the 2022 Review of Particle Physics [74] we can calculate
the following value for the experimental world average of the ratio R

Rexp = 1.4484 ± 0.0226. (6.6)

Efforts to predict the value of R theoretically date at least as far back
as 1969 when Eugene Cremmer and Michel Gourdin obtained the value
R ≈ 1.60, based mainly on the considerations of the isotopic spin symmetry
and radiative corrections for the final state charged kaons [92]. In 1974
Harmut Pilkuhn used a different method, the penetration factor model,
to estimate the value of R to lie between 1.52 and 1.61 [93]. The most
recent studies of this topic are the works of Bramon et al. [94] and Flores-
Baéz and López Castro [95]. These authors reexamined and expanded upon
the earlier approach of Cremmer and Gourdin. Their investigations led to
the theoretical estimate that R is 1.59 or higher, which is far above the
experimental average (6.6).

For this reason we decided to estimate the value of R from the available
experimental data for the total cross section of the processes e+e− → K+K−

and e+e− → K0K̄−. We hoped that this would provide a further insight into
the experimental side of the discrepancy. At the heart of our method lies
the assumption that the Breit–Wigner formula for the resonant contribution
to the S-matrix holds accurately enough for the ϕ(1020) resonance. More
specifically, we assumed that the ratio R was the same as the ratio of the
corresponding cross sections at the ϕ-resonance peak. Under this assumption
we could then estimate the value of R from experimental cross section data
by the following program:
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1. In the cross section data for the processes e+e− → K+K− and e+e− →
K0K̄− try to isolate the contribution of the processes e+e− → ϕ(1020) →
K+K− and e+e− → ϕ(1020) → K+K− from the contribution of the
non-resonant background.

2. In these data for the resonant scattering determine the position —
that is the energy — of the resonance peak. In other words, estimate
the (mean) mass of the resonance.

3. Estimate the cross sections for both processes at the resonance peak,
and calculate their ratio.

Considering that the available data are of limited density and precision,
none of these steps is possible without some kind of a model to describe the
cross sections. We employed the framework of the U&A model, which is
described here in Chapter 4, to describe simultaneously both the data for
the process e+e− → K+K− and the data for the process e+e− → K0K̄0.
Considering the fact that the U&A model describes the form factor as a sum
of contributions from individual resonances, it allows one to isolate from
the non-resonant background the contribution of the ϕ(1020) resonance.
If one fits the data and then focuses only on the part corresponding to
the resonance ϕ(1020), then at least in principle that should correspond
to considering directly the relevant processes e+e− → ϕ → K+K− and
e+e− → ϕ → K0K̄0.

To describe the data we used a model similar to the one described in the
section 5.6. To more easily relate the data of the charged and neutral kaons
we used the assumption of the isotopic spin symmetry, which allowed us to
decompose the corresponding form factors into their common isoscalar and
isovector components F s

K and F v
K ,

FK± = F s
K + F v

K , (6.7)
FK0 = F s

K − F v
K . (6.8)

Thus both form factors depended on the same set of parameters: the masses,
widths and thresholds were common. The coupling constants were also
related. From the equations (6.7) and (6.8) it follows that the couplings to
isoscalar resonances were the same in FK± as in FK0 , while the couplings to
isovector resonances had opposite signs in FK± than in FK0 . However, there
was an important exception that we had to make. If we really used the model
as just described then the resulting R ratio would be completely fixed, since
the term corresponding to the ϕ(1020) resonance would be exactly same in
FK± as in FK0 . The R ratio would then be determined by the relative size
of the kinematic spaces of K+K− and K0K̄0 at the resonance peak and
final state radiation corrections, and we would have inevitably reproduced
the theoretical estimate of [92]. In order to actually determine the value of
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R from data it is vital that we released the isospin-symmetry constraint on
the coupling constants of the ϕ(1020) resonance to the charged and neutral
kaons. In other words, instead of the equations (6.7) and (6.8) we used

FK± = F s
K± + F v

K , (6.9)
FK0 = F s

K0 − F v
K , (6.10)

where F s
K± and F s

K0 were just like F s
K of (6.7), (6.8) but with the difference

that the functions F s
K± and F s

K0 had two independent coupling constants
to the ϕ(1020) resonance, instead of the single common one of F s

K . (We
then also had to release the isospin-symmetry constraint on one more pair
of isoscalar coupling constants, in order to preserve the normalization condi-
tion. But that is just a technical detail.) In this way we estimated two cou-
pling constants, one for the coupling of ϕ(1020) to K+K− and the other one
for the coupling of ϕ(1020) to K0K̄0. From their ratio, after we accounted
for the kinematic space differences and final state radiative corrections, we
then calculated the value of R which corresponded to the experimental data.
The detail of our analysis can be found in [33], and it proceeded roughly
along the following steps:

1. Since our models of form factors and any use of the isotopic spin
symmetry required that we consider form factors as determined only
by the strong force, we first needed to remove from experimental data
all electromagnetic radiative corrections. At least approximately, we
needed to remove from the data the effect of the vacuum polarization
on the propagator of the intermediate photon, and take care of any
initial or final state radiative corrections.

2. We then fitted the data with our U&A model for the form factors. Our
fits are depicted in Fig. 6.2 and Fig. 6.3. This allowed us to remove
the non-resonant background and focus directly on the ratio of the
coupling constants of the resonance ϕ(1020) to K+K− and to K0K̄0.

3. To extract from data the ratio R we considered the above mentioned
ratio of coupling constant, added the factor corresponding to the ratio
of volumes of the kinematic spaces of the charged and neutral kaons at
the resonance peak, and added the radiative corrections corresponding
to virtual and soft photons that could be exchanged between or emitted
by the final state charged kaons K+K−.

After all these step we obtained the value

R = 1.553 ± 0.040. (6.11)

Interestingly, this was more than 2σ above the PDG value (6.6) and practi-
cally in agreement with the theoretical estimate of [94].
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Figure 6.2: Our fit depicted against the charged kaon cross section data.
Note that the most important part is the region near the ϕ-resonance peak,
which is depicted on the right. (Taken from [33].)
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Figure 6.3: Our fit depicted against the neutral kaon cross section data.
Note that the most important part is the region near the ϕ-resonance peak.
(Taken from [33].)
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Before closing this section, let us briefly comment on the broader signif-
icance of this issue. First, it is important to note that similar discrepancies
have been observed also for other resonances that are located near new-flavor
thresholds. They were observed for the ratios of charged to neutral yields
of the processes ψ(3770) → DD and Υ(4S) → BB. Several authors have
attempted to explain these discrepancies. For instance, Dubynskiy et al. [96]
and Voloshin [97] considered the effects of strong-scattering phases in the
isoscalar and isovector channels on the corresponding ratios. It turns out
that these phases modify the final state radiation effects as well as the mass
difference effect on the corresponding cross section. These strong-scattering
phases have so far not been calculated, but they are in principle capable of
explaining the observed anomalies. Interestingly, there have been also sev-
eral suggestions that for near-threshold resonances one must appropriately
modify the usual formulas in order to obtain correct cross sections. For
instance, Fischbach et al. [98] considered what appears to be a resonance-
appropriate ansatz to study the Fermi’s Golden Rule. Their ansatz allowed
them to move beyond the first order of perturbation theory and use the
unitarity condition to derive an integral equation for the decay rate. They
found that if either the size of the kinematic space or the values of ma-
trix elements of the interaction between the resonance and the asymptotic
states vary rapidly near the resonance peak, then usual formulas for decay
rate must be adjusted. Another interesting instance is the work of Ishikawa
et al. [99], who studied these processes using a formalism that had been
previously developed by some of the authors to describe the scattering of
wave-packets. In their work they also argued that the decay rate formula
should be adjusted. While [98] considered applications of their modifica-
tions only to the anomaly of the ϕ(1020) resonance, [99] considered also the
anomaly in the decay modes of the resonance Υ(4S). Both of these works
claim to have resolved the discrepancies. At the same time, however, both
works seem to approach the problem in a different way, and their supposed
solutions appear to be unrelated. It seems that a further study is required to
reach a better understanding of what, if any, adjustments are necessary and
how are the various suggestions related. In relation to this issue, especially
in the context of our work [33], let me add two speculative remarks:

• In the derivation of the Breit–Wigner formula it is assumed that the
non-resonant background varies negligibly over the region where the
resonance dominates. In other words, the formula is derived under the
approximation that near the resonance the energy dependence of the
scattering amplitude is completely described by the contribution of the
resonance pole, possibly up to an additive constant.4 However, when

4This constant represents the energy-independent contribution of the non-resonant
background. This is important if the non-resonant contribution to the phase shift is large,
in which case the resonance manifests itself as a sharp dip in the cross section, instead of
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the resonance is located near a normal threshold, as is the case of the
resonances ϕ(1020), ψ(3770), and Υ(4S), then this assumption might
not be justified. The amplitude might be significantly influenced by
the presence of the threshold, and perhaps even the shadow poles that
can be accessed by encircling the threshold and crossing the branch
cut from another direction. Thus, it is quite possible that some mod-
ification of the usual formulas might be necessary. This could be an
interesting project for a further study.

• In our work [33] we built our analysis on the assumption that the Breit–
Wigner formula is precise, and we obtained from data results that
were consistent with theoretical predictions. (Note that the theoretical
predictions also ignore the presence of the threshold.) Thus it might
be possible that our result (6.11) is the correct value of the ratio of
the resonance peak heights, and that this ratio has been correctly
predicted by various theoretical works [92, 93, 94, 95], but that at the
same time this ratio does not correspond to the ratio of probabilities of
the corresponding decay modes, if the Breit–Wigner formula does not
hold precisely enough. Then the PDG value (6.6) could also be correct,
in the sense of the ratio of corresponding probabilities, although not
in the sense of the ratio of peak heights.

Notwithstanding these speculative remarks, recently there has been pub-
lished a preprint [100] by the BESIII collaboration that studied the anomaly
in the ratio R of the ϕ(1020) resonance. Interestingly, they measured the
value

R[100] = 1.675 ± 0.093, (6.12)

which is even higher than our estimate (6.11). This indicates the possibility
that the PDG average value (6.6) might not be reliable.

a more common peak. (See, e.g., [9].)



Chapter 7

Conclusion

In Part I of this thesis I presented a gentle introduction to the general topic of
the analyticity in quantum field theory. Part II was then dedicated mainly to
the introduction of the U&A model. After a review of some basic properties
of electromagnetic form factors in Chapter 3, we were ready to introduce
the U&A model in Chapter 4. The treatment presented in that chapter
introduces the model from a somewhat novel perspective and includes several
improvements over the treatments that can be found in older literature.

Then in Part III, the chapter 5 opened with a general discussion of the
running of the fine structure constant. We also saw how the hadronic contri-
bution to its imaginary part can be related to the total cross section for the
electron–positron annihilation into hadrons. At the present experimental
precision one can still work under the approximation of a single intermedi-
ate photon, which means that this cross section is directly related to the
corresponding electromagnetic form factor, and can be described with the
U&A model. Furthermore, using the dispersion relation for ∆α(s) it is pos-
sible to express the value of α(s) in the space-like region in terms of its
imaginary part in the time-like region. This means that the U&A model
can be also used to describe the behavior of the hadronic contribution to
α(s) in the space-like region.

In the same chapter, we also saw how the running of the fine struc-
ture constant enters into the evaluation of the leading contribution to the
magnetic anomaly of the muon, and how one can choose to calculate this
contribution either from the imaginary part of α(s) in the time-like region, or
from α(s) itself in the space-like region. In collaboration with my colleagues
I have explored some aspects of this topic in the paper [29]. Chapter 5
also contains a brief description of yet unpublished work [65], in which we
employed electromagnetic form factors of the charged pion and of both the
charged and neutral kaons to calculate various quantities of interest, includ-
ing the corresponding hadronic light-by-light contribution to the magnetic
anomaly of the muon. In this thesis, I also presented my result for the lead-
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ing hadronic contribution to the magnetic anomaly of the muon. And lastly,
the chapter 5 also contained a detailed proof of the reality of the fine struc-
ture constant in the space-like region,1 and a discussion of its significance.

The thesis was then concluded in Chapter 6, where other published work
on which I collaborated during my doctoral study was briefly presented. The
section 6.1 introduced the topic of damped oscillatory structures, which were
first observed in the effective form factor of the proton by A. Bianconi and E.
Tomasi-Gustafsson in [30], and which were studied by us in the papers [31,
32]. Section 6.2 was dedicated to the problem of the discrepancy between
the theoretical predictions and experimental estimates of the ratio R of the
probabilities of the decay of the resonance ϕ(1020) into a pair of charged
kaons and into a pair of neutral kaons. I presented there our paper [33],
where we used the U&A model to obtain an estimate of the ratio R from
the total cross section data for the electron–positron annihilation into the
corresponding kaon pairs.

1This proof is my own, but I think that all the techniques employed in it have been
known since late 1960s, which makes me believe that the result itself and some kind of its
proof must have been known to the community at least since that period.
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