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Abstrakt

Táto práca prezentuje meranie totálneho účinného prierezu asociovanej produkcie top-

kvarkového páru a Z bozónu (tak zvaný tt̄Z proces) v dátach zozbierených detektorom

ATLAS v protón-protónových zrážkach pri t’ažiskovej energíı 13 TeV.

Prvá čast’ práce opisuje prvé pozorovanie tt̄Z procesu ATLAS detektorom, v ktorom

boli použité dáta zozbierané v rokoch 2015 a 2016, čo zodpovedá integrovanej lumino-

zite 36.1 fb−1. Táto čast je zameraná hlavne na analýzu v dileptonónovom kanáli, kedy

sa Z bozón rozpadá na dva nabité leptóny a top-kvarkový pár sa rozpadá hadrónovo.

Kvôli vel’kému pozadiu v dileptónovom kanáli je treba použit’ multivarietnu techniku

(MVA). Optimalizácia MVA ako aj setu jej vstupných premenných je oṕısaná v práci.

Fitovańım výstupu z MVA v troch signálnych regiónoch dileptónového kanála bola

źıskaná nasledovná hodnota totálneho účinného prierezu tt̄Z procesu:

σ2l,measured
tt̄Z = 0.64+0.15

−0.15(stat.)+0.20
−0.19(syst.) pb = 0.64+0.25

−0.24 pb. (1)

Pozad’ová hypotéza bola vylúčaná s vierohnodnost’ou 3.0 σ. Kombináciou 2` kanálu

s 3` a 4` tt̄Z rozpadovými kanálmi a po pridańı dvoch rozpadových kanálov tt̄W , po-

zad’ová hypotéza bola vylúčená na 8.9 σ a źıskaná hodnota totálneho účinného prierezu

tt̄Z bola

σmeasuredtt̄Z = 0.95 ± 0.08(stat.) ± 0.10(syst.) pb = 0.95 ± 0.13 pb. (2)

Oba výsledky sú v súlade s predpoved’ou Štantandardného Modelu.

Druhá čast’ práce sa zaoberá analýzou celého Run II datasetu, zodpovedajúcemu

dátam z rokov 2015-2018 a integrovanej luminozite 139 fb−1. Táto čast’ práce je zame-

raná na 4` kanál, kedy sa Z bozón aj top-kvarkový pár rozpadajú dileptónovo. Táto

čast’ práce prezentuje iba výsledky źıskané z Monte Carlo simulácíı. Očakávaná hod-

nota účinného prierezu tt̄Z procesu źıskaná zo simulácie zodpovedajúcej plnému Run

II datasetu je

µ4`,expected
tt̄Z = 1.000+0.142

−0.132 (stat.) +0.074
−0.068 (syst.) = 1.000+0.160

−0.149. (3)

vi
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Klúčové slová: top kvark, Z bozón, tt̄Z asociovaná produkcia



Abstract

The thesis presents the measurement of the total cross section of the top-quark pair

and Z boson associated production (tt̄Z) at pp collisions data collected by the ATLAS

detector at
√
s = 13 TeV.

The first part presents the first observation of the tt̄Z process by the ATLAS de-

tector at 2015 and 2016 data corresponding to the luminosity of 36.1 fb−1. This part is

focused on the dilepton channel, with the leptonically decaying Z boson and hadroni-

cally decaying top-quark pair. Because of a high background rate in the 2` channel, a

multivariate analysis needs to be employed. Optimization of the MVA and the set of

its input variables are described in details in the thesis. Fitting the MVA output in 3

signal regions of the 2` channel, the following value of the tt̄Z total cross section has

been obtained:

σ2l,measured
tt̄Z = 0.64+0.15

−0.15(stat.)+0.20
−0.19(syst.) pb = 0.64+0.25

−0.24 pb. (4)

with 3.0 σ significance (exclusion of background only hypothesis).

Combining the 2` channel with 3` and 4` tt̄Z channels and adding two tt̄W channels

to the fit, 8.9 σ signal significance and the following value of cross section have been

obtained:

σmeasuredtt̄Z = 0.95 ± 0.08(stat.) ± 0.10(syst.) pb = 0.95 ± 0.13 pb. (5)

The both results are compatible with the Standard Model prediction.

The second part of the thesis deals with analysis of the full Run II dataset collected

by the ATLAS detector at pp collisions from 2015 to 2018. This part is focused on

the 4` channel, with both Z boson and top-quark pair decaying dileptonically. Only

expected results obtained from a Monte Carlo simulation are presented. The expected

cross section obtained from the 4` channel fit at dataset corresponding to the full Run

II dataset is

viii
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µ4`,expected
tt̄Z = 1.000+0.142

−0.132 (stat.) +0.074
−0.068 (syst.) = 1.000+0.160

−0.149, (6)

where the theory prediction has been taken as the unit of µ4`,expected
tt̄Z .

Key words: top quark, Z boson, tt̄Z associated production,
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Chapter 1

Introduction

The associated production of the top-quark pair and Z boson, the so-called tt̄Z, is a

rare process predicted by the Standard Model. The theory prediction of the tt̄Z cross

section at 13 TeV pp collisions is 0.863 pb [1], which is approximately 1,000 times less

than the cross section of the top-quark pair production. Given very short lifetimes

of the Z boson and top quark, various decay channels are allowed. With the current

experimental setup and available number of events, only the decay channels with the

Z boson decaying into electron-positron or muon-antimuon are possible to identify. It

restricts available number of tt̄Z events to 6.7 %, corresponding to the Z → e−e+/µ+µ−

branching ratio [2].

The tt̄Z production provides a unique opportunity to probe the top-quark to Z-

boson coupling constant. According to the Standard Model, this coupling constant

is related to the top-quark weak isospin. Any deviation from the Standard Model

prediction could be a sign of a new physics beyond the Standard Model. The tt̄Z

production is also an important background for tt̄H measurements, which probe a

coupling constant of the Higgs boson to the top quark [3, 4]. This coupling constant

is related to one of the fundamental parameters of the Standard Model, top-quark

Yukawa’s coupling constant. The tt̄Z is also an important background for some searches

for a new physics targeting multilepton final states [5]. A good understanding of the

tt̄Z is therefore important for these analyses.

The first attempts to measure the tt̄Z cross section were made by ATLAS [6, 7] and

CMS [8, 9] already during the Run I period of data taking at the LHC, at the center

of mass energy 7 and 8 TeV.

The measurements at
√
s = 7 TeV were limited to a 3` channel only, aiming at

the leptonic decays of the Z boson and lepton+jets decays of the top-quark pair. The

1



CHAPTER 1. INTRODUCTION 2

theory prediction of the tt̄Z cross section at 7 TeV is 0.137 pb [10], corresponding

to ≈ 14 expected tt̄Z events in the 3` channel in 5 fb−1 of available data1. The

ATLAS collaboration observed only one event in a signal region, while 1.13 events

were expected. The measurement set the upper limit of the tt̄Z cross section at 95 %

confidence level to 0.74 pb [6]. The CMS collaboration measured the tt̄Z cross section

obtaining the value σtt̄Z = 0.28+0.14
−0.11(stat.)+0.06

−0.03(syst.) pb, excluding the background

only hypothesis at 3.3 σ [8].

In 2012, the Large Hadron Collider (LHC) delivered≈ 20 fb−1 of data at
√
s= 8 TeV,

resulting in significantly increased number of available data events. The theory predic-

tion for the tt̄Z cross section at
√
s = 8 TeV energy is 0.206 pb [10]. The ATLAS col-

laboration measured the tt̄Z cross section in the combination of 2`, 3` and 4` channels,

corresponding to the leptonic decays of the Z boson and all-hadron, lepton+jets and

dilepton decay channels of the top-quark pair. The ATLAS collaboration achieved the

result of 0.176+0.058
−0.052 pb with 4.2 σ significance [7]. The CMS collaboration measured the

tt̄Z cross section in 3` and 4` channels, achieving the result of 0.20+0.08
−0.07(stat.)+0.04

−0.03(syst.)

pb and 3.1 σ significance [9].

In 2015, the LHC was operational again, reaching the center of mass energy of

13 TeV in pp collisions. The theory prediction of the tt̄Z cross section at 13 TeV

is 0.863+8.5%
−9.9% (scale) +3.2%

−3.2% (PDF + αS) pb [1]. The ATLAS and CMS collaborations

both used 2015 dataset (3.2 fb−1 collected by ATLAS, 2.7 fb−1 collected by CMS) to

measure the tt̄Z cross section at 13 TeV, using the 3` and 4` decay channels. The

ATLAS measured the cross section of 0.92±0.29(stat.)±0.10(syst.) pb, reaching 3.9 σ

significance [11]. The CMS measured 1.07+0.35
−0.31(stat.)+0.17

−0.14(syst.) pb with 3.6 σ signifi-

cance [12].

In 2016, the CMS collaboration published a result from 12.9 fb−1 dataset, obtaining

the cross section of 0.70+0.16
−0.15(stat.)+0.14

−0.12(syst.) pb with 3.9 σ significance, taking into

account the combination of the 3` and 4` channels [13].

Approximately at this point the analysis presented in this thesis began. Although

there had already been many measurements of the tt̄Z cross section, none of them had

reached 5.0 σ significance, which is the threshold needed to announce observation of

a process in the high energy physics. Both CMS and ATLAS already approached this

value with the data collected in 2015. Taking into account an increasing number of

available data events, being collected by ATLAS detector, the ATLAS collaboration

1No detector acceptance and efficiency effects are considered. Only the luminosity, tt̄Z cross section and

3` channel branching ratio have been considered.
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decided to include the 2` channel into the analysis, aiming for more than 5 σ significance

with 2015+2016 dataset. The results of this ATLAS measurement[14] are described in

details in this thesis, as well as a current ATLAS measurement at full Run II dataset,

corresponding to 139 fb−1 of data.

In the meantime, the CMS collaboration published tt̄Z total cross section measure-

ment at 35.9 fb−1, obtaining the result of 0.99+0.09
−0.08(stat.)+0.12

−0.10(syst.) pb and reaching

for the first time ever significance more than 5 σ. The combination of the 3` and 4`

channels was used in this measurement [15].

The next paper was published in 2019 by the CMS collaboration, using the dataset

corresponding to 2015-2017 period of data taking, measuring the total cross section of

1.00+0.06
−0.05(stat.)+0.07

−0.06(syst.) pb. This publication also includes the first tt̄Z differential

cross section measurement, using two variables, the transverse momentum of the Z

boson and an angular distribution of the negatively charged lepton from the Z boson.

The combination of the 3` and 4` channels was used in this measurement [16].

All tt̄Z cross section results already published at the time of writing this thesis

(spring 2019) are compatible with the Standard Model predictions [6, 7, 8, 9, 11, 12,

13, 14, 15, 16].



Chapter 2

Standard Model, Top quark,

Z boson and tt̄Z production

2.1 Introduction

Human ideas of the structure of matter have been changing significantly through cen-

turies. The first idea of atoms was postulated by Democritus in ancient Greece around

400 BC [17]. On the level of science and technology at those times it was impossible to

provide an experimental evidence of atoms. Without a proof, the atomic theory was

just one of many theories and it was forgotten for a long time.

At the end of 18th century, John Dalton, an English physicist and chemist, postu-

lated the atomic theory again. He studied chemical reactions of gasses and ratios of

gas volumes before and after the reactions. Dalton realised that the ratio of reacting

gasses volumes is always a ratio of two small integer numbers. This fact suggested that

during chemical reactions, atoms are regrouped to form a new compound but no atom

can be created nor destroyed. Although Dalton thought that the atoms could not be

split further, his experiments and postulations still meant a significant step in human

knowledge on the matter structure.

The structure of atoms was unknown until the end of the 19th century. In 1897,

Joseph John Thompson discovered an electron, while studying cathode emission [18].

It was the first elementary particle to be discovered. After his discovery, Thompson

proposed a pudding model of the atom. The idea of the pudding model was that the

atom was composed of positively charged liquid (pudding) and electrons floating inside

the liquid like plums in the pudding. Light emission spectra of atoms were explained

as electron oscillations in the liquid.

4
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In 1905, Albert Einstein explained photoelectric effect by a quantum of light, a

photon [19]. The photon, an elementary particle intermediating the electromagnetic

force in nature, was the second one among the discovered elementary particles.

In 1909, E. Marsden and H.Geiger, both students of E. Rutherford, studied scat-

tering of the alpha particles on a thin golden foil. Aim of the experiment was to

measure distribution of the scattering angle and estimate the size of the golden atom

from this distribution, still considering Thompson’s pudding model of the atom. Sur-

prisingly, back-scattering was observed significantly more often than the theory had

predicted [20]. The experiment clearly showed that the positive charge of the atom is

centred in a very small volume, now known as the atomic nucleus. When the alpha

particle got too close to the nucleus, it was scattered backwards by the electromagnetic

field of the nucleus.

In 1917, Rutherford performed the first known nuclear reaction. He bombarded the

nitrogen gas by alpha particles. As the results of the reaction, the hydrogen nucleus,

the proton, was formed [21].

14
7 N +4

2 α→1
1 p+17

8 O (2.1)

Rutherford realised that masses of all the other known elements were almost integer

multiples of the hydrogen mass. He assumed that all the atomic nuclei were formed by

protons and electrons. The neutron still had not been discovered by that time.

In 1920s, various β-decays were already known. The energy distribution of the β

particles is continuous for a given atom, while α and γ radiation energy spectra are

discrete. The energy carried out by the α and γ radiation summed together with

the kinetic energy of a daughter nucleus is equal to difference in the energies of the

nuclei before and after the decay. According to the energy conservation principle, it

was expected that the β radiation should also have the discrete spectra. In general,

two possibilities were considered: either the energy was not conserved in β decay, or

there was at least one more particle escaping undetected. Violation of the energy

conservation in β decays seemed to be unlikely, since the energy was conserved in all

other known processes. In 1930 Wolfgang Pauli postulated existence of a neutrino, a

particle without an electric charge escaping undetected from the β decay, carrying a

part of the energy and momentum away.

In 1932, the neutron was discovered by James Chadwick [22]. Bombarding a beryl-

lium surface by alpha particles he measured a radiation caused by neutral particles

which could not have been photons. Its absorption length in lead was longer than it



2.1. INTRODUCTION 6

could be for the photons with the same energy. Chadwick estimated the neutron mass

to be approximately the same as the proton mass.

Chadwick’s discovery of the neutron was an important milestone for nuclear physics.

According to the previous experiments, atoms consist of a nucleus and an electron shell

surrounding the nucleus. Electrons are bound in atoms by the electromagnetic force,

intermediated by photons. An atomic nucleus is formed by neutrons and protons. Beta

decays could have been explained by the weak nuclear force, which was assumed to be

a contact force, so a neutron was assumed to decay directly into 3 daughter particles:

a proton, positron and neutrino. The protons in atomic nuclei were assumed to be

bound by the strong force, intermediated by spinless pions. Although the pions had

not been experimentally observed yet, from a known range of the strong nuclear force

their mass had been estimated to be ≈ 100 MeV. All the particles were assumed to be

discovered already, except of the pions. The pions should have been the last piece of

the puzzle to be found to have the complete model of nuclear/particle physics. As we

know today, it was a completely wrong assumption.

After the neutron discovery a lot of effort was made in order to find the pions. In

1936-1937, a new particle with the mass of 106 MeV was found in cosmic rays [23].

For a moment it seemed to be the last missing piece, the pion, since the mass was in

agreement with the expected pion mass and no other particle was expected to be found.

Further studies showed the new particle did not interact by the strong interaction. It

could not have been the pion. The new particle had similar properties to the electron,

differing only by the mass. It is more than 200 times heavier that the electron. The

particle was called muon. The muon confused physicists for a long time. It was not

predicted by theory and it was difficult to find a place for it in current models.

In 1947 (π±) and in 1950 (π0) the pions were finally discovered. Their discovery

was followed by discoveries of kaons and many other new particles.

From mesons to quarks

In 1960s many new mesons and baryons were known. Gell-Man [24] and George

Zweig [25] realised there are two groups of nine mesons, each with the same spin

and approximately the same mass. The list of these mesons can be found in Table 2.1.

Their idea was as follows. If there were 3 fundamental particles (u, d and s quarks) and

their antiparticles, all having exactly the same properties, there would be 9 composite

particles, eight from octet and one from singlet, with the same mass (energy spectrum).

If the symmetry was broken, for example if their electric charges or masses were not ex-
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actly the same, differences in mass spectra would be observed, but the particles would

still form the octet and singlet. Since the mesons differ by their charge, it could have

been expected that at least the electromagnetic interaction breaks the symmetry. The

SU(3) symmetry of the three quarks was called flavour, or SU(3)f symmetry. It is

not an exact symmetry, because of the different masses and charges of the u, d and s

quarks.

s = 0 s = 1

meson quarks mass meson quarks mass

π+ ud̄ 140 MeV ρ+ ud̄ 775 MeV

π0 1√
2
(uū - dd̄) 135 MeV ρ0 1√

2
(uū - dd̄) 775 MeV

π− dū 140 MeV ρ− dū 775 MeV

K+ us̄ 494 MeV K∗+ us̄ 892 MeV

K0 ds̄ 498 MeV K∗0 ds̄ 896 MeV

K̄0 sd̄ 498 MeV K̄∗0 sd̄ 896 MeV

K− sū 494 MeV K∗− sū 892 MeV

η η8.cos(θP )− η1.sin(θP ) 548 MeV ω 1√
2
(uū + dd̄) 783 MeV

η′ η8.cos(θP ) + η1.sin(θP ) 958 MeV ϕ ss̄ 1019 MeV

η8 = 1√
6
(uū + dd̄ - 2ss̄) η1 = 1√

3
(uū + dd̄ + ss̄)

Table 2.1: Mesons known in 1960s grouped together depending on their spin and mass.

Pions, kaons and η8 form the octet and η1 is the singlet of SU(3)f . Physical particles, mass

eigenstates η and η′, are linear combinations of η8 and η1 [26, 2].

The mass spectra of mesons was not the only thing suggesting the hadrons are com-

posite particles. Collider experiments showed interesting results as well. For electron-

proton collisions, the dependency of the cross section on the square of transferred

momentum (q2) was measured. At low values of q2, the cross section was similar to

scattering of two point-like objects, like eµ scattering for example. For higher q2,

where the wavelength of the electron approaches the proton size, the cross section

starts to be different from the point-like scattering. It was expected, since the proton

size must have been taken into account, using so-called form-factors. The interesting

and surprising fact was, that for very high values of q2 (above 1 GeV), the cross-section

dependency was again similar to scattering of two point-like objects. This suggested

that the proton is a composite particle, formed by point-like constituents (quarks) and

for high energy of the electrons, the proton-electron scattering can be simplified to
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the electron scattering on a quark. In some sense it was a similar observation to the

back-scattering of alpha particle in Rutheford’s experiment. When the alpha particle

in Rutheford’s experiments has energy high enough, it interacts only with a part of the

atom, the atomic nucleus. For a high energy of the electron it interacted only with one

constituent of the proton, the quark.

2.2 Standard Model

The Standard Model is the theory of elementary particles, describing their fundamental

properties and interactions. It was formulated in 1960s and 1970s, after formulation

of the quark hypothesis. The Standard Model combines the electromagnetic and weak

interaction and adds Higgs mechanism as a way how particles gain their masses. There

are four fundamental forces in nature: gravitational, electromagnetic, weak nuclear

force and strong nuclear force. The Standard Model describes all of them except of

the gravitational and thus the gravity will not be further discussed in this thesis. The

forces differ by their range, strength (coupling constant) and types of particles that are

affected by them.

Fundamental particles predicted by the Standard Model can be categorized into

three groups based on their spin: scalar boson, fermions and vector bosons.

2.2.1 Fermions

The largest group is formed by particles with spin 1/2, fundamental fermions. The

fermions are further divided into two groups: quarks and leptons. Each quark and

lepton has its anti-particle.1 There are three generations of the fermions, each having

2 quarks and 2 leptons. The fermions from higher generations have higher masses.2

The fermions of the same generation differ by their electric charges.

Quarks

There are six types of quarks: d, u, s, c, b and t. The quarks interact strongly,

electromagnetically and weakly. All the quarks carry an electric charge. The up-type

quarks (u, c and t) carry electric charge of +2/3, the down-type quarks (d, s and b)

1This is not fully understood for neutrinos yet.
2This applies for the quarks and charged leptons. Ordering of the neutrino masses is not fully understood

yet.
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carry charge of -1/3.3

The quarks form bound states, hadrons. In 1960s, hadrons with three quarks of

the same flavour were known. Since the quarks are fermions, they follow Fermi-Dirac

statistics, so two quarks cannot be in the same state. The two quarks of the same

flavour in a hadron could have been explained by two different orientations of the spin,

but the third quark would not be allowed, without an additional quantum number,

which would make it different from the others. This quantum number has been called

colour and it represents a charge of the strong interaction.

There are three colour charges in the strong interaction: red, green and blue. The

anti-quarks carry anti-colours: anti-red, anti-green and anti-blue. Measurable quan-

tities does not depend on the colour and all measurable quantities must be invariant

with respect to rotations in the colour space. This is the exact and fundamental SU(3)

symmetry of the Standard Model and it is the main principle of the quantum chromo-

dynamics (QCD). It will be further discussed in dedicated QCD chapter 2.2.4.

In the nature, only white (colourless) states are allowed. Since the quarks are colour

objects, they cannot exist as free particles. They form colourless objects, hadrons. In

principle there are two ways, and their combinations, how the colourless object can be

obtained from coloured objects.

The first one is to combine a colour with its anti-colour. This covers mesons, bound

states of a quark and anti-quark. The other way how the colourless object can be

built is the combination of all three colours, or anti-colours. This covers baryons,

bound states of three quarks or three anti-quarks. The protons and neutrons, particles

forming atomic nuclei, are baryons formed by uud quarks (proton) and udd quarks

(neutron). Except of the valence quarks, the hadrons are formed also by the gluons

and sea quark-antiquark pairs, it will be further described in Chapter 2.2.8. There has

been already an observation of penta-quark, formed by four quarks and one anti-quark,

or four anti-quarks and one quark [27].

A typical time needed for the quarks to form a hadron is ≈10−24 s. The only quark

with the lifetime shorter than the mean hadronization time is the top quark. It is the

only quark that can be studied as a free quark. All the other quarks can be studied

only in hadrons.

3Of the proton charge (elementary charge). The charge of proton is commonly used in the high energy

physics as the unit of the charge.
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Leptons

The leptons are grouped into three pairs (generations), each containing a charged

lepton and electrically neutral neutrino: e, νe, µ, νµ, τ and ντ . The muons and taus

are unstable and decay either into leptons of previous generations, or into hadrons,

together with their neutrinos. The mean lifetime of the muon, τµ = 2.2 µs [2], is long

enough to enable a direct detection of the muons. In the high energy physics, the muon

can be considered to be a stable particle, since the muons with an energy of few GeVs

are stable enough to fly tens of kilometers before their decay. However, the tau-lepton

mean lifetime is very short, ττ = 2.9 × 10−13 s [2], which is not enough to enable a

direct observation of the tau leptons. The tau-lepton decays either leptonically (35 %),

or hadronically (65 %) [2].

Leptons do not interact strongly. Charged leptons interact weakly and electromag-

netically. The neutrinos do not have an electric charge so they interact only weakly.

The absence of the electric charge makes them difficult to detect. Neutrinos were pre-

dicted in 1930, but the first experimental observation of the neutrino was performed

almost 30 years later, in 1956 [28]. The most common lepton, observed in the world

around us, is the electron. It is charged lepton belonging to the first generation of the

leptons.

2.2.2 Vector bosons and particle interactions

The second important group of the elementary particles predicted by the Standard

Model are fundamental vector bosons, that are intermediators of the interactions

in the Standard Model. There are four fundamental vector bosons in the Standard

Model: photons intermediating the electromagnetic interaction, gluons intermediating

the strong interaction, Z boson and W bosons intermediating the weak interaction.

2.2.3 Quantum electrodynamics (QED)

Lagrangian of a free fermion field Ψ with mass and kinetics terms is given as

Lfree(Ψ) = Ψ̄(iγµ∂µ −m)Ψ, (2.2)

where Ψ is a bispinor of the fermion field and γµ are Dirac matrices (4×4 matrices)

defined as
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γ0 =

(
I 0

0 −I

)
, γ1,2,3 =

(
0 ~σk

−~σk 0

)
, γ5 =

(
0 I

I 0

)
, (2.3)

where ~σk are Pauli’s matrices

(
0 1

1 0

)
,

(
0 −i
i 0

)
and

(
1 0

0 −1

)
.

If physics given by measurable quantities does not depend on the phase of Ψ func-

tion, the Lagrangian must be invariant under U(1) local transformations

Ψ→ Ψ′ = Ψeiα(x) (2.4)

Transforming the free Lagrangian according to this transformation, the following

equation can be obtained.

Lfree(Ψ′) = Ψ̄(iγµ∂µ −m)Ψ− Ψ̄γµ(∂µe
iα(x))Ψ (2.5)

In order to obtain a Lagrangian invariant under U(1) transformation of Ψ, a new

term, corresponding to interaction of fermion field with a field Aµ, needs to be added.

The field Aµ follows the transformation:

Aµ → Aµ +
i

e
(∂µe

iα(x))e−iα(x) = Aµ +
i

e
∂µα(x) (2.6)

Adding the interaction term of the fermion field with the field Aµ, the QED La-

grangian can be obtained.

LQED = Ψ̄(iγµ∂µ −m)Ψ− ieΨ̄γµΨAµ − 1

4
FµνF

µν , (2.7)

where Fµν = ∂µAν - ∂νAµ and e is an electric charge of the fermion.

The second term corresponds to the interaction of the photons with the fermions

and it makes the QED Lagrangian invariant with respect to the local U(1) transfor-

mations. The last term is not necessary in order to keep the invariance. It is the term

corresponding to a free photon field.

The Equation 2.7 can be rewritten into the following form:

LQED = Ψ̄(iγµDµ −m)Ψ− 1

4
FµνF

µν , (2.8)

where Dµ = ∂µ + ieAµ is the covariant derivative.

The photons are massless particles (no mass term in the Lagrangian), without an

electric charge (Aµ is a real function) and with the spin equal to one (Aµ is four-
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component function). They intermediate the electromagnetic interaction in the Stan-

dard Model.

2.2.4 Quantum chromodynamics (QCD)

While there is only one electric charge, there are three colour charges in the strong

interaction: green, blue and red. Only the quarks and gluons carry the colour charge.

As experiments show, measured physical quantities cannot depend on a colour charge

and only white states are allowed to exist as free particles. The SU(3) colour symmetry

is a fundamental symmetry of the Standard Model. It means that the Standard Model

Lagrangian must be invariant under the SU(3)c transformations. The three component

Ψ for the quarks must be invariant under the following local transformation:

Ψ→ Ψei
1
2
λaαa(x), (2.9)

where a = [1, 2, ... 8] and λa are the following matrices [29]. The invariance of

the lepton fields with respect to the transformation is guaranteed by the fact that the

leptons do not carry the colour charge and therefore they are singlets with respect to

the SU(3)c transformation.

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

1 0 0

0 −1 0

0 0 0

 λ4 =

0 0 1

0 0 0

1 0 0



λ5 =

0 0 −i
0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0

 λ7 =

0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2


Following the procedure of building an invariant Lagrangian, similar to the one used

for QED, a new interaction term can be added. The important difference with respect

to QED is that the U(1) transformation (Equation 2.4) has only one generator (equal

to one), while the QCD has 8 generators of the group transformations, 1
2
λa for a =

[1,2, ... 8].

When the transformation given by Equation 2.9 is applied to the free fermion field

Lagrangian and only linear terms are considered, eight new terms, violating the SU(3)

invariance will appear. In order to make the Lagrangian invariant, eight independent

fields, corresponding to the gluon octet, have to be added in order to compensate the
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terms violating the SU(3) invariance. The process of adding the new gauge field is

similar to the approach used in the QED.

LQCD = Ψ̄(iγµ∂µ −m)Ψ− gΨ̄γµΨAµa
1

2
λa −

1

4
Ga
µνG

µν
a , (2.10)

where Ga
µν = ∂µA

a
ν - ∂νA

a
µ - gfabcAbµA

c
µ and g is the strong interaction coupling

constant and Aµa is the gluon field.

The fabc is defined as follows [30]:

f 123 = 1

f 147 = -f 156 = f 246 = f 257 = f 345 = -f 367 = 1
2

f 458 = f 678 =
√

3
2

fabc = 0 otherwise

The QCD Lagrangian can be rewritten using the covariant derivative into the more

convenient form:

LQCD = Ψ̄(iγµDµ −m)Ψ− 1

4
Ga
µνG

µν
a , (2.11)

where Dµ = ∂µ + igAaµ
1
2
λa is the covariant derivative.

The gluons are massless particles, with unity spin, intermediating the strong inter-

action in the Standard Model. There are 8 types of the gluons, differing by the colour

charge they carry [30]:

|RḠ >, |RB̄ >, |GR̄ >, |GB̄ >, |BḠ >, |BR̄ >,
1√
2

(
|RR̄ > −|GḠ >

)
, 1√

6

(
|RR̄ > +|GḠ > −2|BB̄ >

)
.

2.2.5 Electroweak interaction

In the QED and QCD the way how to define gauge field was straightforward. There is

a known symmetry of the Standard Model and requiring the Lagrangian to be invariant

under the transformations corresponding to the symmetry, the gauge fields could be

obtained.

In the electroweak interaction the way, how the theory was built, was inverted.

Weak interaction was known a long time before the Standard Model. Various β de-

cays, muon decay and weak decays of hadrons had been known. In 1956, the parity

violation in weak interaction was discovered, measuring the angle between the inten-

sity of an external magnetic field and electrons emitted from the β decay of 60Co [31].

Because of the parity violation, only left-handed (L) particles and right-handed (R)
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antiparticles interact by weak interaction. The left-handed and right-handed stand

for chirality eigenstates. For massless particles and also in ultrarelativistic limit for

massive particles, the chirality and helicity eigenstates match each others. The left

chirality eigenstate uL is defined by 1
2
(1-γ5) operator as follows

uL =
1

2
(1− γ5)u. (2.12)

Considering existence of a charged heavy vector boson W , intermediating the weak

interaction, such as β decays, the interaction term given by Equation 2.13 has to be

added into the Lagrangian, so far considering only interactions of electrons and electron

neutrinos. Similar terms have to be added for interactions of µ and τ leptons. The

weak interaction of quarks is different and will be described later.

Lint =
gW√

2
(ν̄e, ē)L

((
0 0

1 0

)
W+
µ +

(
0 1

0 0

)
W−
µ

)(
νe

e

)
L

, (2.13)

where gW is a coupling constant, W+
µ and W−

µ are fields corresponding to W bosons.

The interaction Lagrangian rises the question, what symmetry does generate these

fields? It is similar to SU(2) symmetry, since these matrices are linear combinations of

the first two Pauli’s matrices, σ1 and σ2. But there is not the third Pauli’s matrix σ3.

Adding a new interaction term with σ3, the Lagrangian would become invariant with

respect to the SU(2) transformations. Artificial addition of the term with σ3 matrix

leads to the interaction Lagrangian:

Lint =
gW√

2
(ν̄e, ē)L

((
0 0

1 0

)
W+
µ +

(
0 1

0 0

)
W−
µ +

1√
2

(
1 0

0 −1

)
W 3
µ

)(
νe

e

)
L

. (2.14)

The term with σ3 corresponds to an electrically new neutral field, since there are

vertices W 3eē and W 3νeν̄e. Since the field W 3 couples to the neutrino, so it cannot be

the photon. The U(1) local symmetry with respect to a hypercharge Y

Y = 2(Q− T3), (2.15)

is required where Q is the electric charge of the particle and T3 is third component

of weak isospin (+1/2 for left-handed up-type quarks, -1/2 for left-handed down-type

quarks, +1/2 for left-handed neutrinos, -1/2 for left-handed charged leptons and 0 for

right-handed fermions).

Adding the term corresponding to the hypercharge U(1) symmetry, the interaction

part of the Lagrangian can be obtained:
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Lint = (ν̄e, ē)L

(
gW√

2
σ+W+

µ +
gW√

2
σ−W−

µ +
gW
2
σ3W

3
µ +

g′

2

(
−1 0

0 −1

)
Bµ

)(
νe

e

)
L

+(ν̄e, ē)L
g′

2

(
0 0

0 −2

)
Bµ

(
νe

e

)
R

,

(2.16)

where σ+, σ− and σ3 are corresponding matrices from Equation 2.14, g
′

2
is a coupling

constant of the new field (factor 1/2 is there for some practical reasons, that will be

clear later). The new term, coming from the U(1) symmetry cannot be the photon field,

because it interacts with neutrinos. Combining the last two terms, a field interacting

only with charged particles and thus the interaction part of the Lagrangian can be

obtained, corresponding to the fields Zµ and Aµ reads

Lint = (ν̄e, ē)

(
−gW

2.cos(ϑW )

(
1
2
(1− γ5) 0

0 1
2
(1− γ5)− 2sin2ϑW

)
Zµ + q

(
0 0

0 1

)
Aµ

)(
νe

e

)
,

(2.17)

where fields Zµ and Aµ correspond to physical particles, Z boson and photon and

q = e = g.sin(ϑW ) is the charge of the electron. They are linear combinations of fields

W 3
µ and Bµ:

Aµ = BµcosϑW +W 3
µsinϑW (2.18)

Zµ = BµcosϑW −W 3
µsinϑW (2.19)

The ϑW = arctan (g′/gW ) is the weak mixing angle, which can be related to the Z

and W boson masses [2]:

sin2ϑW = 1− M2
W

M2
Z

≈ 0.2299, (2.20)

where MZ = 91.1876 ± 0.0021 GeV and MW = 80.385 ± 0.015 GeV [2].

It should be emphasized that there is an important difference between interactions

intermediated by W bosons and those intermediated by Z and γ. The W bosons inter-

act only with left-handed particles and right-handed anti-particles. Z boson interacts

with left-handed neutrinos and with both electrons (although the coupling is not the

same for the left-handed and right-handed). The photon does not make a difference

between right handed and left handed particles.
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The electroweak interaction has SU(2)L ⊗ U(1)Y symmetry, where SU(2)L part

is related to the weak isospin of left-handed particles and U(1)Y is related to the

hypercharge.

Weak interaction of quarks and CKM matrix

The weak interaction is the only interaction allowing the quark flavour to change and

thus it is the only way how heavy charged mesons can decay. Replacing

(
νe

e

)
by(

u

d

)
and adding independent terms for another two quark generations would not work,

although it works for leptons. It would not allow decays of s and b quarks, since the only

allowed decay vertices would be into the other quarks from the same generation, but it

is not kinematically allowed because they are lighter from their isospin partners. In this

case charged kaons and b-mesons would be stable, which does not reflect experimental

observations. Vertices mixing quarks from different generations must be allowed. The(
νe

e

)
are replaced by

(
u

d′

)
and similarly for s′, c, b′ and t for quarks of the higher

generations. The important change with respect to the weak interaction of leptons

is that these states do not match the eigenstates of mass and the flavours which are

conserved in strong and electromagnetic interactions. These states d′, s′ and b′ are

linear combinations of d, s and b states. The relation between these two flavour bases

is given by Cabbibo-Cobayashi-Maskawa (CKM) matrix as follows.d
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 , (2.21)

where q are quark eigenstates of QED, QCD and mass, q′ are quark eigenstates

of the weak interactions and Vij are elements of CKM matrix. Their absolute values

are [2]:

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

 0.97343+0.00011
+0.00012 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013

0.00875+0.00032
−0.00033 0.0403± 0.0013 0.99915± 0.00005

 .

(2.22)
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2.2.6 Coupling constants in the Standard Model

When calculating a cross section or a decay width in the Standard Model, a factor

corresponding to a vector boson propagator has to be taken into account in the cal-

culations. Loops in the propagator, together with integral over fourmomentum of the

propagator, have to be taken into account.

The Standard Model is based on the SU(3)c×SU(2)L×U(1)Y symmetry. Each of

these symmetries is related to its coupling constant of the compensating boson field.

The coupling constants depend on transferred momentum.

There are important differences between the photon, gluon and Z/W propagators,

having important physical consequences, which should be noted.

QED

Considering electron-positron scattering in QED, the Feynman diagrams showed in

Figure 2.1 have to be taken into account.

Figure 2.1: Leading order (left) and next to leading order (right) Feynman diagrams for the

electron-positron scattering. These are not the only diagrams for this process, but the aim

of this chapter is not to calculate the cross section, it is meant to illustrate common pat-

terns in QED diagrams, leading to a dependency of the coupling constant on the transferred

momentum.

The matrix element corresponding to the leading order diagram is as follows,

Mfi = −i[u(e−in) (−ieγµ) v̄(e+
in)]
−igµν
k2

[v(e+
out) (−ieγν) ū(e−out)], (2.23)

where u, v, ū and v̄ are bispinors corresponding to the incoming and outgoing parti-

cles. The k is a transferred momentum, the fourmomentum of the photon propagator,

which is sum of e+e− fourmomenta in this case.

Calculating a contribution from one loop diagram (also called next to leading order,

or NLO), only the factor for propagator, −igµν
k2 will change, according to the transfor-

mation
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−igµν
k2

→ −igµν
k2

+
−i
k2
Iµν(k

2)
−i
k2
, (2.24)

where Iµν(k
2) is the factor corresponding to the loop correction.

Calculating the integral and splitting the propagator correction factor between the

both vertices, so-called running coupling constant can be obtained. The running cou-

pling constant accounts for higher order corrections of the propagator and it depends

on the transferred momentum. For high transferred momentum (µ2 >> M2
e ) it follows

αEM(Q2) =
αEM(µ2)

1− αEM (µ2)
3π

lnQ
2

µ2

, (2.25)

The Equation 2.25 shows that the coupling constant of the electromagnetic inter-

action, increases for high value of the transferred momentum.

The value of the electromagnetic coupling constant at low transferred momentum,

k2 = 0, is αEM = (e/4π)2 ≈ 1/137.

QCD

The important difference between QCD and QED is caused by the colour charge of

glouns. Gluons themselves are colour objects, so they couple to other gluons, while

photons do not carry the electric charge, so they do not couple to other photons. The

gluon self interaction adds a new term to loop corrections, corresponding to the gluon

loop in the propagator. The NLO Feynman diagrams for qq̄ scattering are shown in

Figure 2.2

Figure 2.2: Next to leading order Feynman diagrams for qq̄ scattering in the QCD with quark

(left) and gluon (right) loop. Contrary to the QED, the QCD has the additional term with

gluon loop, coming from the gluon self-interaction.

Calculating the correction factor, corresponding to the propagator loops, similar

procedure as for the QED has to be applied. Correction to the propagator can be

again transformed to the vertex correction, corresponding to the change of the QCD

coupling constant
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αS(Q2) =
αS(µ2)

1 + αS(µ2)
4π

(11− 2
3
nf )ln

Q2

µ2

, (2.26)

where αS(Q2) and αS(µ2) are strong interaction coupling constants corresponding

to Q2 and µ2 scales and nf stands for number of quark flavours. The reference scale

is usually taken as µ2 = M2
Z . The value of the strong coupling constant at this scale

is αS(M2
Z) = 0.1181 ± 0.0011 [2]. The strong coupling constant diverges when the

denominator approaches zero. The Q2 value for which the denominator is equal to

zero is called Λ2
QCD. Eq. 2.26 can be rewritten as:

αS(Q2) =
4π(

11− 2
3
nf
)
ln Q2

Λ2
QCD

, (2.27)

where ΛQCD ≈ 300 MeV [32]. Equation 2.26 has important physical consequences.

1. The QCD coupling constant decreases with risingQ2. In the limit caseQ2 →∞ it

approaches zero. This causes asymptotic freedom of quarks. At very high energies, the

strong interaction coupling constant is almost zero and quarks behave as free particles.

2. The QCD coupling constant diverges for Q2 → Λ2
QCD. It is closely related to the

quark confinement. The quarks at low energies are strongly bound in hadrons. If the

distance between two quarks is too high, a new quark-antiquark pair is created from

their potential energy and two new hadrons are formed. This causes also the limited

range (≈ 10−15m) of the strong interactions.

Weak interactions

The weak interaction was known long before the Standard Model. It was observed in

many decays. It was assumed to be a contact interaction, without Z or W bosons,

with a direct decay of one fermion into three others. In other words, there was a

four fermion vertex, and corresponding four fermion interaction in Lagrangian. This

theory provided sufficiently good results for various decays. The factor for W boson

propagator in the Standard Model for low transferred momentum |q2| << m2
W can be

replaced as

−i(gµν − qµqν/m2
W )

q2 −m2
W

→ igµν
m2
W

(2.28)

The Feynman diagrams for the muon decay in the Standard Model and in Fermi’s

theory of the weak interaction can be seen in Figure 2.3
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Figure 2.3: Muon decay in the Standard Model (left) and in Fermi’s theory with fourfermion

vertex (right). For low transferred momentum both theories provide the same result at the

tree level.

Calculating the matrix element corresponding to the Standard Model diagram, the

following equation can be obtained.

Mfi =

[
gW√

2
ūνµγ

α1

2
(1− γ5)uµ

]
gαβ − qαqβ/m2

W

q2 −m2
W

[
gW√

2
ūeγ

β 1

2
(1− γ5)vνe

]
(2.29)

Replacing the W -boson propagator factor according to Equation 2.28, the following

equation can be obtained.

Mfi =
g2
W

8m2
W

[
ūνµγ

α(1− γ5)uµ
] [
ūeγα(1− γ5)vνe

]
(2.30)

Looking at the Equation 2.30, three terms can be recognized. The first one cor-

responds to the coupling constant of weak interaction in Fermi’s theory. The second

therm corresponds to the muon flux and the last term corresponds to the electron flux.

The Fermi’s constant for the weak interaction fourfermion vertex is defined as

GF =
g2
W

4
√

2m2
W

≈ 1.166× 10−5GeV−2 [2]. (2.31)

The value of the weak coupling constant for a low transferred momentum in the

Standard model is gW ≈ 1/40.

2.2.7 Higgs boson and Higgs mechanism

The Higgs boson was the last discovered Standard Model particle. It was predicted in

1960s [33, 34], however the first experimental evidence was delivered by ATLAS and
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CMS experiments in 2012 [35, 36]. The mass of the Higgs boson has been found to

be 125.09 ± 0.24 GeV [2]. The Higgs boson was predicted as an important part of

the Standard Model, since it enables non zero masses of W and Z bosons through

Brout-Englert-Higgs mechanism. The idea of the mechanism is that if there is a scalar

field Φ with potential

V (Φ) = µ2Φ∗Φ + λ(Φ∗Φ)2, (2.32)

where µ2 < 0 and λ are both real numbers, the minimum of potential lies in a point

with a non-zero value of Φ. The Φ value in the minimum of potential, so-called vacuum

expectation value, is v = eiΘ
√
−µ2/λ, where the choice of the phase Θ is arbitrary and

Θ = 0 is often used.

Rewriting the Lagrangian replacing Φ→ v + ϕ, a new physical Higgs field ϕ, with

zero vacuum expectation value is obtained. The constant v is the vacuum expectation

value of the Higgs field. Interaction terms of other particles with the original field Φ will

split into two parts. The terms containing v, which are similar to mass terms in a La-

grangian, these terms are responsible for particle masses. The other term corresponds

to the interaction with physical Higgs field ϕ. The ”mass” term in Lagrangian and

interaction term with Higgs field are described by the same constant for a fermion, cou-

pling constant to the Higgs field, so-called Youkawa coupling constant. The equality of

these coupling constants causes the Higgs boson to couple strongly to heavy particles.

The heaviest particle with mass lower than mH/2 is b-quark, what makes H → bb̄ decay

channel dominant, with BR(H → bb̄) = 60.8 %. It is followed by BR(H → W ∗W ) =

23 % and BR(H → gg) = 7 % [37]. Although the already mentioned decay branches

have the highest branching ratio, they suffer from a large background rate, which makes

them difficult to measure. The discovery of the Higgs boson has been performed in

H → γγ (via fermion, mostly top-quark, loop) and H → Z∗Z → 4` channels with

significantly lower branching ratios. The theory prediction for the Higgs boson decay

width is ΓH = 42 MeV [37].

2.2.8 Structure of proton

Protons and antiprotons are particularly important particles in high energy physics,

since they are often used in particle colliders, such as the Large Hadron Collider.

The proton is composite particle formed by quarks and gluons. The proton has three

valence quarks: uud, however, especially at high energies also so-called sea quark-

antiquark pairs can be found inside the proton. When calculating a cross section of
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a process in pp collisions, the contribution from all partons have to be taken into

account, integrating over the whole range of x for a given type of the initial particle.

The composition of the proton is described by parton distribution functions pdf(x).

The pdf is a probability density to find a particle of the given type carrying x part of

the proton’s momentum. The proton pdf-s depend on the transferred momentum. The

parton distribution functions for the proton at µ2 = 10 GeV2 and (100 GeV)2 scales

can be found in Figure 2.4

Figure 2.4: Parton distribution functions for the proton at 10 GeV (left) and 100 GeV (right)

[38]. Except of valence quarks (u and d), there are gluons together with sea quarks and

antiquarks. As the energy of the proton rises, the sea quarks and gluons carry higher part of

the energy.

Factorization theorem

In the cross sections calculated from Feynman diagrams, the quarks and gluons (or

possibly other elementary particles) play a role of the initial state particles. In order

to calculate the cross section of a process in pp interaction, the factorization theorem

is employed:

σpp→X =
∑
i,j

∫ ∫
fi(xi, µF )fj(xj, µF )σij→X(xi, xj, µR, µF )dxidxj, (2.33)
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where σpp→X is the cross section of the pp → X process (i.e. measured quantity),

the sum runs over all types of partons in the proton, fi(xi, µF ) is the parton distribution

function of i-th type of parton at scale µF (so-called factorization scale) and σij→X is

the cross section of ij → X interaction, calculated from Feynman diagrams (where ij

are partons) and µR is the renormalization scale. If all the terms of the perturbation

series were summed, the dependency of the cross section on µR and µF scales would

disappear. If only tree level diagrams are considered, the parton-parton cross section

does not depend on µF .

2.3 Top quark

The top quark belongs to the 3rd generation of quarks. It was discovered at Tevatron

(Fermilab) in 1995 by the experiments CDF[39] and D0[40].

The top quark is the heaviest known elementary particle with the mass of 173.21

± 0.51 ± 0.71 GeV [2]. The electric charge of the top quark is +2/3 of the elementary

charge. Spin of the top quark is 1/2. According to the Standard model, the top quark

is weak isospin partner of the b-quark.

Top quarks can be produced as tt̄ pair via the strong interaction, alone via the weak

interaction (single-top production), or in associated production with other particles,

such as Z boson.

The top quark is very unstable particle with the decay width Γ = 1.322 GeV [41]

predicted by the Standard Model. The theoretical calculation of the decay width is

performed at NNLO + NNLL resumation precision in QCD and NLO in EW, the top-

quark mass of mtop = 172.5 GeV is considered. The mean lifetime of the top quark,

which can be calculated from the decay width, is in the order of ≈ 10−25 s. Since the

mean time of hadronization is ≈ 10−24 s, the top quark decays as a bare quark, before

it could create a hadron. This makes the top quark a unique object, which allows us

to study properties of a bare quark.

2.3.1 Top-quark pair production

Top-quark pair production is the process with the highest cross-section with the top

quark in the final state. The top-quark pairs are produced via strong interaction, either

in quark-antiquark annihilation or gluon-gluon fusion. The fraction of top-quark pairs

produced in gluon-gluon fusion rises with energy. In pp collisions at
√
s = 13 TeV, the

contribution from gluon-gluon fusion is ≈ 90 % and 10 % comes from quark-antiquark
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annihilation.4 The cross-section of pp→ tt̄ at
√
s = 13 TeV is 832+40

−46 pb according to

the NNLO calculation with NNLL gluon resumations [42]. The dependency of the top-

quark pair production cross section in pp and pp̄ collisions on the center of mass energy,

together with ATLAS, CMS and Tevatron measurements can be found in Figure 2.6.

The observed cross sections are in a good agreement with the theory prediction.

Figure 2.5: Theory prediction of pp→ tt̄ cross section depending on the center of mass energy

in pp and pp̄ collisions, supported by ATLAS and CMS measurements from 7, 8 and 13 TeV

and Tevatron combination at 1.96 TeV [43].

2.3.2 tt̄+X production

According to the Standard Model, the cross section of tt̄+X (X = Z, W , H, γ) depends

on the top-quark coupling constant to the X particle. Thus the measurements of the

tt̄+X cross sections provide an opportunity to verify or measure the values of these

coupling constants. The measurement of the tt̄H cross section is particularly important

for a precision Standard Model testing, since the coupling constant of the top quark

to the Higgs boson, top-quark Yukawa’s coupling constant, is one of the Standard

Model free parameters. The cross section of tt̄γ depends on the photon coupling to

the top quark, which is related to its electric charge. The cross sections obtained from

theory calculations for proton-proton collisions at
√
s = 8 TeV and

√
s = 13 TeV are

summarized in Table 2.2. In the Standard Model, the Z boson is coupled to the top

4Calculated from Powheg Monte Carlo samples.
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Figure 2.6: Feynman diagrams for top-quark pair production. The quark-antiquark annihi-

lation (upper left) and gluon-gluon fusion (other).

quark via electroweak interactions and it is further discussed in Section 2.5

8 TeV 13 TeV

tt̄ 252+13
−13 pb (NNLO+NNLL) 832+40

−46 pb (NNLO+NNLL)

tt̄Z 215 ± 30 fb (NLO) 863+78
−90 fb (NLO+NNLL)

tt̄W 232 ± 32 fb (NLO) 601+80
−72 fb (NLO)

tt̄H 129+11
−16 fb (NLO) 499+29

−46 fb (NLO)

tt̄γ 151 ± 24 fb (NLO) 521 ± 42 fb (NLO)

Table 2.2: Cross sections for top-quark production in pp collisions at next-to-leading order

(NLO) or next-to-next-to leading order (NNLO), or next-to-text leading logarithm precision

[44, 42, 45, 1, 46]. Since the photon is massless and thus the total cross section calculation

would suffer from collinear (infra-red) radiation terms, only a fiducial cross-section has been

calculated for this process. The fiducial volume is defined as top-quark pair decaying into

`+jets and pγT > 15 GeV [47, 48]

.
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2.3.3 Top-quark decay

The top quark decays with probability of 99.8% into the b-quark and W boson. In

the other 0.2% of cases, the top quark decays into d or s quark and W boson. Those

top-quark decays are not considered in the analysis. They are difficult to identify in

the measured data because of a large background.

W boson from the top-quark decays hadronically (BR(t→ bqq̄′) = 67.41 ± 0.27 %

[2]), into two quarks, or leptonically into charged lepton and its anti-neutrino (BR(t→
be−νe) = 10.71 ± 0.16 %, BR(t→ bµ−νµ) = 10.63 ± 0.15 %, BR(t→ bτ−ντ ) = 11.38

± 0.21 % [2]). In the final state from the top-quark decay, there is one b-jet and two

light jets coming from decay of the W boson (hadronic decay), or one b-jet, a charged

lepton and its neutrino coming from the W -boson decay (leptonic decay).

The τ leptons are unstable particles with very short mean lifetime ττ = 2.9 ×
10-13 s [2]. Because of the short lifetime, they cannot be measured directly. Various

decay modes of τ lepton are allowed, having leptons or hadrons in the final state. The

reconstruction of hadronic decay is a challenging problem and these decays are not

studied in this analysis. However, the leptonic decays of τ leptons are important, since

there is exactly one charged lepton in the final state, which is similar to leptonic decay

of the top quark. Although distributions of the lepton fourmomentum and missing

transverse energy are different from the direct leptonic decay, it is difficult to recognize

the direct top-quark decay into electron or muon from the cascade decay through the

τ lepton. The branching ratios of τ → µν̄µντ and τ → eν̄eντ are 17.39 % and 17.82

% [2].

2.3.4 Top-quark pair decay

Combining decay modes of two top quarks, three final states are allowed:

All-hadronic decay with both W bosons decaying into jets. There are two b-jets

and four light jets5 in the final state. The branching ratio of this decay channel is

45.4% [2].

Semi-leptonic decay, also called lepton+jets, one W boson decays into lep-

ton+neutrino and the other one into two quarks. In this case, there are two b-jets,

two light jets, charged lepton and missing transverse momentum (neutrino) in the final

state. If τ leptons which are difficult to identify are not considered, the branching ratio

of the channel is 28.8%. If the leptonic decays of τ leptons are considered, which is the

5The light jet is the jet initiated by light quark, it means u, d, s or c quark
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case of our analysis, the branching ratio is 34.2 %. If all decay channels of τ lepton are

considered, the branching is 44.1% [2].

Dileptonic decay, both W bosons decay into lepton and neutrino, so in the final

state there are two b-jets, two charged leptons of the opposite sign and missing trans-

verse momentum (two neutrinos). If the τ leptons are not considered, the branching

ratio of the channel is 4.6%. If also leptonic decays of τ leptons are considered, the

branching ratio of the channels is 6.4 %. If all decay channels of τ lepton are considered,

the branching is 10.7% [2].

In general, higher number of leptons in the final state allows better background

suppression at the cost of smaller dataset due to decreasing branching ratio. In addition

to the small statistics, the dilepton decay of the top-quark pair is also difficult to

reconstruct, since there are two neutrinos in the final state, or even more, if at least

one lepton originates from a τ -lepton decay. There is no exact solution for the two

neutrino problem, however there are some probabilistic-approach algorithms how to

reconstruct momenta of the neutrinos, such as Neutrino Weighting Method [49].

2.4 Z boson

Z boson is heavy vector boson and together with the W boson they are the mediators

of the weak interactions. Mass of the Z boson is 91.1876 ± 0.0021 GeV [2] and it

carries no electric charge. The Z boson is unstable particle with the decay width

Γ = 2.4952 ± 0.0023 GeV, which corresponds to the mean lifetime of ≈ 2×10−25 s [2].

The Z boson couples to all Standard Model particles except of the photon and gluon.

There are many decay channels of the Z-boson, the most important (with the highest

probability) are the following:

Hadronic decay: Z boson decays into quark-antiquark pair, so in the final state

there are two jets from these quarks. The probability of this decay is 69.91 ± 0.06 %

[2].

Invisible decay: Z boson decays into neutrino and antineutrino. This decay is very

difficult to identify, because usually the only sign is a missing transverse momentum,

that appears also in other events and in addition, the detector resolution in missing

transverse momentum is worse compared to the momentum resolution for jets and

leptons. The probability of the invisible Z-boson decay is 20.00 ± 0.06 % [2].

Leptonic decay: Z boson decays into two charged leptons. In the final state there

are two charged leptons of the same flavour, opposite sign and their invariant mass is
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close to the mass of the Z-boson. In this case, it is important to distinguish between

e+e−, µ+µ− and τ+τ− case. τ leptons are very unstable and decay before reaching

the detector, so their reconstruction is challenging problem. Electrons and muons are

well reconstructed by the ATLAS detector. Probability of the Z-boson decay into two

charged leptons is 10.099 ± 0.011 % [2]. Subtracting the contribution of Z → ττ , 6.729

± 0.008 % probability of having e+e− or µ+µ− pair in the final state can be obtained.

The τ → ` + ν̄` + ντ decays are not considered here, since the neutrinos carry away a

part of the τ -lepton fourmomentum and thus the invariant mass of the lepton pair is

lower than the Z-boson mass.

Other decay modes are allowed only at next-to-leading order and their probability

is far below 1 % [2].

2.4.1 Z+jets production

The most frequent process with the Z boson in the final state, and the most significant

background in dilepton channel of tt̄Z production, is the associated production of the

Z boson and jets. Leading order Feynman diagrams are shown in Figure 2.7. The

total cross section of the Z+jets in pp collisions at 13 TeV is 67+4
−8 nb at NLO precision,

when up to 3 additional partons with pT > 30 GeV in pseudorapidity range |η| < 4

are considered [50]. The contribution from events with at least one b-jet (jet initiated

by a b-hadron) is ≈ 7 %. The Z+jets production is dominated by quark anti-quark

annihilation, which contributes by 76 %, it is followed by quark-gluon interaction (23 %)

and gluon-gluon fusion (1 %). 6

Figure 2.7: Leading order Feynman diagrams for the associated production of the Z boson

with jets.

6Calculated from Z+jets Sherpa 2.2.1 samples.
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2.5 tt̄Z associated production

The associated production of the top-quark pair and Z boson is a rare process predicted

by the Standard model. The theory prediction for the tt̄Z cross section for proton-

proton collisions at
√
s = 13 TeV at NLO+NNLL in QCD and NLO in EW precision

is

σtt̄Z = 0.863 +8.5%
−9.9% (scale) +3.2%

−3.2% (PDF + αS) pb [1],

which is approximately 1,000 times less than the cross section of the top-quark pair

production.

The leading order Feynman diagrams of the tt̄Z production are shown in Figure 2.8.

The contribution from quark-antiquark annihilation is 30 % and gluon-gluon fusion

contributes by 70 % at
√
s = 13 TeV.7

Figure 2.8: The Feynman diagrams for the tt̄Z production. The tt̄Z can be produced either by

quark-antiquark annihilation (a-b), or by gluon-gluon fusion (c-f) . Diagram a) shows initial

state radiation, the other diagrams final state radiation, which is sensitive to the coupling

constant of Z boson and top quark.

According to the Standard Model, the Z boson couples to quarks and leptons. The

vertex of fermion and Z boson is shown in Figure 2.9 and according to the Standard

Model, the coupling of Z boson with fermion pair is:

−igZ
2

γµ(cfv − c
f
Aγ

5), (2.34)

where gZ = e2

4πsin(ϑW )cos(ϑW )
, values cfv and cfA depend on the particle weak isospin

and the weak interaction mixing angle and are summarized in Table 2.3

7Calculated from MC@NLO tt̄Z samples.
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Figure 2.9: Vertex for the interaction between fermion and Z boson. The fermion can be any

quark or lepton.

particle cfv cfA

νe, νµ, ντ
1
2

1
2

e, µ, τ -1
2 + 2sin(ϑW ) -1

2

u, c, t 1
2 - 4

3sin2(ϑW ) 1
2

d, s, b -1
2 - 2

3sin2(ϑW ) -1
2

Table 2.3: Values of cfv and cfA for different types of fermions, ϑW is the weak mixing angle,

the value measured in the experiment is 28.7◦ [30]

If the Z boson in the tt̄Z production originates from the final state radiation

(Feynman diagrams b-f in Figure 2.8), the cross section depends quadratically on

the Term 2.34. This allows us to probe the coupling constant of Z boson to top quark,

if the contribution of initial state radiation in tt̄Z production is known.

2.6 Decay channels of tt̄Z

As mentioned before, the top quark and Z boson are very unstable particles, so they

cannot be measured directly. Depending on the decay modes of individual particles

various final states are allowed. Invisible decay of the Z boson is very difficult to

identify and also the identification of hadronicaly decaying Z boson is challenging

problem, because the momentum and energy resolution for jets is worse than that of

leptons. The studies focused on the channels with Z decaying into neutrinos showed

very low signal sensitivity. Currently only channels with Z boson decaying into e+e−

or µ+µ− lepton pairs are considered in the analysis. The τ+τ− decays are difficult to

reconstruct and this analysis does not target these decay channels.
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2.6.1 Dilepton opposite-sign same-flavour channel

In this case the top-quark pair decays hadronically and Z boson decays into e+e− or

µ+µ− pair. This decay channel has the highest branching ratio, but the background

rate is relatively high. Dominant background processes are Z+jets and dilepton decay

of tt̄ with additional jets. Considering the branching ratios of the tt̄-pair and Z boson,

the branching ratio of the decay channel is 4.9% considering the τ leptons. If the

leptonic decays of τ leptons from tt̄ are considered, but Z → ττ are not, the branching

ratio of the channel is 3.1%.

In the final state there are:

• 2 leptons of opposite sign and same flavour with invariant mass close to the mass

of Z boson (so-called Z-like pair)

• 2 b-jets

• 4 additional light jets

• no neutrinos

2.6.2 Trilepton channel

The top-quark pair decays semileptonically and the Z boson decays into e+e− or µ+µ−

pair. This channel is characterized by reasonably high statistics while the background

is relatively low. The dominant background are fake leptons, dibosons (mostly WZ →
```ν), tZ and tWZ [51]. If the leptonic decays of τ leptons from tt̄ are considered, but

Z → ττ are not, the branching ratio of the channel is 2.3 %.

In the final state there are:

• 3 leptons, (one Z-like pair, one lepton from tt̄ decay)

• 2 b-jets

• 2 additional light jets

• 1 neutrino

2.6.3 Tetralepton channel

Top-quark pair decays dileptonically and Z boson decays into e+e− or µ+µ− pair. This

channel has a very low background rate, but the branching ratio of this channel is low,

so the statistics is very limited. The dominant backgrounds are fake leptons, tWZ and

ZZ → ````. If the leptonic decays of τ leptons from tt̄ are considered, but Z → ττ are

not, the branching ratio of the channel is 0.43 %.

In the final state there are:



2.6. DECAY CHANNELS OF T T̄Z 32

• 4 leptons (one Z-like pair, one pair of opposite-sign leptons from tt̄)

• 2 b-jets

• 2 neutrinos



Chapter 3

The LHC complex and ATLAS

experiment

3.1 Large Hadron Collider

The LHC is currently the largest and the most important accelerator for the particle

physics in the world. Its circumference is about 27 km and it is 50-175 meters under the

Earth surface. It is located on the border of Switzerland and France near Geneva. It

was built by the European Organisation for Nuclear Research (CERN). It has replaced

the LEP (Large electron-positron collider), which was located in the tunnel before.

LEP worked with electron and positron beams and was able to reach the center of

mass energy of about 100 GeV in the first phase and 200 GeV in the second phase. It

was functional from 1989 to 2000.

The first proton beam at the LHC was accelerated in September 2008. Few days

later there was an accident, when large amount of liquid helium escaped and damaged

superconducting magnets, their mountings and contaminated the vacuum tube. Due to

this accident, the LHC was not able to work during the next year. The first collisions of

the two beams were reached in 2010. On 13th March 2011 the LHC started to accelerate

the proton beams with the energy of 3.5 TeV per a particle. After a short shutdown,

in April 2012 the proton beams were accelerated again, but to 4 TeV per particle. In

2011 and 2012 the LHC was also used to collide the lead ions accelerated to 287 TeV.

In 2013 and 2014 there was a next shutdown due to upgrades of the accelerator, to

enable to accelerate the protons up to 6.5 TeV. In 2015-2018 the LHC was operational

again, accelerating protons to energy 6.5 TeV per particle [52].

There are few pre-accelerators at the LHC. Before the protons enter the LHC, they

33
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must be accelerated to 450 GeV by the pre-accelerators. The accelerator complex is

showed in Figure 3.1.

Figure 3.1: LHC and the preaccelerators [53].

The first part of the accelerating complex is a proton source, where the protons

are produced by ionizing of hydrogen. The protons from the source continue to the

linear accelerator Linac 2 (marked as ”p” in the picture). In the case of heavy ions

(Pb) Linac 3 is used (marked as ”Pb” in the picture), which is specially constructed to

accelerate heavy ions. The collisions of heavy ions are not important for this analysis,

so only the accelerating of the protons is described here. After leaving the Linac, the

protons have energy of 50 MeV. This process takes few microseconds [54].

From Linac 2 the proton beam continues to PSB (Proton Synchrotron Booster). It

is the synchrotron with the radius of 25 meters, where the protons are accelerated to

1.4 GeV. This takes 530 ms [55].

The protons continue to Proton Synchrotron (marked as ”PS” in the picture). Its

radius is 100 meters. It was built in 1959 and was used as a standalone accelerator,

a long time before building of LHC. Now it accelerates the protons to the energy of

25 GeV. This takes around 1 second [56].

The next preaccelerator is SPS (Super Proton Synchrotron). The protons stay there

for 10.8 s, 7.2 s or 3.6 s for the next accelerating, or they are accelerated immediately.

The SPS is the cyclic accelerator with a circumference of 6.9 km. It is the last preac-
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celerator before the protons enter the LHC. The protons are accelerated to 450 GeV

in SPS. The accelerating process in the SPS takes 4.3 seconds. SPS was used in 1981-

1984 as a standalone proton-antiproton collider during experiments which led to the

discovery of the W and Z bosons [57].

After accelerating the protons in SPS, the proton beam is divided into two parts,

which are injected to LHC in opposite directions. There are two parallel tubes in LHC,

each accelerating one proton beam. These two tubes collide only in 4 places in LHC,

where detectors are placed. 1232 dipole electromagnets create a strong magnetic field

which makes the protons to stay in the cyclic tube of LHC. 392 quadrupole magnets

focus the proton beams to prevent the collisions with a surface of the tube. To reach

the magnetic field strong enough, superconducting magnets are used that need to be

cooled down by a liquid helium to 1.8 K [52].

There are 4 detectors at LHC: ATLAS, CMS, LHCb and ALICE. In this thesis,

only data and Monte Carlo samples from the ATLAS detector are used, therefore it

will described in more details.

Luminosity

The luminosity is the important parameter of particle collider. The luminosity ex-

presses the number of events of the selected type that will be observed. We are able

to express the number of the events of the selected type (for example a top-quark pair

production) via the formula:

dN

dt
= L · σ, (3.1)

where N is the number of events, σ is cross-section and L is a parameter of the

collider called luminosity. Luminosity depends on the number of particles in a bunch,

size of the bunch and a frequency of bunch crossing. It is obvious that the number of

events in a selected time interval will be

N =

∫
L · σdt = σ ·

∫
Ldt = σ · L, (3.2)

L is called integrated luminosity. Its unit is an inverse barn (b−1).

The total integrated luminosity collected at
√

s = 7 TeV was L = 5.5 fb−1 and at
√

s = 8 TeV it is L = 23 fb−1. During years 2015 - 2018 the ATLAS recorded 139 fb−1

of data from proton-proton (pp) collisions at
√
s = 13 TeV. Only the data from 13 TeV

are used in this thesis.
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3.2 A Toroidal LHC Apparatus (ATLAS)

The weight of the detector is about 7000 tons. It has cylindrical shape with the length

of 44 meters and 25 meters in the diameter. It was assembled and used first time

in 2008. One of its most important results, together wih CMS, was the discovery of

Higgs boson in July 2012 [35, 36]. Construction of the ATLAS detector is shown in

the Figure 3.2.

Figure 3.2: The ATLAS detector [58]

The ATLAS detector consists of 4 main parts: an inner detector, calorimeters, muon

spectrometer and magnetic systems. Each of these parts consists of several layers.

ATLAS is designed to detect all particles created in an event excluding neutrinos.

3.2.1 ATLAS coordinate system

The centre of the ATLAS coordinate system is located in the centre of ATLAS, in the

interaction point, where the two proton beams collide. The coordinate system is right-

handed, with the x-axis pointing to the middle of LHC, the y-axis pointing upwards

and the z-axis pointing in the direction of the beam. The spherical coordinates are

usually used in the analyses performed by ATLAS. The angle φ is angle from x-axis

in xy plane. The ϑ is the angle from z-axis. Since the difference in ϑ of two particles

is not Lorentz invariant with respect to boosts in direction of z-axis (direction of the

colliding protons), the pseudorapidity η is used. The η is defined as follows
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η = −ln

(
tan

ϑ

2

)
(3.3)

Since the pZ of particles depends on the pZ of initial partons, and usually it is not

zero, so-called transverse momentum, pT is often used. The transverse momentum is

defined as:

pT =
√
p2
x + p2

y = p.sinϑ. (3.4)

3.2.2 The Inner Detector

Inner detector is closest to the beampipe. It is cylindrically shaped with the radius

of 2.1 m and length of 6.2 meters. The Inner Detector is able to detect particles in a

pseudorapidy range |η| < 2.5. There is a magnetic field of about 2 Tesla in this area,

which causes the trajectory of the charged particles to curve. The main purpose of

the inner detector is a precise reconstruction of particle trajectories. From radius and

direction of the curvature of the trajectory, the momentum and charge of the particle

can be determined [59].

The inner detector consists of the three parts: Pixel Detector, Semiconductor

tracker and Transition radiation tracker.

Pixel Detector

It is the first part of the inner detector and it is closest to the beampipe. It has high

granularity and precise spatial resolution. The size of one pixel is 50 × 400 µm. It is

as close to the interaction point as possible and in Run-I (7 and 8 TeV) it consisted of

three barrels with the radii of 5 cm, 9 cm and 12 cm (1456 modules) and three discs

on each side between the radii of 9 cm and 15 cm (288 modules). The total number of

read out channels is 80 million. In Run-II, one more pixel layer was added. The name

of the layer is IBL and its main purpose is to improve b-tagging of the jets, which is

also one of the main purposes of the pixel detector. The IBL has additional 12 million

readout channels and its distance from the interaction point is 3.3 cm. The size of the

IBL pixels is 50 × 250 µm. Precision spatial measurement close to the primary vertex

enable us to reconstruct secondary vertices from decay of shortly living b-hadrons. The

thickness of each pixel layer is about 2.5 % of radiation length [59, 60].
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Semiconductor Tracker (SCT)

SCT consists of eight layers of silicon microstrip detectors, so in the ideal case it

provides eight precise measurements per a track, which enables the measurement of

the momentum, impact parameter and vertex position with a high precision. The

barrel modules are mounted at the radii of 29.9, 37.1, 44.3 and 51.6 cm. SCT is

divided into two parts: barrel, which covers the area |η| < 1.4 and end-cap, which

covers 1.4 < |η| < 2.5 [61].

Transition Radiation Tracker (TRT)

It consists of tubes with 4 mm in the diameter filled by a mixture of Xe, CO2 and CF4

(70 % : 27 % : 3 %). A gold-plated W-Re wire of 30 µm diameter is placed in the centre

of each tube. The TRT is designed to reconstruct charged particles with |η| < 2.0 and

pT > 500 MeV. The barrel part of TRT covers pseudorapidity range of |η| < 1.0 and

consists of 52,544 straws oriented parallel to the beam axis. The end-cap parts consist

of 122,880 straws each and cover range 1.0 < |η| < 2.0 [62]. The TRT provides good

discrimination between electrons and charged hadrons in wide pT range from 0.5 to

100 GeV, measuring X-rays produced by transition radiation of the particles [63].

3.2.3 Calorimeter

ATLAS has two calorimeters: an electromagnetic (inner) and hadronic (outer) calorime-

ter. The main purpose of the calorimeters is the measurement of the energy of the

particles by absorbing them. Both calorimeters are sampling ones, that means, there is

a passive and active medium in both calorimeters. High-density metal plates are used

as the passive medium. Liquid argon and scintillating plastic are used as the active

medium.

Electromagnetic (EM) calorimeter

The EM calorimeter is designed to detect the particles interacting via an electro-

magnetic interaction - photons and charged particles, predominantly electrons and

positrons. Lead plates are used as the absorber and as the active medium, liquid argon

is used. The EM calorimeter consists of two parts. The first one is barrel which covers

|η| < 1.475 and the second one is the end-cap part covering 1.375 < |η| < 3.2. The

total thickness of the EM calorimeter is 24 radiation lengths in the barrel part and 26

radiation lengths in the end-cap parts. An angular segmentation of the EM calorimeter
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is ∆η ×∆φ = 0.025× 0.025. The energy resolution of the EM calorimeter is given by

the formula [64, 65, 66]

∆E

E
=

11.5%√
E[GeV]

⊕ 0.5%. (3.5)

Hadronic calorimeter

The hadronic calorimeter is used to detect particles which pass through EM calorimeter

and interact via a strong interaction. It is crucial to measure the energy of jets1. The

barrel part covers region |η| < 1.6, iron is used as an absorber and scintillating tiles are

used as an active part. The end-cap parts use copper as the absorber and liquid argon

as the active medium due to a higher radiation dose. The thickness of the hadronic

calorimeter is 10 hadron interaction lengths.

The resolution in the energy and the angle is lower than in the EM calorimeter.

The segmentation is ∆η ×∆φ = 0.1× 0.1 and the average resolution in the jet energy

is given by Equations 3.6 and 3.7 [64]:

∆E

E
=

50%√
E[GeV]

⊕ 3% for |η| < 3 (3.6)

∆ET

ET

=
100%√
E[GeV]

⊕ 10% for 3 < |η| < 5 (3.7)

3.2.4 Muon Spectrometer

The muon is the only particle (apart from a neutrino) which is not absorbed in the

calorimeters. The muon spectrometer covers the pseudorapidity range |η| < 2.7 and

it is designed to detect the muons and reconstruct them independently from the inner

detector. The muon spectrometer is crucial for reconstruction of the muons with high

pT, which are usually sign of an interesting physics. There is a magnetic field of 0.5

T in the Muon Spectrometer, which enables measurement of the moun momentum.

Figure 3.3 shows the momentum resolution of the Muon Spectrometer, Inner Detector

and their combination.

The Muon Spectrometer consists of four parts: Monitored Drift Tubes (MDT),

Cathode Strip Champbers (CSC), Thin Gap Chambers (TGC) and Resistive Plate

Chambers (RPC) [67].

1The jets are showers of the particles, which comes from a quark, hard gloun or tau lepton.
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Figure 3.3: Momentum resolution of Muon Spectrometer and Inner Detector [66].

The Monitored Drift Tubes

The Monitored Drift Tubes (MDTs) consist of aluminium tubes with 30 mm in the

diameter and with a wire in the centre. The MDTs cover the barrel part and end-cap

parts. In the barrel part (|η| < 1.05), 3 layers of the tubes 5, 7.5 and 10 m from the

beam axis are used. In the end-cap parts (1.05 < |η| < 2.7), there are 3 wheels in the

z-axis distance 7.5, 13 and 20 m. The tubes are filled with a mixture of Ar, CO2 (93

%, 7 %) and they work as drift chambers with maximal drift time of 500 ns. The muon

crossing the tube causes a ionization process in the gas and measuring the electron

cluster drift time enables to reach the spatial resolution of around 50 µm [66, 68, 67].

The Cathode Strip Chambers

CSCs are used in the end-cap region 2 < |η| < 2.7, they have high spatial resolution and

low drift time of electrons (30 ns), that is why they can be used in environment with

a high muon flux. The CSC are multi-wire proportional chambers with a segmented

cathode. The spatial resolution is around 60 µm [66, 67].
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The Resistive Plate Chambers

RPCs are gaseous detectors with worse spatial resolution (about 10 mm) compared to

the other parts of Muon Spectrometer, but they are able to work very fast (1.5 ns), so

they are used as the first level trigger. RPCs cover the barrel part of the detector, |η|
< 1.05, and they are divided into 3 stations, each with 2 layers located on each side of

MDT layers [66, 68, 67, 69].

The Thin Gap Chambers

TGCs are multi-wire proportional chambers providing a triggering and second coordi-

nate measurement in the end-cap regions. The typical spatial resolution is about 2-7

mm and the drift time less than 25 ns. The TGCs cover the range 1.05 < |η| < 2.7

and they are used as the first level trigger in the range of 1.05 < |η| < 2.4 [66, 67, 69].

3.2.5 Magnetic System

The magnetic system at ATLAS provides almost homogeneous magnetic fields which

enables the measurement of the momentum and charge of the particles. The magnetic

system is divided into 3 parts: the central solenoid, the barrel toroid and the end-cap

toroids.

The Central Solenoid

It is located around the inner detector and provides a homogeneous magnetic field of

around 2 T, which enables to measure the momentum of the particles in the inner

detector. The track of charged particles with the low transverse momentum cannot be

measured, because their trajectories are curved too strongly. With rising transverse

momentum of the particles detection efficiency is rising and reaches almost 100% at 400

MeV in pT. Due to the reduction of energy losses of the particles that leave the inner

detector, thickness of solenoid and cooling system is 0.83 of radiation length at normal

incidence. The Central Solenoid shares its cooling system with the electromagnetic

calorimeter. The Central solenoid has the radius of 1.22 m and the length of 5.3 m

[70, 71].

The Barrel Toroid

It consists of 8 coils with air cores, each is 25 m long and 5 m wide, covering range

|η| < 1.3. They create the magnetic field varying from 2 T to 8 T in the area 26 meters
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long and 20 meters in the diameter. An electromagnet able to create the homogeneous

magnetic field strong enough in such a huge area would be unaffordably expensive.

The dependency of magnetic field intensity inside the Barrel Toroid on η is shown in

Figure 3.4 [71].

Figure 3.4: Dependency of
∫
~B~dl on η inside the Barrel Toroid and End-Cap Toroids [71].

The End-Cap Toroids

The End-Cap Toroids cover the area 1.6 < |η| < 2.7 and consist of 8 coils. Their length

is 5 m and extend radially from 1.65 to 10.7 m [71].

3.3 ATLAS trigger system

Bunch crossing rate at ATLAS is about 40 MHz and if every event was recorded it

would be around 1 PB/s of data. The main part of these events are not physically

interesting and also it is not possible to store so much events, therefore a technique to

decide which events should be recorded is needed. ATLAS trigger system fulfils this

function and it has two parts.
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3.3.1 Level 1 trigger (L1)

It is designed to reduce the event rate from 40 MHz to ≈ 100 kHz. It is a hardware

trigger and it is based on a signal from the calorimeters and muon spectrometer. The

signals are processed in the Central Trigger Processor with the latency of 2.5 µs. If

there is high missing transverse energy (ET), muons, electrons, photons, or jets with

high pT, the event is tagged as potentially interesting and continues to High Level

Trigger [72, 73].

3.3.2 High Level Trigger (HLT)

It is an off-line software trigger. In its output there is around 1 kHz of events. Compared

to the Level 1 trigger, it uses the complete information about the event including the

information from the inner detector. The HLT runs at the computer farm with ≈40,000

processors nearby the detector. Its latency is ≈ 300 ms [74, 73].

Single lepton triggers are used in this analysis. If a muon or electron with momen-

tum above a certain pT threshold is reconstructed in an event, the event is stored. The

threshold depends on the type of the lepton and on the year of data taking. It varies

from 20 to 26 GeV. The trigger efficiency rises with pT, reaching ≈ 100 % for pT higher

than the trigger threshold plus 1 GeV [73].
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Object reconstruction

Although there are many particles that can be produced during the collisions, only few

of them are stable enough to be measured directly in the detector: p, n, e, µ, γ, π±,

K± and K0. All the other particles decay before they could reach the detector, except

of weakly interacting neutrinos which cannot be measured by the ATLAS detector.

Heavy unstable particles decays into other, more stable particles which can be

measured in a detector. In order to reconstruct these particles, multiple objects are

defined in ATLAS analyses:

Tracks: When a charged particle flies through the inner detector, it causes a

ionization which can be measured. The tracks of these particles in the inner tracker

are reconstructed in order to measure momentum and charge of these particles. Only

charged particles leave tracks in the inner detector, while neutral particles, such as

photons and neutral hadrons fly through the inner detector without leaving any signal.

Electrons: The electron is a stable particle. Since it carries an electric charge, it

leaves a signal in the inner detector (track) and in the electromagnetic calorimeter.

Muons: The mean lifetime of the muon, 2.2 × 10−6 s[2], makes it stable enough to

be directly measured by ATLAS detector. Because of relatively high mass, ≈ 200 times

higher than the electron mass, the muon can penetrate through the all subdetectors

of ATLAS, leaving a signal in all sensitive parts of the detector. The muon is the

only particle able to reach the outermost layer of the ATLAS detector, the muon

spectrometer.

Jets: However the quarks and gluons cannot be observed directly, streams of par-

ticles, so called jets is their experimental evidence. The jets consist of hadrons and

possibly leptons from decays of the hadrons. The jets are measured from a signal in

the inner detector and calorimeters. The jets can be initiated also by hadronically

44
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decaying τ -leptons, although these jets are not used in this analysis.

Photons: The photons, particles without an electric charge leave a signal only in

the electromagnetic calorimeter. Since the photons are not used in our analysis, they

will not be described in more details.

4.1 Track reconstruction

Tracks are reconstructed from the signal in the inner detector. At the beginning of the

track reconstruction, hits in the pixel detector and SCT are reconstructed. Each hit

is characterized by 3 spatial coordinates (so-called silicon space-point) and a cluster of

cells assigned to it. There are two possible types of clusters. Single-particle clusters are

clusters created by a charge deposit from a single charged particle. Merged clusters are

clusters containing a charge deposit from more than one charged particle. A Neural

Network is employed to discriminate between the merged clusters and single-particle

clusters. In the next step, combinations of exactly three silicon space-points, so-called

track seeds, are created. The track seeds are used as the inputs for Kalman filter [75],

which is employed to build track candidates, adding more silicon space-points into the

track seeds. The tracks are characterized by five parameters: q/p, φ, η, d0 and z0, where

p is momentum of the track, q is the track charge, φ and θ are angular coordinates

of the track, d0 and z0 are the transverse and longitudinal distances from the primary

vertex of the event1, as shown in Figure 4.1.

Figure 4.1: z0 and d0 of a track [76].

1The primary vertex is the vertex with the highest pT sum of the tracks compatible with the vertex. It is

assumed to be the vertex from the hard-scattering event.
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In the next step, a score for each track candidate is calculated. A higher number

of hits increase the score, while crossing a sensitive part of the inner detector without

leaving a signal (hole) decreases the score. The χ2 of the fit is also taken into account

in order to penalize the track candidates with a poor fit. The logarithm of the track

momentum is also considered to promote energetic tracks [77].

After calculating the score for all the track candidates and ordering them decreas-

ingly by the score, the ambiguities are being solved. If two track candidates share the

same track seed, the candidate with the lower score is removed. If two track candidates

share the same cluster, which has been identified as a single-particle cluster, the track

candidate with the lower score is removed. If the track has more than two shared

clusters, it is removed. In addition, all the track candidates are required to meet the

following criteria [77]:

• pT > 400 MeV

• |η| < 2.5

• At least 7 hits in pixel detector and SCT (12 are expected in the ideal case)

• Maximally either one shared pixel cluster or two shared SCT clusters on the same

layer

• At most two holes (crossing a sensitive part without leaving a signal) in the SCT

and pixel detector

4.2 Electrons

Electrons are reconstructed combining an energy deposit in the electromagnetic calorime-

ter with a matched track reconstructed in the inner detector. In order to estimate

energy deposit of electron candidate in EM calorimeter, the η-φ space is divided into

grid of 200×256 towers, each of them having a size of 0.025×0.025. A sliding window

algorithm [78] is employed to search for the energy deposit matched to the track of the

electron candidate, searching for a window position with the maximal energy deposit

in the EM calorimeter in each layer. The size of the window is 7×3 in the barrel part

and 5×5 in the end-cap parts of the EM calorimeter.

In order to discriminate the real electrons from other particles among the electron

candidates, a likelihood based discriminant d, is employed:
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d =
LS

LS + LB
, LS(B)(~x) = Πn

i=1PS(B),i(xi), (4.1)

where ~x is a set of input variables, discriminating the electron candidates originating

from real electrons against those originating from other particles (fake electrons). The

list of these variables can be found in Reference [79]. The PS(B),i(x) are probability

density functions of these variables for real (fake) electrons, derived from a simulation.

The discriminant d is usually transformed according to the Equation 4.2 in order to

obtain a discriminant with a sharp peak around one.

d′ = − 1

15
ln(d−1 − 1) (4.2)

The distribution of the d′ for real and fake electrons is shown in Figure 4.2

Figure 4.2: Distribution of the electron likelihood discriminant d′ for electrons in

30 GeV < ET < 35 GeV and |η| < 0.6 for real electrons (black) and fake electrons (red).

Both histograms are normalized to unit area [79].

The ATLAS collaboration uses three cut thresholds for d′, when defining the elec-

trons: Loose, Medium and Tight. The real and fake electron efficiencies for these lepton

definitions as functions of ET of the electron candidate are shown in Figure 4.3

In addition to the likelihood cut, the electron candidates are required to meet

isolation criteria. The aim of the isolation criteria is to suppress a fraction of non-

promt electrons, originating from photon conversions, heavy hadron decays and light

hadrons mis-identified as electrons, which are usually accompanied by other particles.

In this analysis so-called FixedCutTight isolation is applied. The FixedCutTight

includes requirements on both, the calorimeter and inner detector. The sum of pT of

all other tracks in cone ∆R = 0.2 around the electron candidate must be below 6 % of
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Figure 4.3: Real (left) and fake (right) electron efficiencies for Loose, Medium and Tight

electron candidates as a function of ET [80].

the electron candidate pT. The similar requirement is applied also for the signal from

the EM calorimeter, where sum of the transverse energies of all clusters not assigned

to the electron candidate, in the cone ∆R = 0.2 around the electron candidate, must

be below 6 % of the candidate ET [81].

In addition to the likelihood and isolation criteria, the electrons are required to

meet the following criteria:

• pT > 7 GeV

• |η| < 2.47

• electrons with 1.37< |η| < 1.52 are rejected because of the transition between

end-cap and barrel parts of the EM calorimeter

• |d0|/σ(d0) < 5

• |z0.sin(θ)| < 0.5 mm

The electron reconstruction efficiencies are measured in regions dominated by Z→ ee

and J/Ψ → ee events. In order to measure the efficiencies, a tag and probe method is

used, when one electron from the pair is tight and the other one is loose. Measuring

the probability of the loose electron to pass the tight requirement, the reconstruction

efficiency can be extracted. Comparing the electron reconstruction efficiencies in data

and Monte Carlo, multiplicative scale factor, close to one can be obtained. It is fur-

ther applied in the Monte Carlo in order to improve the agreement between data and

simulation [80].
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4.3 Muons

The muon candidates are reconstructed from two independent tracks, in the inner

detector and in the muon spectrometer (MS). A global fit is applied to both tracks in

order to extract the moun momentum. To suppress muons originating from hadronic

decays, a quality of the combined track is taken into account. If the track in the inner

detector was caused be a meson which decayed later into the muon detected by MS,

the fit of the track is expected to be poor because a part of the hadron momentum has

been carried away by a neutrino. The set of cuts on discriminating variables is used in

order to suppress the muons from hadronic decays. The complete list of the variables

can be found in Reference [82].

The Medium muons are required to fulfil criteria on q/p significance (the difference

between the q/p ratios calculated from the ID and MS divided by corresponding un-

certainty), ρ which is related to a difference in pT measured in the ID and MS and χ2

of the combined track fit. In addition, the muon candidates used in this analysis are

required meet the following [82]:

• pT > 7 GeV

• |η| < 2.5

• at least one pixel hit, at least five SCT hits

• less than three SCT or pixel holes

• at least 10% of the TRT hits originally assigned to the track included in the final

fit (only for 0.1 < |η| < 0.9)

• at least three hits in at least two MDT layers

• q/p significance less than 7

Similarly to electrons, isolation criteria are applied in order to suppress non promt

muons. The FixedCutTightTrackOnly isolation is used, requiring sum of pT of all other

tracks in cone of ∆R = min(10 GeV/pT, 0.3) to be less than 6% of the muon pT [80].

The muon reconstruction efficiencies, similarly to the electron efficiencies, are mea-

sured in Z → µµ and J/Ψ→ µµ events. The corresponding multiplicative scale factors

derived in these regions are used to correct a Monte Carlo.
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4.4 Jets

As a consequence of the quark confinement, the quarks cannot exist as free particles and

thus cannot be directly measured in a detector. Quarks create colourless bound states,

hadrons. The experimental evidence of quarks and gluons, in high energy physics, are

streams (jets) of particles, usually light hadrons. Assuming that the hadronization

process has a small impact on the initial parton fourmomentum, the fourmomentum

of the original quark or gluon can be determined measuring the jet fourmomentum.

The jet reconstruction algorithm must not be sensitive to a collinear gluon emission

(so-called infrared divergence), gluon splitting and pile-up.

Topological cell clustering

In order to reconstruct the jet fourmomentum, calorimeter cells with a signal above

a certain threshold are merged into topo-clusters. For each calorimeter cell a signal

significance σEM
cell is calculated [83].

σEM
cell =

EEM
cell

σEM
noise,cell

, (4.3)

where EEM
cell is the reconstructed energy in the cell and σEM

noise,cell is an expected noise.

The cells with ςEM
cell > 4 are used as primary seeds. The neighbouring cells with ςEM

cell > 2

are merged together with the seed. The merging algorithm is stopped once there are

no more cells with ςEM
cell > 2 to be merged to a neighbouring cluster. The topo-clusters

from the algorithm are then used in an anti-kT algorithm.

anti-kT algorithm

In high energy physics, various jet clustering algorithms are employed to build jets from

the topo-clusters. A jet clustering algorithm defines a measure of distance between two

objects and merges them together if their distance is bellow a certain threshold. The

following equation is usually used as the measure of the distance dij between i and j

objects.

dij = min(k2p
Ti, k

2p
Tj)

∆2
ij

R2
, (4.4)

where kTi is the transverse momentum of object i, ∆2
ij =

√
∆φ2 + ∆η2 is a cone

between the objects and R is a desired radius of the jet [84].
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In this analysis the anti-kT algorithm is used (p = -1) and radius of the jet is

R = 0.4.

The algorithm loops over all pairs of the objects, looking for the pair with minimal

dij. If dij < di,B the particles are merged together into a pseudo-jet (di,B is the distance

from the beam). The algorithm stops the merging process when there is no pair of

objects with dij < di,B.

Jet Vertex Tagger

In order to suppress jets not originating from the hard scattering, the Jet Vertex

Tagger (JVT) [85] is employed. There are two sources of the pile-up contributing into

the measured signal in calorimeter: in-time and out-of-time pile up. In-time pile up

refers to additional pp interactions in the same bunch crossing that triggered the event.

Out-of-time pile up refers to energy deposits in calorimeters from previous or next

bunch crossings.

The JVT is a multivariate tagger using k-Nearest Neighbour algorithm [86], com-

bining two variables, corrJV F and RpT into a single output value. The k-Nearest

Neighbour algorithm looks for 100 closest events in two dimensional corrJV F -RpT

plane, returning the ratio of signal events with respect to the all events.

corrJV F is an improved version of Jet Vertex Fraction, which is a scalar sum of pT

of the tracks associated to the jet coming from the primary vertex, divided by the pT

sum of all the tracks associated to the jet. The JV T itself is sensitive to the pile up

and its distribution for hard scattering jets depends on the number of interactions per

bunch crossing. As a consequence, the efficiency for hard scattering jets passing a cut

for JV T > JV Tmin depends on the pile up. The corrJV F , defined by Equation 4.5

fixes this problem, introducing a pile-up dependent term in its definition.

corrJV T =

∑
k p

trk,k
T (PV0)∑

k p
trk,k
T (PV0) +

∑
n≥1

∑
l p

trk,l
T (PVn)

k.nPU
trk

, (4.5)

where ptrk,k
T (PVn) is pT of the k-th track associated to the n-th vertex (n = 0 for

the primary vertex), nPU
trk is the number of tracks associated to other vertices than the

hard-scattering vertex (number of pile-up tracks) and k = 0.01.

The variable RpT is defined as the scalar sum of pT of all the tracks associated to

the jet that originate from the primary vertex, divided by the pT of the fully calibrated

jet.
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The fraction of hard-scattering jets accepted by cuts on JVF, corrJVF, RpT and

JVT as a function of pile-up is shown in Figure 4.4. The plot c) in Figure 4.4 shows

efficiency for jets originating from other pp interaction than the primary vertex of the

event (pile-up jets).

Figure 4.4: Clockwise a-d from the top-left corner: a) Hard-scattering jets efficiency at given

JVF and corrJVF cut reaching in average 90 % efficiency. b) Hard-scattering jets efficiency at

given JVF and RpT cut reaching in average 90 % efficiency. c) Hard-scattering jets efficiency

at given JVF and JVT cut reaching in average 90 % efficiency. d) Pile-up jets efficiency at

given JVF and JVT cut reaching in average 90 % efficiency for hard-scattering jets [85].

The JVT response is calibrated using Z → µµ+jets events. Requiring the angle

between the lepton pair and the jet to be higher than 2.8 and being balanced in pT, a

very pure sample of hard-scattering jets can be obtained. Comparing data with Monte
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Carlo prediction in this region, a multiplicative scale factor can be obtained [85].

The JVT > 0.59 cut, reaching 92 % efficiency for the jets from hard scattering, is

used in the analysis for the jets with pT < 60 GeV. The JVT cut is dropped for the

jets with pT > 60 GeV, since the pile-up contribution in this area is negligible.

The jets in this analysis are required to satisfy pT > 25 GeV and |η| < 2.5 require-

ments and they are built using the anti-kT algorithm with R = 0.4.

4.5 b-tagging

Presence of a b-quark in an event is often sign of an interesting physics, for example

in decays of the top quark. Although the mass of the b-quark is more than 4 GeV,

it is quite stable because of low values of off-diagonal elements of the CKM matrix

|Vcb| ≈ 0.04 and |Vub| ≈ 0.003 [2]. This makes b-hadrons being relatively stable with

mean lifetime of ≈ 10−12 s and enable them to travel ≈ 0.5 mm from the point where

they have been produced (primary vertex) to a point where they decay, forming a

secondary vertex.

Given a spatial resolution of Pixel Detector, the ATLAS is able to reconstruct

the secondary vertices from decays of b-hadrons. Combining the information about

the secondary vertex, possible tertiary vertex from a subsequent c-hadron decay and

information about transverse and longitudinal impact parameters of tracks assigned to

the jet (reconstructed by IP2D and IP3D algorithms), a multivariate discriminant can

be obtained [87].

The IP2D and IP3D algorithms [88] reconstruct a track trajectory in two dimensions

xy (IP2D) or in three dimensions (IP3D). Reconstructing the point where the track

trajectory is closest to the primary vertex, so-called impact parameter, an information

about the secondary vertex displacement can be obtained. If the point of the closest

approach of the track is in front of the primary vertex in direction of the jet, the impact

parameter is positive. In the other case the impact parameter is negative. The positive

value of the impact parameter may be a sign of a secondary vertex, while the negative

value can be a sign of a pile-up track, track from interaction with detector material or

a poor fit of the track. The IP2D algorithm is more robust against the pile-up, since it

does not take into account longitudinal position of the closest approach point, which

is typically large for pile-up tracks.

The SV (secondary vertex) algorithm [88] provides an additional set of input vari-

ables for the b-tagging. The algorithm reconstructs all vertices formed by at least two
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tracks, rejecting the vertices which are likely to originate from light hadrons, such as

kaons. The secondary vertex reconstruction efficiency depends on the jet pT, η and

type of the jet. The average efficiency reaches 70-80 % for b-jets, ≈30 % for c-jets and

≈3 % for light jets [87].

JetFitter [89] algorithm is used to reconstruct all vertices inside a jet, trying to

reconstruct also a tertiary vertex from c-hadron decay.

The b-tagger MV2c10 combines information from IP2D, IP3D, SV and JetFitter

algorithms, using a set of 21 variables defined in Reference [87]. In addition to these

variables, pT and η of the jet are included, so the b-tagger can learn correlations of input

variables with pT and η of the jet. In order to avoid the MV2C10 to get trained on

the pT and η distributions which provide certain level of b-jet vs. other jets separation

themselves, the background (non-b jets) sample is reweighted based on jet pT and η

to follow these distributions from the b-jet sample. The MV2c10 is Boosted Decision

Tree based b-tagger, trained on a background sample with 7% of c-jets and 93 % of

light jets [90].

The distributions of MV2c10 output for b- c- and ligh jets are shown in Figure 4.5.

Efficiencies for b- c- and light jets at various cut thresholds are shown in Table 4.1.

Cutting on the MV2c10 output at a certain value, a sample enriched in b-jets can be

obtained.

Figure 4.5: Distribution of MV2c10 output for b-jets (green), c-jets (red) and light jets

(black) [90]. All the distributions are normalized to unity integral.
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WP Cut value X b-jet efficiency c-jet efficiency light jet efficiency

85 % 0.1758 85 % 32 % 2.9 %

77 % 0.6459 77 % 16 % 0.77 %

70 % 0.8244 70 % 8.3 % 0.26 %

60 % 0.9349 60 % 2.9 % 0.065 %

50 % 0.9769 50 % 0.94 % 0.017 %

Table 4.1: Efficiencies for b-, c- and light jets at various MV2c10 working points. The value

of the cut on MV2c10 output reaching the desired efficiencies is shown in the second row [90].

4.6 Missing transverse energy (Emiss
T )

The ATLAS detector is designed to reconstruct all the particles in an event, except

of weakly interacting neutrinos. The neutrinos escape the detector without being

detected, carrying away a part of the energy-momentum from the event. Although the

neutrinos cannot be detected directly at ATLAS, indirect reconstruction based on the

momentum conservation is employed.

The colliding protons have only z-component of the momentum, while the transverse

momentum is zero. Because of the momentum conservation, the final state particles

must be balanced in pT. If the measured objects are not balanced in pT, it might be a

sign of a particle escaping undetected, such as a neutrino.

The missing transverse energy (momentum) is calculated as follows:

~pmiss
T = −

(
hard∑
i

~pT,i +
soft∑
i

~pT,i

)
, (4.6)

where the first, hard, term corresponds to fully calibrated objects reconstructed by

ATLAS, such as jets, leptons and photons. The other, soft, term corresponds to tracks

reconstructed from inner detector, not assigned to any of the reconstructed objects.

In order to take into account a contribution from neutral particles, leaving no signal

in the inner detector, the pT of all hard objects, except of the muons, is reconstructed

also from the calorimeter signal. The soft term, related to the tracks, is calculated only

from the tracks, and thus the soft neutral particles are not taken into account.

The missing transverse energy is reconstructed only in the xy plane. The recon-

structed missing transverse energy is characterized by its size (usually refered to as

Emiss
T ) and angle φMET [91].
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4.7 Overlap removal

In order to avoid a double counting of the same particle level object in more detector

level objects, the overlap removal procedure is applied. The overlap removal algorithm

removes step by step objects which are close to each other in the cone ∆R and thus

can originate from the same particle, such as electron candidate and jet. The overlap

removal is applied in the following steps:

• Electron candidates sharing the same track with a muon candidate are removed.

• All jets with at least one electron candidate in ∆R < 0.2 cone around them are

removed.

• If the distance between a jet and electron is ∆R < 0.4, the electron is removed.

• If a muon is in ∆R < 0.4 cone of a jet and the jet has more than 2 associated

tracks, the moun is removed.

• If the distance between a jet and muon is ∆R < 0.4, the jet is removed.



Chapter 5

Data and simulated Monte Carlo

samples

5.1 Data

During the Run II, in 2015-2018, the LHC delivered 156 fb−1 of pp collision data to

the ATLAS detector. Considering only periods when ATLAS detector was operational

and able to record the data, the ATLAS has collected 147 fb−1 of data. The collected

data from the ATLAS detector are divided into lumi blocks, based on the time of

its collection and keeping information about the operational circumstances of each

subdetector.

In some of the lumi blocks, the ATLAS magnetic system was switched off, not

allowing to measure a charge and momentum of reconstructed particles. These data

still can be used by some analyses, not requiring charge and momentum identification

of reconstruction objects. Similarly, some analyses might not need another ATLAS

subdetectors, which allows them to use the lumi blocks with these parts not being

operational. However, given the complexity of this measurement, requiring reconstruc-

tion of various objects, all the subsystems of the ATLAS detector are important for

this analysis and thus only lumi blocks with the fully operational ATLAS detector

can be used. The integrated luminosity formed only by these blocks is 139 fb−1 with

± 1.7 % uncertainty from the full Run II dataset and 36.1 fb−1 with± 2.1 % uncertainty

considering only 2015+2016 period of data taking.

The luminosity is measured by LUCID detector, placed near the beam pipe in a

forward region of the ATLAS detector. The LUCID detects particles flying close to

the beam, estimating the luminosity from amount of these particles [92].

57
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During the Run II period, the performance of the LHC in terms of the reached

luminosity had been improved significantly. The LHC started to collect the data in

2015, with 50 ns frequency of collisions. After a short period of data taking, the bunch

spacing was shortened to 25 ns, keeping this frequency for the rest of the Run II data

taking. Only data with 25 ns bunch spacing are used in this analysis.

With the increasing of the luminosity, the average number of pp interaction per

bunch crossing, pile-up, was increased as well. The higher number of collisions makes an

event reconstruction more challenging, worsening also the energy resolution of calorime-

ter and lepton reconstruction. The pile-up profile for individual years of the Run II,

together with the time dependency of the total integrated luminosity collected by the

ATLAS detector is shown in Figure 5.1.

Month in Year
Jan '15

Jul '15
Jan '16

Jul '16
Jan '17

Jul '17
Jan '18

Jul '18

-1
fb

T
ot

al
 In

te
gr

at
ed

 L
um

in
os

ity
 

0

20

40

60

80

100

120

140

160
ATLAS
Preliminary

LHC Delivered

ATLAS Recorded

Good for Physics

 = 13 TeVs

-1 fbDelivered: 156
-1 fbRecorded: 147

-1 fbPhysics: 139

2/19 calibration

0 10 20 30 40 50 60 70 80

Mean Number of Interactions per Crossing

0

100

200

300

400

500

600
/0

.1
]

-1
R

ec
or

de
d 

Lu
m

in
os

ity
 [p

b

Online, 13 TeVATLAS -1Ldt=146.9 fb∫
> = 13.4µ2015: <
> = 25.1µ2016: <
> = 37.8µ2017: <
> = 36.1µ2018: <
> = 33.7µTotal: <

2/19 calibration

Figure 5.1: The total integrated luminosity delivered to and collected by ATLAS as a function

of time (left) and pile-up profile (right) for the Run II dataset collected by ATLAS [93].

5.2 Monte Carlo

In this analysis, the collected data are compared to a simulated Monte Carlo prediction.

The Monte Carlo prediction uses random numbers in order to simulate the final state

of pp collisions, which are themselves random because of their quantum mechanic

behaviour. The Monte Carlo events are used in optimization studies, MVA trainings

and in order to get templates for the fit used to extract the tt̄Z cross section.

The generating of Monte Carlo can be split into few parts, each requiring different

approaches and algorithms:
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Parton Distribution Functions

Since protons are composite particles, the pp collisions must be modelled as collisions

of individual partons from both protons. In order to estimate initial momenta of the

partons entering the interaction, the parton distribution functions (PDFs), described

in Section 2.2.8, are used. This analysis uses Monte Carlo samples generated with the

following PDF sets: NNPDF2.3 [94], NNPDF3.0 [94], CTEQ6L1 [95] and CT10 [96].

Hard Scattering (Matrix Element) simulation

The interaction of two partons from the two colliding protons leads to a process de-

scribed by Feynman diagrams with two initial particles (partons) and set of final state

particles such as quarks, leptons, gluons and photons. The input particle momenta are

predicted from the PDFs.

A Monte Carlo generator takes into account a calculation of the matrix elements

coming from the Feynman diagrams up to a certain level of the perturbation theory, to

generate the final state particles, following the distributions predicted by the theory.

Some Monte Carlo generators uses a reweighting of the generated events in order to

model all the distributions correctly. Negative weights can also appear, typically as a

consequence of higher order corrections.

Hadronization and parton showering

The final state quarks and gluons often produce additional final state radiation (FSR)

gluons. Photons can be radiated as well, especially by charged leptons. The process of

the gluon and photon radiation is simulated at the level of matrix element, if transverse

momentum of the radiated particle is higher than a certain threshold. Inclusive cal-

culation of the final state radiation on the matrix element level would lead to infrared

divergences. If the momentum of the radiated gluon/photon is bellow the threshold

simulated at the ME level, the FSR is modelled by a parton showering algorithm.

Since quarks and gluons are colour objects and thus cannot exist as stable particles,

they form hadrons. Although no exact theory of the hadronization process is known,

there are two commonly used models: string model used by Pythia[97] and cluster

model used by Herwig [98].
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Detector response

The particles simulated in the hadronization and parton showering processes interact

with material of a detector, leaving energy deposits and signals in active parts of the

detector. This process is simulated using Geant4 [99]. This is the most CPU intensive

part of the event generating. In order to save computational sources approximate

algorithm of detector response, Atlfast-II [100], is often used for some samples which

do not require a proper detector simulation.

5.2.1 tt̄ + V samples

The associated production of the top-quark pair with at least one vector boson (Z, W

or photon) are simulated using NNPDF2.3 (tt̄γ) and NNPDF3.0 (others) sets of the

PDFs. The matrix element part is simulated by aMC@NLO [101] generator (NLO in

QCD and LO in EW). The top-quark mass is set to 172.5 GeV for all these samples.

The parton showering and hadronization is modelled using Pythia8 [97] and decays of

heavy flavour hadrons are modelled using EvtGen [102]. The A14 [103] tune of Monte

Carlo generators is used in the simulation. The off-shell contribution of Z/γ, as well as

their interference, is considered in tt̄Z samples for m`` > 5 GeV. The contribution of

samples with dilepton invariant mass bellow 5 GeV has been checked and it has been

found to be negligible. The samples are normalized according to NLO QCD + EW

cross sections.

5.2.2 Z+jets samples

The Z+jets process is simulated using Sherpa 2.2.1 [104] generator at NLO precision

up to 2 additional partons and LO up to 4 additional partons. The NNPDF3.0 [94] set

of PDFs is used. Sherpa is used also to simulate the parton showering and hadroniza-

tion. Only the samples with Z boson decaying into charged leptons (e, µ or τ) are

considered. In order to provide a sufficient number of events in all parts of the phase

space, the samples are sliced based on the value of max(HT, p
Z
T), where HT is a scalar

sum of pT of all partons in the event and pZT is Z-boson transverse momentum. The

samples are normalized to the NNLO cross section.

5.2.3 tt̄ samples

The tt̄ sample is generated using PowhegBox [105] at the matrix element level,

taking into account NLO in QCD precision. The parton showering and hadronization
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are modelled using Pythia8 [97]. The A14 [103] tune of Monte Carlo generators is

used in the simulation. The top-quark mass is set to 172.5 GeV and hdamp parameter,

handling gluon emissions, is set to 1.5 of the top-quark mass. In order to estimate a

contribution from real leptons, the sample containing only dilepton decay of the top-

quark pair is considered. The fake lepton contribution is estimated from non-all hadron

inclusive samples, containing `+jets and dilepton decays of the top-quark pair. The tt̄

samples are normalized to NNLO + NNLL cross section prediction.

The Monte Carlo tt̄ samples are used only to train a multivariate technique. In the

further steps of the analysis, a data driven (DD) technique of tt̄ background estimate

is used. The DD tt̄ estimate will be described later.

5.2.4 tWZ sample

The associated production of a single top quark with W and Z bosons is generated

using NNPDF3.0 [94] set of PDFs, matrix element is calculated by aMC@NLO [101]

at NLO in QCD precision and parton showering and hadronization is modelled by

Pythia8 [97]. The A14 [103] tune of Monte Carlo generators is used in the simula-

tion and top-quark mass is set to 172.5 GeV. The sample is normalized to the NLO

cross section, obtained from the aMC@NLO generator and shown in Table 5.1. A dia-

gram removal is employed in order to remove overlap and interference with tt̄Z and tt̄

samples. The Z boson is required to decay leptonicaly in the tWZ sample.

5.2.5 ZZ → ```` samples

The ZZ decaying into four leptons is a main background in the tetralepton channel.

The sample has been generatered using Sherpa 2.2.2 [104] for both matrix element

and parton showering and hadronization. The CT10 PDF set [96] has been used. The

sample is calculated at LO precision up to two additional partons.

In the 2` OS channel analysis, using only 2015+2016 data, the ZZ background

was modelled using Sherpa 2.1 [104] samples, at NLO precision up to one additional

parton and LO up to three additional partons. The CT10 PDF set [96] has been used.

5.2.6 Other samples

A contribution from other processes is very small in both 2` and 4` channels. The

summary of all the samples with corresponding cross sections and used set of PDFs

and generators can be found in Table 5.1
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Sample ME Generator PDF Shower Normalisation Cross section [pb]

tt̄Z(Z → ``) aMC@NLO NNPDF3.0 Pythia8 NLO 0.1237

tt̄Z(→ qq) aMC@NLO NNPDF3.0 Pythia8 NLO 0.172039

tt̄Z(→ νν) aMC@NLO NNPDF3.0 Pythia8 NLO 0.585758

tt̄W aMC@NLO NNPDF3.0 Pythia8 NLO 0.6008

tZ non-allhad MadGraph CTEQ6L1 Pythia6 LO 0.240

tWZ aMC@NLO NNPDF3.0 Pythia8 NLO 0.0156

```ν Sherpa 2.1 CT10 Sherpa NLO 11.9

```` Sherpa 2.1 CT10 Sherpa NLO 11.5

``νν Sherpa 2.1 CT10 Sherpa NLO 12.8

gg → ``νν Sherpa CT10 Sherpa NLO 0.78

tt̄ Powheg NNPDF3.0 Pythia8 NLO 831.76

4t MadGraph NNPDF2.3 Pythia8 LO 0.0092

3t MadGraph NNPDF2.3 Pythia8 LO 0.00164

tt̄WW MadGraph NNPDF3.0 Pythia8 NLO 0.0099

tt̄H aMC@NLO NNPDF3.0 Pythia8 NLO 0.5065

tt̄γ aMC@NLO NNPDF2.3 Pythia8 NLO 2.982

V H EvtGen NNPDF2.3 Pythia8 LO 2.2496

gg → H(→ 4`) Powheg CTEQ6L1 Pythia 8 NNLO+NNLL 0.0081

Z + jets Sherpa 2.2.1 NNPDF3.0 NNLO 2107.0

W + jets Sherpa 2.2.1 NNPDF3.0 NNLO 20080.0

Single top t-channel Powheg CT10 Pythia6 LO 70.428

Single top Wt Powheg + EvtGen CT10 Pythia6 LO 71.7

Single top s-channel Powheg + EvtGen CT10 Pythia6 LO 3.35

Triboson Sherpa 2.1 CT10 Sherpa LO 0.0166

Table 5.1: Summary of the Monte Carlo samples used in the 2` OS channel analysis. In the

4` channel analysis, Sherpa 2.2.2 is used to model the diboson samples (ZZ). Other samples

are produced using the same generators in both 2` and 4` channels.
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5.3 Estimation of a fake lepton background

The fake lepton background plays an important role in the 3` and 4` channel analysis,

while its fraction is very small in the 2` channel. The fake lepton background in the 2`

channel analysis is estimated from Monte Carlo and ± 50 % normalization uncertainty

is assigned to it.

In the 4` channel, the fake lepton background is more significant and more sophis-

ticated approach is necessary. Two methods of the fake lepton background estimate

were tested: fully data driven Matrix Method (MM) and semi data driven Fake Factor

method (FF). The methods provide consistent results and show a reasonable data/MC

agreement in control regions. The Matrix Method, used also in the 3` channel, has

been chosen as the nominal method of fake lepton estimate in 4` analysis with full

Run II dataset and FF method is used to estimate a systematic uncertainty of the fake

lepton contribution.

5.3.1 Matrix Method

The Matrix method is a fully data driven method for the fake lepton estimate. It uses

events with one loose lepton to estimate the fake lepton contribution to regions with

tight leptons only. The difference between the loose and tight leptons is usually only

in an isolation requirement. While the tight lepton definition is consistent with the

leptons used in the analysis, no isolation requirement is applied on the loose leptons.

In order to define a probability for a loose lepton to pass a tight selection, the

efficiencies r and f are introduced. The real lepton efficiency, r, is the probability for

a real loose lepton to pass the tight selection. The fake lepton efficiency, f , is the

probability for a fake loose lepton to pass the tight selection. The number of loose and

tight leptons as functions of total number of fake and real loose leptons can be written

as:

Nloose = N real
loose +N fake

loose (5.1)

Ntight = r.N real
loose + f.N fake

loose , (5.2)

where real and fake lepton efficiencies are parametrized in a set of variables char-

acterizing either the loose lepton or the whole event. In the case of this analysis, the

efficiencies are parametrized in η and pT of the loose lepton. The real and fake lepton

efficiencies for electrons and muons are taken into account as independent functions.
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The real lepton efficiencies are determined from Z → `` Monte Carlo simulation,

measuring the ratio of event yields for TT (tight-tight) and TL (tight-loose) events

from the events with exactly two leptons, both truth matched to a real promt lepton

at particle level.

The fake lepton efficiencies are measured in dilepton same-sign control regions in

data. The promt lepton background estimated from Monte Carlo is subtracted from

the data. The following fake lepton control regions have been used:

• Electron control region: exactly one muon and exactly one electron, same-sign of

the lepton charges, exactly one b-jet and no other jet

• Exactly two muons, no electron, same-sign of the lepton charges, exactly one b-jet

and no other jet

The efficiencies are measured as functions of η and pT, using the binning summarized

in Table 5.2

Bin ranges pT [GeV] |η|

Muons [7, 12, 20, 35, 50, ∞] [0, 0.5, 1, 1.5, 2, 2.5]

Electrons [7, 12, 20, 35, 50, ∞] [0, 0.7, 1.37, 1.52, 2, 2.47]

Table 5.2: pT and |η| bin ranges chosen for the fake and real lepton efficiency measurements.

Considering Eq. 5.1 and Eq. 5.2, the fake lepton contribution in tight regions can

be estimated as follows:

N fake
tight =

f

r − f
(rNloose −Ntight) (5.3)

5.3.2 Fake Factor method

The Fake Factor method is a semi data driven method of the fake lepton estimate.

It uses scale factors derived from data to correct a prediction of Monte Carlo fakes.

The basic idea of the FF method is that the fake lepton contribution is split into

four components: fake electrons and fake muons and each of them is further split into

leptons from decay of heavy hadrons and leptons from other sources. The FF method

is based on an assumption that the shapes of the contributions are well modelled in

Monte Carlo and only their normalizations have to be corrected. A separate scale
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factor is assigned to each of the four types of the fake leptons and the Monte Carlo

prediction is reweighted according to the corresponding scale factor.

In order to extract the fake factors from data, four control regions are defined, each

dominated by different type of the fake leptons. The control regions are designed to

target dileptonically decaying Z+jets or tt̄ events with one additional fake lepton. The

control region definitions are shown in Table 5.3.

Z+jets CR tt̄→ `` CR

Leptons = 3 = 3

Leptons one Z-like pair no OSSF pair, sum of charges ±1

W transverse mass < 50 GeV -

Emiss
T < 50 GeV -

p1jet
T - > 30 GeV

Njets ≥2 ≥2

Table 5.3: Definitions of fake control regions for deriving the fake factors. ”OSSF” stands

for opposite sign, same flavour. Both Z+jets and tt̄ are further split into electron and muon

control regions based on the type of the fake lepton candidate. In Z+jets CR, the lepton not

belonging to the Z-like pair (OSSF, |M``−MZ | < 10 GeV) is considered to be the fake lepton.

For tt̄→ `` CR, the lepton with the lowest pT from the same-sign lepton pair is considered to

be the fake lepton. The W transverse mass stands for the invariant mass built from missing

transverse energy and transverse component of the fake lepton energy-momentum. Cuts on

the transverse mass and missing transverse energy are applied in order to reduce the WZ

background.

Since the number of fake muons originating from other sources was not high enough

to enable an estimate of the corresponding scale factor, its value was set to 1.00 and

50% uncertainty was assigned to it. Fitting the event yields in the four control regions,

the following values of the scale factors, for fake electrons and fake muons originating

from heavy flavour decays and from the other sources, have been obtained. The quoted

uncertainties are statistical only.

µeheavy = 0.62± 0.15 (5.4)

µeother = 1.84± 0.29 (5.5)

µµheavy = 1.20± 0.09 (5.6)
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µµother = 1.00± 0.50 (5.7)



Chapter 6

Systematic uncertainties

6.1 Experimental uncertainties

6.1.1 Luminosity

The uncertainty on the luminosity is estimated from a measurement performed by

LUCID detector [92].

The systematic uncertainty on luminosity for years 2015 and 2016 of data taking

was found to be 2.1 %. The uncertainty on luminosity is in the 2` channel applied to

all processes except for the tt̄, Z+1HF and Z+2HF backgrounds. The tt̄ background

is data-driven and thus does not suffer from the uncertainty on luminosity. Normal-

izations of Z+1 HF and Z+2 HF backgrounds are described by free parameters of the

fit. In order to improve the stability of the fit, it is not applied to these backgrounds,

since the luminosity uncertainty has only normalization (without any shape) effect.

Application of a normalization-only uncertainty on the Z+HF background would have

had no impact on the fitted mean value of the tt̄Z cross section and its uncertainty.

The full Run II dataset is used in the 4` channel measurement. The systematic

uncertainty on the luminosity from the full Run II was found to be 1.7 %. It was

applied to all Monte Carlo samples.

6.1.2 Pile-up

Monte Carlo is often generated before the pile-up profile of data is precisely known.

In order to make the pile-up profiles in data and Monte Carlo consistent, the Monte

Carlo is reweighted based on the measured pile-up profile in the data. The number

of pp interactions during a bunch crossing has an impact on pT resolution of the jets.

The uncertainty on jet pT measurement originating from the different pile-up profile in

67
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data and Monte Carlo is taken into account using an alternative pile-up reweighting

with a different pile-up profile, given by our limited knowladge of the pile-up [106].

The pile-up reweighting systematics is applied to all Monte Carlo samples in this

analysis.

6.1.3 Systematic uncertainties related to leptons

When reconstructing the leptons from data and Monte Carlo, various selections have

to be made. The leptons are required to fulfil identification and isolation criteria, and

in addition, one of the leptons in an event is required to fire a trigger. The leptons in

this analysis are also required to pass pT and η cuts.

Efficiencies of all of these selections are known only within an uncertainty which

has to be taken into account. In addition, uncertainties on lepton energy resolution

and scale have to be taken into account.

Lepton efficiencies

The lepton identification, isolation and trigger efficiencies are measured in Z → `` and

J/Ψ→ `` dominated regions. The tag and probe method is employed to measure the

efficiencies and corresponding uncertainties. Events with exactly two leptons with an

invariant mass close to the mass of Z or J/Ψ are selected. These events are well domi-

nated by real leptons originating from Z and J/Ψ. In order to estimate a background,

which is at a level of 0.1 %, a data driven approach is used [82, 80].

One of the leptons, tag, is required to meet a tight selection. The selection criteria on

the other, probe, lepton are relaxed. Measuring efficiencies for the probe lepton to pass

the tight selection, corresponding scale factors and their uncertainties are obtained [80,

82].

The systematic uncertainties on lepton efficiencies are applied to all Monte Carlo

samples in this analysis.

Lepton energy scale and resolution

A different detector response between data and Monte Carlo on lepton energy re-

construction have to be taken into account. Lepton energy scale and resolution are

important in order to estimate the fraction of events passing cuts on pT of individual

leptons and invariant mass of lepton pairs used in the analysis. The lepton energy scale

and resolution have also significant impact on shapes of MVA input variables.
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In order to obtain correction factors improving the data vs. Monte Carlo agreement,

in the lepton energy scale and resolution, and their uncertainties, Z → `` and J/Ψ→ ``

dominated regions are used. Fitting the invariant mass distributions of e+e− and µ+µ−

lepton pairs, the correction factors and their uncertainties are obtained. The correction

factor corresponding to lepton energy scale is applied to data to improve the agreement

between real and measured lepton energy. The correction corresponding to the lepton

energy resolution is applied to Monte Carlo in order to match the resolution observed

in data events [82, 107]. The lepton uncertainties are treated separately for each lepton

in an event.

6.1.4 Systematic uncertainties related to jets

Jet Vertex Tagger

Systematic uncertainties are applied to the Jet Vertex Tagger efficiency, described

in Section 4.4. The three sources of systematic uncertainties have been considered:

a residual contamination of pile-up jets after the pile-up suppression, differences in

Monte Carlo predictions obtained from different Monte Carlo generators and statis-

tical uncertainty of the JVT efficiency measurement [85]. The three sources of the

systematic uncertainties are merged into one systematic variation described by one

nuisance parameter in a fit.

b-tagging

In order to improve data vs. Monte Carlo agreement in efficiency for jets to pass

a cut on MV2c10 b-tagger output at a given efficiency working point, multiplicative

scale factors are used. The scale factors for jets originating from b-hadron decays are

derived from regions dominated by dilepton tt̄. The scale factors for jets originating

from c-hadron decays are derived from regions dominated by lepton+jets decays of the

top-quark pairs. The hadronically decaying W bosons produce c quarks in one half of

the cases. Reconstructing an event kinematics, pairing jets to the b quarks and to the

quarks from the W -boson decay, a sample enriched in c-jets can be obtained. The light

jet efficiencies are extracted from multijet events. The effieciencies are parametrized in

pT and η of the jets [90].

The systematic uncertainties on the b-tagging efficiencies are taken into account

as a set of nuisance parameters, corresponding to different sources of systematics,

such as limited number of events in Monte Carlo, limited spatial resolution in track
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reconstruction e.t.c. The systematic uncertainty on the b-jet efficiency is described by

7 parameters, uncertainty related to the c-jet efficiency is described by 4 parameters

and a set of 12 parameters are assigned to the light jet efficiency.

Jet energy scale

In order to ensure the same response on the jet pT (or energy) between data and

simulation, a careful calibration is needed. Several multiplicative scale factors for jet

pT are derived from a simulation. In the first step, a pile-up contribution is subtracted,

taking into account the average pT density of the pile-up particles and area of the

jet. In the next step, a jet pT response is calibrated as a function of pT and η, using

simulated events.

After applying correction scale factors for η and pT of the jet, the dependency on

few more variables is taken into account, multiplying the jet pT by additional scale

factors depending on fraction of energy measured in the first layer of the hadronic

calorimeter and in the last layer of the electromagnetic calorimeter, number of tracks

with pT > 1 GeV, weighted transverse distance in η-ϕ plane between the tracks and

the jet axis and finally a number of muon track segments associated with the jet.

After applying all already mentioned corrections derived from the simulation, in

situ calibration methods are used to mitigate differences between pT response in Monte

Carlo and data. Events balanced in pT, either dijet events with high pT jets or Z+jets

and γ+jets events are used to calibrate the energy scale of the jets.

The uncertainty on the jet energy scale has been found to be less than 1 % for

100 GeV < pT < 500 GeV in |η| < 1.2 region and about 4.5 % for the jets in this η

range and pT = 20 GeV.

The uncertainties on the calibration coming from Monte Carlo simulation, sample

statistics, energy scale of other objects (photons and leptons) and jet flavour compo-

sition are taken into account varying energy of individual jets in an event. In order

to deal with the jet energy scale uncertainties, a set of 20 nuisance parameters is used

in the fit, each related to a specific variation of JES uncertainty originating from the

already mentioned sources [108].

Jet energy resolution

The jet energy resolution can be parametrized as a function of the jet pT as follows:
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σ(pT)

pT

=
N

pT

⊕ S
√
pT

⊕ C, (6.1)

where N is a constant related to a noise effect (either electronics or pile-up), S is

related to statistical fluctuations of energy losses in the active part of the calorimeter

and C is a constant term [109].

Worsening the jet energy resolution in Monte Carlo, by additional jet energy smear-

ing, an alternative sample for JER systematics is obtained, having a worse resolution

compared to the nominal. A sample with better (more precise) jet energy resolution

cannot be obtained from the Monte Carlo. Symmetrizing the systematics variation of

JER in the fit, the two sided systematic uncertainty is obtained.

6.1.5 Systematic uncertainties related to missing transverse energy

The missing transverse energy is calculated from so-called hard term corresponding to

reconstructed objects in an event and soft term, corresponding to contribution of tracks

not assigned to any objects, as shown in Eq. 4.6. The Emiss
T is therefore affected by the

uncertainty in measurement of these tracks/objects. While the uncertainties related

to the objects are already included in the systematic uncertainties already mentioned

in this section, the soft term uncertainty has to be taken into account separately. The

uncertainties on soft-term component are derived in Z → ee dominated regions, where

is no physical missing transverse energy.

6.2 Theoretical uncertainties

Except of the already mentioned experimental uncertainties, theoretical uncertainties

related to a cross-section uncertainty, uncertainties related to choice of parton distribu-

tion functions and uncertainties related to a modelling of matrix element and parton

showering have to be taken into account. Various scale uncertainties (factorization,

renormalization, resummation and parton matching scales) have to be taken into ac-

count as well.

6.2.1 Scale choice

Factorization and renormalization scales

When calculating a cross section of a given process, two types of divergences appear in

the perturbation theory. The ultraviolet divergences (UV), related to a large transferred
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momentum in loops of Feynman diagrams and infrared divergences (IR) related to

a radiation of a massless particle with low momentum or collinear massless particle

(photon, gluon). In order to avoid the divergences, artificial scales µR (renormalization

scale) and µF (factorization scale) are introduced. The renormalization scale defines

size of the strong coupling constant and should correspond to characteristic transferred

momentum of the process in question. The factorization scale is a typical scale for a

given process, at which the proton structure is probed, limiting soft gluon emissions

by the initial state partons (including these into the parton distribution functions).

These scales are arbitrary free parameters and if all the terms of the perturbation

series were summed, the obtained result would not depend on their choice. However, if

the calculation is performed only up to a certain level of precision (LO, NLO, NNLO

...), there is a dependency of the theory prediction on the scale choice.

The nominal choice of the µR and µF in the simulation is set to one half of the

scalar sum of transverse momentum of all final state partons.

Parton matching scale (CKKW)

In the process of parton showering and hadronization, a radiation of gluons and pho-

tons by the final state partons have to be taken into account. In order to avoid a

double counting between the matrix element and parton showering, the CKKW scale

is introduced. The gluons from the final state radiation above the CKKW scale are

simulated at the matrix element calculation and the softer emissions are handled during

the parton showering and hadronization.

The nominal choice of the CKKW scale for Sherpa 2.2.1 samples is 20 GeV.

Gluon resummation scale (QSF)

In order to sum over soft and collinear gluon radiation corrections from final state

partons, at higher orders of perturbation theory, the QSF scale is introduced. The

related systematic uncertainty is evaluated varying the scale, usually by a factor of 2

and 0.5.

6.2.2 Uncertainties related to tt̄Z

Various theoretical uncertainties related to the tt̄Z modelling have been taken into

account. Each of them is described by one nuisance parameter.

• Renormalization scale variations by a factor of 2 and 0.5.
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• Factorization scale variations by a factor of 2 and 0.5.

• Variations of both factorization and renormalization scales consistently by a factor

of 2 and 0.5.

• Variation of weights related to parton distribution functions. The NNPDF3.0 [94]

pdf set has been used as a nominal. NNPDF3.0 provides a set of 100 weights,

each of them obtained from a fit to data. The nominal weight is obtained as the

arithmetic average of the 100 weights and its uncertainty is considered as the pdf

systematics uncertainty.

• Variation of Var3 parameter of A14 tune, handling the gluon radiation during the

parton showering and hadronization [103].

• Choice of the matrix element event generator by replacing the nominal aMC@NLO [101]

sample by an alternative Sherpa 2.2.1 sample [104].

Only shape and acceptance effects are taken into account in the theoretical uncer-

tainties related to the tt̄Z. The effect of systematic uncertainties on the total cross

section has been dropped, since the cross section and its uncertainty are extracted from

the fit.

6.2.3 Uncertainties related to the Z+jets background

The following scale variations have been taken into account for Z+jets samples, each

of them is described by one nuisance parameter:

• Renormalization scale variations by a factor of 2 and 0.5.

• Factorization scale variations by a factor of 2 and 0.5.

• Variations of both factorization and renormalization scales consistently by a factor

of 2 and 0.5.

• Variation of CKKW scale from nominal 20 GeV, down to 15 GeV and up to

30 GeV.

• Variation of QSF scale by a factor of 2 and 0.5.

The 10 % cross section uncertainty on the Z+light component has been considered.

The normalizations of Z+HF components are set as free parameters of the fit (will be
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discussed later). The normalization effects of scale uncertainties have been dropped

for Z+jets in order to avoid correlations with Z+HF normalizations.

The systematic uncertainties for the Z+jets matrix element and parton showering

have not been considered, since the difference between the alternative and nominal

samples were not statistically significant. A good agreement between data and sim-

ulation have been observed in Z+jets control regions (regions with low MVA output,

described later in Section 8), suggesting reasonable Z+jets modelling by the nominal

Sherpa samples.

6.2.4 Uncertainties related to tWZ

The tWZ is an important background in the 4` channel, while its contribution to the 2`

channel is very small. In the 2` channel it was merged with other small backgrounds

and uncertainty ± 50 % was assigned to its normalization. In the 4` channel, the

following theoretical uncertainties related to the tWZ are considered, each of them is

described by one nuisance parameter:

• Renormalization scale variations by a factor of 2 and 0.5.

• Factorization scale variations by a factor of 2 and 0.5.

• Variations of both factorization and renormalization scales consistently by a factor

of 2 and 0.5.

• Variation of weights related to parton distribution functions. Their estimation is

similar to the tt̄Z case.

6.2.5 Uncertainties related to ZZ background

The ZZ is an important background in the 4` channel. In the 2` channel it was merged

with other diboson samples and uncertainty ± 50 % was assigned to its normalization.

In the 4` channel, the following theoretical uncertainties related to the tWZ are con-

sidered, each of them is described by one nuisance parameter:

• ± 50 % normalization uncertainty has been assigned to the cross section of ZZ

in association with at least one b-jet.

• Variation of weights related to parton distribution functions. Their estimation is

similar to the tt̄Z case.
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6.2.6 Uncertainties related to the fake lepton background in the 4` channel

The Matrix Method described in Sec. 5.3.1 is used as the nominal method for the fake

lepton estimate in the 4` channel. The Fake Factor method described in Sec. 5.3.2 is

used as an alternative approach and the difference between the two predictions is taken

into account as the systematic uncertainty of the fake lepton background estimate.

6.2.7 Uncertainties related to less significant backgrounds

The contribution of other processes are significantly smaller than the contributions from

Z+jets, tt̄ and tt̄Z. The uncertainties related to the cross section of these processes

have been taken into account.

The uncertainty on the tt̄H cross section has been set to +5.8 %
−9.2 % (scale) and ± 3.6 %

(pdf) [110].

The uncertainty on the tZ cross section has been set to ± 30 %.

The ± 50 % uncertainty has been assigned to cross section of the diboson back-

ground in the 2` channel. In the 4` channel the corresponding diboson uncertainties,

described in Sec. 6.2.6, are applied.

All the other processes have been merged together and ± 50 % uncertainty has

been assigned to their normalization. This include also fake lepton contribution in the

2` channel.
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Analysis Methods

7.1 Multivariate analysis

7.1.1 Motivation

In high energy physics, it is often necessary to design a selection which suppresses a

background while the number of signal events is kept reasonably high. There are two,

different, requirements on the selection. The first one is to make the selection criteria

tight in order to reduce the background rate and the other one is to make them loose in

order to keep a reasonable number of signal events passing the selection. The problem

rises an obvious question: How tight selection should be used? The answer strongly

depends on specifications of the analysis and whether it is dominated by a systematic

uncertainty or not.

A good choice of selection criteria can significantly improve a statistical sensitivity

of an analysis. The analyser has to understand the composition of the background in

his analysis and differences with respect to the desired signal, so he can design selection

criteria providing a good signal to background separation. In some cases simple cuts

can be applied in order to get a signal region with a reasonably high number of events

and signal purity. When the simple cuts cannot help that much, it is necessary to use

more sophisticated approach, a multivariate analysis.

For a simplicity let’s assume an analysis measuring the cross section of Z+bb̄ using

events with the leptonically decaying Z boson. The typical signature of the final state

are two leptons of the opposite sign and same flavour and two b-jets. The obvious

Standard Model background with this signature is the dileptonically decaying top-

quark pair. Both processes provide the same particles in the final state, except of

neutrinos which cannot be measured directly. Both have two b-jets and the opposite
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sign lepton pair in the final state. In one half of the cases, the flavour of the leptons

from tt̄ is the same (τ -s are not assumed). However, there are some differences in the

kinematics. The distribution of the dilepton invariant mass has a peak around MZ =

91.2 GeV for Z+bb̄ events, while in the case of top-quark background the distribution

is significantly wider and without any clear peak. This fact can be used in order to

define the signal region with a low tt̄ background contamination.

Requirement on the dilepton invariant mass to be inside the Z-mass window, which

means |M``−MZ |< x, can significantly suppress the tt̄ background rate. The choice of x

depends on a desired signal purity, let’s use x = 10 GeV in this case. The distributions

of dilepton invariant mass for signal (red) and background (blue) together with cut

values (black dashed lines) are shown in Figure 7.1

Figure 7.1: Distribution of dilepton invariant mass for Z+bb̄ events (red) and tt̄ events (blue).

The black dashed lines show cuts defining the Z-mass window. Only the events with M`` in

the Z-mass window are accepted.

Although the tt̄ rate after the cut is significantly lower, still it is not negligible.

The question is: What else can be done in order to suppress the tt̄ even more? There

are more options, one of them is to cut on the missing transverse energy (MET). In

the case of the Z+bb̄ there is no physical MET (no neutrinos), while in the case of tt̄

events there are two neutrinos in the final state which can be measured as the MET in
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the detector. Since the MET resolution of the detector is not ideal, a non-zero value

of MET can be expected also for Z+bb̄. The maximal requirement on the MET can

be used in order to suppress the tt̄ background and get more pure Z+bb̄ signal region.

Looking at the MET distributions in Figure 7.2, the MET < 50 GeV cut can be used

in order to cut off a significant part of the background while only a small part of signal

events is rejected.

Figure 7.2: Distribution of missing transverse energy for Z+bb̄ events (red) and tt̄ events

(blue). The black dashed lines show cuts defining the MET < 50 GeV region.

Let’s look at these cuts in two dimensions. The requirements |M``−MZ | < 10 GeV

and MET < 50 GeV are shown on the top of Figure 7.3. The Z+bb̄ events are shown

in red, the tt̄ are shown in blue. It can be seen that the cuts target the region with

high signal purity. However, the rectangular shape of the region is not the best choice.

In the top right corners, around the points M`` = 81.2 (or 101.2) GeV and MET =

50 GeV, the signal purity is lower than in the middle of the upper edge (around the

point MET = 50 GeV and M`` = 91.2 GeV). Using some kind of a curved border of

the region, the signal purity could be increased while the expected statistics would be

kept the same. A suggestion of a such region can be seen on the bottom of Figure 7.3.

The obvious questions arises: Is the proposed border the best one, if we want to keep

the number of events the same, or could it be improved even more? Can we use some
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algorithm to build such borders? Would it be possible to build a single variable from

the set of input variables (in this case MET and M``) and to define the signal region

cutting on this variable? The answer is: ”Use Multivariate Analysis!”.

7.1.2 Introduction

There are many kinds of Multivariate Analyses (MVA). The MVA in general is an

algorithm that is able to combine a set of input variables into one output variable

which is related to the probability for the given event to be a signal.1 The higher the

output is, the higher is the probability that the event belongs to the signal. In other

words, the output from the MVA is a measure of the event to look like a signal event.

The obvious and the best choice of such algorithm is to use directly the probability

of the event to be the signal. If differential cross-sections of signal and background

processes as functions of input variables ~x are know, the following equation can be

used to get the probability.

P (~x) =
σsignal(~x)

σsignal(~x) + σbackground(~x)
, (7.1)

The problem is, that the differential cross section is often unknown and only a

Monte Carlo simulation with a limited statistics is available. If the number of available

signal and background events is high and number of input variables is low, one can

approximate the differential cross-section by discrete n-dimensional histogram with a

finite binning, where n is the number of the input variables. The choice of the binning

depends on the available statistics and it is limited by statistical fluctuations in the

individual bins. The average number of events in a bin decreases exponentially with

the number of input variables. As a consequence, this approach can be hardly used for

more than two or three input variables.

If the low number of input variables is not enough, it is necessary to use a more

sophisticated algorithm, which is able to estimate the event probability to be a signal

with the limited statistics while a higher number of the input variables is considered.

Two kinds of such algorithms, Artificial Neural Network (NN) and Boosted Decision

1In general, the output does not have to be only one number. In the problem of multiclassification, the

MVA can have more outputs. Each of them corresponds to a different output class. For example if we had one

signal and two background processes, we could use an MVA with 3 outputs. The first one would be related to

the probability to be the signal, the second one would be related to the probability to be the first background

and the third output would be related to the other background process. In this analysis we do not use this

kind of MVAs.
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Figure 7.3: Z+bb̄ (red) and tt̄ events (blue) showed in 2D scatter plot in m`` vs. MET plane.

Two approaches to signal regions definitions are shown: simple cuts (top) and cutting on

output from Neural Network (bottom).

Tree (BDT), will be discussed later in this chapter. Even if the MVA output is closely

related to the probability to be a signal, usually it is not directly the probability.
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When using the MVA, usually two phases are needed: training and application

phase. During the training phase, a known set of events (usually a Monte Carlo

simulation of the signal and background) is provided to the MVA. Information about

the real type (class) of the event is provided, so the MVA can learn on the sample

how the signal and background events look like. The technical details of the training

strongly depend on a type of the MVA and will be discussed later for NN and BDT.

Once the MVA is trained, it is ready to classify an unknown set of events, which is

called the application phase.

Overtraining and choice of the input variables

In the ideal case, if the statistics of the training set of events is sufficiently high, the

MVA learns only real, physical, differences between signal and background samples

and it is not affected by statistical fluctuations. In practice we always have a limited

statistics and therefore there are not only real, physical, differences between the signal

and background sets, but also random differences caused by the statistical fluctuations,

which are characteristic for the given set of events. The effect of MVA being trained

to the statistical fluctuations of the training sample is called the overtraining.

Because of the overtraining, the MVA performance on the training set is usually

better compared to a statistically independent sample, resulting in a better signal

vs. background separation in training dataset. If the difference in the MVA response

between the training and the statistically independent sample is large, the MVA is

considered to be overtrained. In order to avoid a possible bias caused by the over-

training, the training set of the events cannot be used in the analysis itself to estimate

the expected MVA output distribution. For this purpose, a statistically independent

sample has to be used.

There are a few ways how to avoid, or at least to reduce, the overtraining. One of

them is to increase the statistics in the training set. This is often impossible because

of limited computational resources or/and a limited storage space. Another way of

the overtraining reduction is to decrease the number of input variables. The lower

the number of input variables is, the smaller is the space that has to be exploited

by the MVA. A higher number of input variables usually leads to a higher signal to

background separation of the MVA output, but on the other hand, the overtraining

is also higher. Choice of the number of MVA input variables is usually a trade off

between a reasonable signal to background separation and low overtraining.

There is also another, important, reason to keep the number of MVA input variables
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low, even if a large statistics is available and thus the overtraining is small. When

training on the Monte Carlo events, one has to be sure that the simulation describes

the data well. If there is a mismodelling, it will be propagated into the expected shape

of the MVA output distribution estimated from the Monte Carlo. This would bring

a bias into the analysis. The first thing to check is a modelling of individual input

variables. In other words, the distribution functions of the input variables pi(xi) have

to be modelled properly. This can be easily checked from control plots. However, it is

necessary to keep in mind that this is not the end of the story. Even if the modelling of

the individual variables is proper, they are not independent, it means p(~x) 6= Πn
i=1pi(xi),

where xi are components of the vector ~x and Πn
i=1 stands for product over all pi(xi)

terms. Also the n-dimensional distribution function has to be well modelled in the MC.

Since the statistics is limited, there is not any way how to verify the p(~x) modelling.

In general, adding more input variables increases a risk of p(~x) being mismodelled and

therefore it should be avoided if possible.

When the number of input variables is going to be reduced, it is necessary to decide

which variables should be kept and which should be removed. There are few algorithms

for this task. The simplest of them is to look at the distributions of individual variables

and keep those with the most different shapes between the signal and background. As

a measure of the differentness, the separation power is usually used, which is defined

by:

S =
1

2
·
∫

(yi(xi)
sig − yi(xi)bkg)2

yi(xi)sig + yi(xi)bkg
dx, (7.2)

where yi(xi)
sig and yi(xi)

bkg are probability density functions of the variable xi for

signal and background, normalized to unity. The separation power is equal to zero for

identical distributions and equal to one for different non-overlaping distributions. If the

analytical functions yi(xi)
sig and yi(xi)

bkg are not known, and only a MC simulation

is available, a discrete form of Eq. 7.2 has to be used, using histograms instead of

analytical functions yi(xi). The discrete form of the Eq. 7.2 is:

S =
1

2
·
bins∑
i

(N sig
i −N

bkg
i )2

N sig
i +N bkg

i

, (7.3)

where the sum runs over all bins and N stands for the number of events in the bin.

When choosing the set of input variables, they can be ordered by the separation

power and their subset from the top of the ranking can be used. This approach has

an important disadvantage, it does not take into account correlations between the

variables, which can be often important.
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Let’s consider set of n input variables ~x = (x1, ..., xn), where their ordering is given

by their separation decreasingly. Let’s assume that x3 = (x1 + x2). If, for example,

only first 3 variables are used, one of them is redundant and does not bring any new

information. In this case the correlation between the variables would have an negative

effect on the MVA performance. It would be better to remove the third variable and

to take the fourth instead.

To give an example of positive effect of correlation, let’s assume again the set of

input variables ~x = (x1, ..., xn) ordered by their separation. Let’s assume that the

variable xn is uniformly distributed in the interval [0,1] in both signal and background.

Since the distributions in background and signal are the same, the separation is equal

to zero. Such a variable seems to be useless at the first glance, but it does not have to

be. Let’s assume variable xn−1, which is defined in the following way: xn−1 = xn (for

the signal), xn−1 = 1 - xn (for the background). Since xn has uniform distribution in

[0,1], xn−1 is also uniformly distributed in this interval for both signal and background.

Its separation power is therefore zero. Although the individual separation power of

both variables is zero, their combination provides the ideal separation, since there is

a clear difference in the relation between them in the signal and background. In this

case the relation can be simplified to the correlation, which is +100% in signal and

-100% in background. In general, an MVA is able to search for even more complicated

relations of input variables.

The ideal way of variable choice would be to train with all possible combinations of

input variables, check the separation power of the MVA output and then take the set of

input variables providing the highest separation power, or another measurable quantity,

for example expected sensitivity of the fit, area under the ROC curve2. Although this

approach is the best option, it would be very CPU intensive, since it would require to

repeat the training and application phase at least n! times. Therefore some approximate

variable ranking algorithms have been developed. They usually depend on the type of

the MVA, so they will be discussed later in the NN and BDT chapters.

2ROC (receiver operating characteristic) curve is a dependency of the signal efficiency on the background

rejection (fraction of rejected background events). For a variable without any separation, the ROC curve is

the straight line between points [0,1] and [1,0], let’s call this line the diagonal. The ROC curve of any MVA

with a discrimination power will be above the diagonal. The larger is the area bellow the ROC cure, the

better separation is provided by the MVA output. The difference between areas under ROC curves built from

training and testing sets can be used as a measure of the overtraining.
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Input variables transformation

Various training algorithms expect values of the input variables to be in a specific

range. If the input variables are far from this range, the training algorithm may

not work, or needs significantly more time to converge. In order to overcome such

problems, input variables transformations are used. The simplest of them is a variable

normalization. The variable is transformed according to a linear function in order to

get a variable from the specific range, for example the mean value is subtracted and the

result is divided by RMS of the initial distribution. At the output of this procedure,

the variable with mean value 0 and RMS 1 is obtained. If the training algorithm works

better with certain distribution of input variable (for example Gaussian, or uniform),

another transformation follows in order to get variable with the desired distribution.

Another, more sophisticated, input variable transformation is a decorrelation. The

input variables covariance matrix C is calculated. Diagonalizing the covariance matrix,

the matrix D = STCS is calculated. The matrix (S
√
DST )−1 is then used for the

variable decorrelation and normalization to the unity variance [86]:

~x→ (S
√
DST )−1~x, (7.4)

where elements of the matrix
√
D are square roots of elements of matrix D.

Cross training

As discussed before, the training set of events cannot be used in the rest of the analysis,

because the overtraining could bring a bias to the analysis. One possibility of avoiding

the bias is to use one half of MC events only for the MVA training and use the other

half in the rest of the analysis. This would mean to loose one half of the Monte Carlo

events, which would lead to a higher MC statistical uncertainty.

In order to be able to use the whole MC statistics, a cross-training can be used. The

Monte Carlo is split, usually into two subsets of events. The difference with respect the

former approach is that two MVAs are going to be used. The first of them is trained

on the first subset and it is used to classify the other subset. The other MVA is trained

on the second subset and then used to classify the first one. In this way the whole MC

statistics can be used. If running on an independent sample (for example on data), the

sample has to be split again into two parts, so both MVAs will be used.

The splitting mode has to be independent on the physics in order to guarantee

the same MVA response on the training and testing sets. Usually an event number
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(a unique integer number identifying the event) is used and events are split into two

halves based on the even or odd value of this number. A random number can be used

as well, but in this case it is difficult to reproduce the result. In our analysis the event

number is used.

7.1.3 Artificial Neural Network

The idea of an Artificial Neural Network was motivated by an attempt to model infor-

mation processing in a nervous system. Human brain is composed of ”computational

units”, neurons, and connections between them, synapses. In biological neural net-

works, information is stored in the synapses connecting the neurons. The artificial

NNs work in a similar way.

Each node has input and output connections, called synapses. The node (neuron)

takes values from the input synapses, performs a mathematical computation and sends

an output value to the output synapses. Each neuron is characterized by its integration

function and an activation function. The integration function reduces number of input

arguments to a single numerical value. This value is used as an input for the activation

function. Output value calculated by the activation function is propagated to the

output synapses of the neuron. Weighted sum of input values, f(x1, ..., xn) = w1x1

+ ... + wnxn, is usually used as the integration function, where xi are outputs of

previous neurons propagated through the synapses and wi are weights of the synapses.

These weights are optimized during the training phase. Sigmoid, y(t) = 1/(1 + e−t),

or hyperbolic tangent, y(t) = (et − e−t)/(et + e−t) functions, are usually used as the

activation function, but in principle any continuous and differentiable function can be

used.

An example of Neural Network structure is shown in Figure 7.4. The NN consists

of nodes and synapses. Nodes are organized into layers. The Neural Network on

Figure 7.4 has one input layer, one middle (so-called hidden) layer and one output

layer. The Neural Network can have various number of nodes in a layer and also various

number of layers. A Neural Network with many hidden layers is called Deep Neural

Network (DNN). It is able to learn complicated dependences between input variables.

DNNs are usually used with a large set of input variables when individual separation

power of input variables is low. These variables are called low-level variables. A good

example of low level variables are fourmomenta of particles/objects in an event. A

DNN itself is able to build more powerful (high-level) variables, such as M`` and MET

in our model case. Typical disadvantage of DNNs is a need for a large size of the
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training dataset. The other type of Neural Network is Shallow Neural Network, which

has a low number of hiden layers (one or two). Neural Networks are also frequently

used in pattern recognition to identify a text or objects from an image. Shallow Neural

Network does not require as high number of training events as DNN does, but on the

other hand its ability to work with low-level variables is significantly worse. Because

of a small number of hidden layers and neurons, it is usually not capable of finding

complicated dependencies between a set of low-level variables.

Figure 7.4: Architecture of a Neural Network with a single hidden layer [111].

Loss function and training

The set of synapses weights ~w is being optimized during the training phase, in order

to minimize a loss function. The loss function is a measure of MVA ability to correctly

classify events. Various kinds of loss function might be used. The simplest case is the

sum of squared errors defined as:

L(~w) =
events∑
i

(yi(~w)− ytruth
i )2, (7.5)

where the sum runs over all events, ~w is the vector of synapses weights, ytruth
i is a

true value target of the event i (usually 1 for signal and 0 (or -1) for a background),

yi is the output from the MVA obtained for the event i. The square loss function is a

popular choice for some MVAs, but it is not an ideal choice for Neural Network, because
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it makes training algorithms to converge slowly. Cross-entropy is a more appropriate

choice for Neural Networks and it is defined as follows [111]:

L(~w) =
events∑
i=1

[ytruth
i ln(yi(~w) + (1− ytruth

i )ln(1− yi(~w))], (7.6)

In order to motivate the choice of loss function, let’s assume that we want the MVA

output to be the probability of the event to be signal, which means:

Ps(~x, ~w) = y(~x, ~w) (7.7)

Pb(~x, ~w) = 1− Ps(~x, ~w) = 1− y(~x, ~w), (7.8)

where Ps(~x, ~w) and Pb(~x, ~w) stand for the probability of the event being the sig-

nal/background, ~x is a vector of input variables and ~w is the vector of synapses weights.

The Equations 7.7 and 7.8 can be rewritten as:

P (ytruth, ~x, ~w) = y(~x, ~w)y
truth

[1− y(~x, ~w)](1−y
truth) (7.9)

Therefore the probability for the whole set of events is:

L(~w) = Πevents
i

(
yi(~w)y

truth
i [1− yi(~w)](1−y

truth
i )

)
(7.10)

Calculating ln(L(~w)), the Equation 7.6 can be obtained.

Training

Minimization of a loss function is a complicated problem of finding the minimum of

the many dimensional loss function. Various numerical methods are used in order to

find the minimum, where gradient of the loss function often plays the leading role.

The simplest way of finding the minimum is iterative gradient descent method. The

minimum can be found starting from a random point and moving against the gradient

of the loss function. In this case, the synapses weights are updated as follows

~wn+1 = ~wn − γ∇L(~wn), (7.11)

where γ is a learning rate, which is a free parameter of Neural Network and its

appropriate choice is analysis dependent.

In order to increase the convergence speed of a learning algorithm and to avoid end-

ing up in a local minimum, a so-called momentum term can be used [112]. When using
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the momentum, the weights of the network are updated according to Equation 7.12.

The direction of the weight update is a linear combination of the gradient from the

current step and from the previous step.

~wn+1 = ~wn − γ∇L(~wn)− α∇L(~wn−1), (7.12)

where 0 < α < 1 is the momentum rate. The momentum can significantly decrease

a number of steps necessary to reach the minimum, as shown in Figure 7.5

Figure 7.5: Finding a loss function minimum without the momentum term (a) and with the

momentum term (b) [112].

The gradient of the loss function is usually not calculated from the whole training

sample, but only from a subset of events. In a new iteration a new subset of events is

used. The advantage of this approach is that since the calculation of the gradient is

not exact, the algorithm is more robust against converging to a local minimum of the

loss function caused by a statistical fluctuation of the training dataset. The number of

events in the subsample is usually referred to as batch size.

Backpropagation

The so-called backpropagation is used in order to find the gradient of the loss function.

When the Neural Network output is evaluated, the input variables are provided to

the input nodes and the values are propagated forward through the network (from the

input nodes to the output node). When calculating the loss function gradient, the

values are propagated backwards (from the output node to the input nodes).
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Since the loss function is calculated as a sum of contributions from individual events,

the gradient of the loss function can be also calculated as the sum. Let’s consider ij

component of the gradient, corresponding to the weight of the synapse with input node

i and output node j (see Fig. 7.6). An individual contribution of an event to the loss

function will be referred to as ”error function”, E, in the rest of this chapter.

∂L(~w)

∂wij
=

events∑
k

∂E(~w)k
∂wij

(7.13)

Let’s consider Neural Network with one output node and all nodes using the same

activation function net(t) with continues first derivative. A generalization to different

types of activation function is trivial and will be discussed later. The partial derivative

of the error function E with respect to the weight wij can be written as

∂E

∂wij
=

∂E

∂(net(xj))

∂(net(xj))

∂xj

∂xj
∂wij

, (7.14)

where:
∂E

∂(net(xj))
is the partial derivative of the error function with respect to the output of

the j-th node.
∂(net(xj))

∂xj
is the derivative of the j-th node activation function (with respect to its

integration function output). Since the activation function, net(xj), is usually analyti-

cal and simple (for example sigmoid, or hyperbolic tangent), the calculation is trivial.

The derivative will be marked as net′(xj).
∂xj
∂wij

is the partial derivative of the j-th node integration function with respect to

the weight wij. For the most common choice of the integration function, fj(~x) =∑
iwijnet(xi), we get

∂xj
∂wij

=
∂wijnet(xi)

∂wij
= net(xi), which is the output of the i-th node.

The synapse corresponding to the wij weight and nodes around are shown in Fig-

ure 7.6.

Figure 7.6: The part of neural network that we will use to derive a backpropagation algorithm.

Rewriting the Equation 7.14, the following Equation can be obtained:
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∂E

∂wij
=

∂E

∂(net(xj))
× net′(xj)× net(xi), (7.15)

The calculation of second and third terms in Equation 7.15 is trivial and can be

performed during the forward propagation. The first term, corresponding to the partial

derivative of the error function E with respect to the output from j-th node, is more

complicated:

∂E

∂net(xj)
=

∂E

∂(net(xl))

∂(net(xl))

∂(net(xj))
=

∂E

∂(net(xl))

∂(net(xl))

∂xl

∂xl
∂(net(xj))

, (7.16)

where:
∂E

∂(net(xl))
is the partial derivative of the error function with respect to the output of

the l-th node

∂(net(xl))
∂xl

is the derivative of the l-th node activation function (with respect to its

input), similar to the second term in Equation 7.14
∂xl

∂(net(xj))
is a partial derivative of the l-th node integration function with respect

to the j-th note output. Since the integration function sums over all the inputs with

corresponding weights, the derivative is equal to the weight of the connecting synapse,

wjl.

Rewriting the Equation 7.16, we get the recursive algorithm to calculate the deriva-

tive of the error function with respect to the output of a node, if the derivative of its

neighbour node from the next layer is known:

∂E

∂net(xj)
=

∂E

∂(net(xl))
× net′(xl)× wjl, (7.17)

When calculating the error function derivative, the following steps are necessary for

each event:

1. The values of input variables are propagated forward through the network.

Output of each node is stored and also derivative of its activation function in the point

of its current input is calculated and stored. As the result of feed-forward propagation,

the NN output, yNN is obtained.

2. The derivative of the error function with respect to the NN output is calculated

for the current value of output and this derivative is set to the output of the output

node.

3. The value of the derivative is propagated backwards (considering Eq. 7.17).

The backpropagation is similar to forward propagation with an important difference.
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When propagating forward, the output of integration function is provided to the activa-

tion function and output of the activation function is propagated through the output

synapses. In the backpropagation, the output of the integration function is multi-

plied by the value of the activation function derivative (which was stored), instead of

using the activation function itself. The backpropagation algorithm is illustrated in

Figure 7.7.

4. The backpropagation from the previous step allows us to access the error function

derivative with respect to the outputs of all nodes. From the forward propagation, we

still have the information about output and value of activation function derivative for

each node. Using Equation 7.15, we can calculate the error function derivative with

respect to weight of any synapse.

Figure 7.7: Illustration of forward-propagation (top) and backpropagation (bottom). When

propagating forward through the network (left → right), each node calculates output its

integration function from its input values, uses it as the input for its activation function,

and the activation function output is propagated to the next node. In the backpropagation,

instead of the activation function, the output of the integration function is multiplied by the

value of activation function derivative at the point of the last input.

In our case, net′(xi) = net′(x)|x=x0.whi and net′(xj) = net′(x)|x=wij .net(x0.whi)

.

Once the gradient of the loss function is calculated, the network weights are updated
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according to Equation 7.12. Some neural networks use additional regularization or noise

terms in the weight update formula in order to reduce the overtraining or speed up the

convergence in a case of low values of the gradient.

Variable ranking

There are multiple approaches to the variable ranking in Neural Networks.

The multilayer perceptron (MLP), the Neural Network implemented in TMVA pack-

age [113] in ROOT [114], uses an approach based on the weights of synapses connecting

the input variable node from the input layer to the first hidden layer. The higher the

sum of squares of these weights, the higher the variable importance. Another approach

is to use derivative of the NN output with respect to the input variable, calculate

its mean over the training dataset and order the variables by the mean value of the

derivative.

The NeuroBayes [115] Neural Network, which is used in this analysis, uses method

independent ranking (can be used for any MVA) of the input variables based on the

total correlation of the set of variables to the target. The total correlation of set of

variables ~x to the target variable y is a measure of shared information between ~x and

y:

C(~x↔ y) =

∫ ∫
p(~x, y)ln

(
p(~x, y)

p(~x)p(y)

)
dyd~x, (7.18)

where p(~x, y), p(~x) and p(y) are distribution functions. If there is no dependency of

the target on the input variables, p(~x, y) = p(~x)p(y) and the total correlation is zero.

However, a dependency of the target on the input variables will cause non zero value

of the total correlation.

NeuroBayes ranking algorithm calculates the total correlation of the whole set of

input variables to the target. Then the algorithm loops over all variables and calculates

the total correlation of the rest of the input variables to the target. The variable which

removal causes the smallest loss in the total correlation is considered to be the least

important variable. It is removed and the algorithm loops again over the remaining

variables, looking for the second least significant variable. The algorithm is repeated

until only one input variables remains, that is considered to be the most important

one. The variable removed right before it is considered to be the second and so on.
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7.1.4 Boosted Decision Tree

The Boosted Decision Tree (BDT) is based on a decision tree algorithm, which is

illustrated in Figure 7.8.

The decision tree can be used as a binary classifier, which means its output is either

0 (possibly -1) or 1 if an event is background-like or signal-like, as well as regressor,

which means that its output is used to predict value of a continues target variable. In

our analysis, the decision tree is used for the classification. The differences between

classification and regression trees will be discussed later in this chapter, since the

regression tree is used also in a training algorithm of classification trees.

Classification Tree

The decision tree is series of simple cuts, each of them splitting a sample into two

subsamples, based on true/false value of the cut condition. In Figure 7.8, the whole

sample is split into two parts at the ”Root node”. If xi > c1, the event belongs to the

subsample on the left, otherwise it belongs to the right subsample. The aim of the cut

is to enhance the signal fraction in one subsample and to suppress it in the other. For

each subsample a further cut is applied in order to reach even better signal/background

purity of the subset. After an event has gone through all the cuts (splitting nodes)

it ends up in a signal-like or background-like node on the bottom of the tree. These

bottom nodes of the tree are called leafs. The output value -1 (1) is returned if the

event has ended up in a background-like (signal-like) node.

Depth of the decision tree (number of cuts) is limited by a number of events in a

training dataset. If there were too many cuts, the number of events in the leafs would

be small and thus the decision would suffer from large statistical fluctuations. When

building the decision tree, usually maximal depth of the tree and also minimal number

of events per node are defined. When the node reaches the maximal depth, or minimal

number of events, the branching is stopped and no other cuts follow.

When building the decision tree, the algorithm starts from the top of the tree. It

loops over all input variables and for each of them it searches for the best cut, providing

the maximal signal to background separation. The variable and cut providing the best

separation are used for the first splitting node. The same algorithm is further applied

to both subsamples and it is repeated until the maximum depth or minimal number

of events is reached by all nodes on the bottom of the tree. As a measure of signal

to background separation, various functions can be used. Those used by the BDT

implemented in the TMVA package are listed in Table 7.1.
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Figure 7.8: Decision tree visualization [86]. The decision tree consists of nodes (cuts) and

output leafs (circles on the bottom of the tree). The decision tree returns the same output

value for all events in the same leaf.

name definition

Gini Index (default) p.(1-p)

Cross entropy -p.ln(p) -(1-p).ln(1-p)

Misclassification error 1-max(p,1-p)

Statistical significance S/
√
S +B

Average squared error 1/Nevents.
∑

events(y − ŷ)2

Table 7.1: Separation criteria used by the BDT training algorithm implemented in the TMVA

package [86]. p is the purity, fraction of signal events.

The decision tree splits the n-dimensional space of input variables into hypercubes,

each of them classified either as signal or background like.

Regression Tree

The idea of a regression tree is similar to the idea of the classification tree. The regres-

sion tree splits the n-dimensional space of input variables into hyper cubes, returning

the same output value for all events in the same cube. In order to reach the best

performance, it is necessary to build cubes in a way which minimizes target variable
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variance inside of each cube.

Starting from the full training set of events, the algorithm loops over all input vari-

ables and for each of them a set of cut thresholds is tested. For both output branches,

the output value minimizing a loss function inside the leaf is returned (arithmetic av-

erage for square loss function). The loss function is estimated again from the whole

dataset and the cut (value and variable) minimizing the loss function is chosen. The

full dataset is now split into two parts, based on the decision applied at the first node.

The algorithm is applied again, until a stop criterion is reached by all the leafs.

Forest of decision trees and boosting

The boosted decision tree is a kind of improvement of one decision tree. The BDT

algorithm consists of a set of individual decision trees, so-called forest. When classifying

an event by the BDT, the total output is calculated as a weighted arithmetic average

of response of all the trees in the forest. In order to assign the weight to a tree, the

error rate, eerr is calculated:

eerr =

∑events
i wiI(si, yi)∑events

i wi
, (7.19)

where i is the event index, wi is the event weight and function I(si, yi) = 0 for

correctly classified events (si = yi) and 1 for incorrectly classified events. Once the

error rate is known, the decision tree weight is calculated as follows:

α = β.ln(
1− eerr
eerr

), (7.20)

where β is a constant.

The idea of the BDT is that a large set of classifiers, which are independent of each

other, can classify an event better than a single classifier could. This idea is frequently

used for decision trees, but it is a general principle, and it can be used for any MVA

classifier. In order to obtain the quasi-independent set of decision trees, so-called

boosting is used. The boosting algorithm makes the (n + 1)-th tree to focus mostly

on the events misclassified by first n trees. Two most common choices of boosting,

adaptive boost and gradient boost, are going to be discussed.

Adaptive boost

The adaptive boost algorithm consists of an artificial change of event weights. Once

the first decision tree is built, all the events from training sample are classified by it
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and the sample is split into two parts: events classified correctly and events classified

incorrectly. Weights of the misclassified events are artificially increased, so that the

next decision tree will focus more on these events and its training will not be affected

too much by the events correctly classified by the previous tree. The forest of trees

built by the adaptive boost algorithm consists of binary classification trees, so there are

only two possible values (usually +1 for signal and -1 for background) at the output

of each individual tree.

The boosting guarantees a certain level of independence of the individual trees, since

the next tree will more likely classify correctly the events misclassified by the previous

tree and those correctly classified previously are more likely to be misclassified.

In the AdaBoost algorithm the event weights are updated as

wnew(k) = wold(k)

(
< L >

1− < L >

)1−L(k)

, (7.21)

where < L > is a mean value of a loss function averaged over whole dataset and

L(k) is k-th event contribution to the loss function, divided by maximal contribution to

the loss function from all the events. The examples of L(k) can be found in Table 7.2

Linear L(k) = |y(k)−y(k)truth|
max

j ∈ events
|y(j)−y(j)truth|

Square L(k) =
[

|y(k)−y(k)truth|
max

j ∈ events
|y(j)−y(j)truth|

]2

Exponential L(k) = 1 - exp
[

|y(k)−y(k)truth|
max

j ∈ events
|y(j)−y(j)truth|

]
Table 7.2: Possible loss functions used in AdaBoost algorithm [86].

After building a tree, the boosting algorithm is applied until the desired number of

trees is reached.

Gradient boost

The Gradient boost algorithm is a different approach how to obtain a quasi-independent

set of decision trees. The idea of Gradient boost is that output of boosted decision tree

classifier during the training is given by the equation

Fm(~x) = F(m−1)(~x) + h(~x), (7.22)
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where Fm−1(~x) is the output calculated from the trees that already have been built,

h(~x) is the output of a new tree which is currently being built and Fm(~x) is output

calculated from the already built trees together with the new tree. In the ideal case,

Fm(~x) = ytruth, in other words h(x) = (ytruth - F(m−1)(~x)). The h(~x) is not designed to

fit the value of the truth target, it is designed to fit so-called residuals, so the value of

the loss function for the new Fm(~x) estimator will be minimal. The gradient descent

method is used to built the new tree. The new tree is built in the following steps [116]:

1. The gradient of the loss function with respect to the output of all events is

calculated,

rim = −
[
∂E(ytruth, F(m−1)(~xi))

∂F(m−1)(~xi)

]
, (7.23)

where i is index of an event, m is index of a tree.

2. The new decision tree h(x) is built to fit the training set (~xi, rim), where ~xi is

input variables vector for i-th event and rim is the desired target.

3. The weight γm of the new tree is obtained minimizing the loss function:

γm = min
γ

events∑
i

(E(yi, F(m−1)(~xi) + γh(~xi))), (7.24)

4. Update the model according to the equation

Fm(~x) = F(m−1)(~x) + νγmh(~x), (7.25)

where 0 < ν ≤ 1 is a learning rate. The boosted decision tree built using a small

learning rate is more robust against the overtraining compared to the BDT built with

ν = 1, however, too small learning rate leads to higher CPU time of the training.

Introducing the learning rate is called shrinkage.

5. Repeat the process again until a desired number of trees in the forest is reached.

The TMVA package which is used in the analysis uses binomial log-likelihood loss

function for the BDT training:

L =
event∑
i

ln
(

1 + e−2F (~xi)y
truth
i

)
(7.26)
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Variable ranking

The BDT variable ranking is based on counting of the variable occurrence in the cuts,

weighted by the separation gain-squared it has achieved and by number of events in

each node [86].

7.2 Nuisance parameter fit

In order to estimate the signal fraction in observed events in this analysis, a nui-

sance parameter fit is used. The nuisance parameter fit allows us to reduce effects of

a systematic uncertainties in the case when the prior estimate of the systematics is

overestimated and can be measured from data with a higher precision. The nuisance

parameter fit is a binned likelihood fit.

Let’s assume the simplest case, when only statistical uncertainty of measured data

is considered. Giving the expected mean values ~x in bins of a histogram, the probability

to observe the data values ~n is given by Poisson distribution as follows.

p(~n, ~x) = Πbins
i

xnii
ni!

e−xi (7.27)

When measuring, for example, a signal cross section of a certain process, the values

~x depend on the cross section σ. Let’s assume for now that there is no prior knowledge

of the measured cross section and all other parameters of the model, which have an

influence on ~x, are known precisely. The probability to observe the data points ~n if the

cross section is σ, is following:

p(~n, σ) = Πbins
i

xi(σ)ni

ni!
e−xi(σ), (7.28)

where dependency of ~x on σ is usually known from a simulation. Looking for a

maximum of probability, the mean value of signal cross section can be measured. Its

uncertainty is usually estimated from the points where p(~n, σ) reaches exp(-1/2) of the

value in maximum, or eventually from interval in which
∫
p(~n, σ)dσ = 0.68.

The signal cross section in Equations 7.27 and 7.28 is a free parameter of the fit. It

means that there is no prior constrain on its value, in other words, there is no direct

dependency of the probability on the value of σ, only trough the changes in Poisson

distribution terms.

Let’s assume a more complicated case. In the high energy physics, there are often

lots of uncertainties coming either from a theory or experiment. For example, the cross
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section of backgrounds is not known with infinite precision, there is an uncertainty on

the cross section that needs to be considered in the analysis.

In order to take into account such kind of uncertainty, let’s assume the former

example, but add a next parameter of the fit, b, which stands for the background cross

section. The background cross section is known at a certain level of precision, bprior

± ∆bprior, where bprior is expected cross section of the background and ∆bprior is its

uncertainty.

The background cross section is not a free parameter of fit, there is a prior knowledge

about it. In order to take into account the systematic variation ∆bprior a Gaussian term

is added into the Equation 7.28.

p(~n, σ, b) =
1√

2π∆b
e
−

(b−bprior)2

2(∆bprior)2 Πbins
i

xi(σ, b)
ni

ni!
e−xi(σ,b), (7.29)

Looking for a maximum of p(~n, σ, b) in Equation 7.29, the signal cross section σ and

background cross section b can be extracted together with their uncertainties. Let’s

assume two limit cases:

1. The prior uncertainty on the background cross section, ∆bprior, is small and by

far under the statistical sensitivity of the analysis. In this case, variations in b will

have almost no effect on Poisson term and only the Gaussian term will be influenced.

The points where p(~n, σ, b) = 1√
e
max(p(~n, σ, b)) will be the same as the points where

e
−

(b−bprior)2

2(∆bprior)2 =
1√
e

max

(
e
−

(b−bprior)2

2(∆bprior)2

)
=

1√
e

(7.30)

In this case it is not possible to set a better constrain on the background cross

section and the posterior uncertainty will be the same as the prior one, ∆bprior ≈
∆bposterior.

This is very often the case, since systematic uncertainties are usually predicted from

dedicated measurements, which are more sensitive to them than other measurements.

2. The prior uncertainty ∆bprior is large and by far above the statistical sensitivity

of the measurement. In this case, variations in b will have almost no effect on Gaussian

term and only the Poisson term will be influenced. In this case the nuisance parameter

behaves almost like a free parameter of the fit and the posterior uncertainty ∆bposterior

will be given by Poisson terms. The posterior uncertainty will be lower then the prior

uncertainty, ∆bposterior < ∆bprior.
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In the nuisance parameter fit, there is a set of free parameters, ~µ, typically signal

cross section and normalization of major backgrounds, and set of so-called nuisance

parameters, ~Θ, for systematic uncertainties. The nuisance parameters are usually

defined in the way that Θj = 0 means the prior mean value and Θj = 1 is +1σ

variation. In the previous case Θb =
b−bprior
∆bprior

.

The likelihood function used for a nuisance parameter fit with nuisance parameters

for systematic uncertainties is the following:

p(~n, ~µ, ~Θ) =

(
Πsyst
j

1√
2π
e−(

Θ2
j

2
)

)
Πbins
i

xi(~µ, ~Θ)ni

ni!
e−xi(~µ,

~Θ) (7.31)

Template morphing

In order to be able to use the nuisance parameter fit with Equation 7.31, one has to

know ~x(~µ, ~Θ) function. For the beginning let’s consider just the easiest case, when

the fit has only one free parameter, signal cross section and one nuisance parameter,

background normalization. For the expected mean value vector ~x we get the following

equation,

~x(~µ, ~Θ) = ~x(σs,Θb) = σscs ~xs + σbcb ~xb = σscs ~xs + (1 + Θb
∆bprior
bprior

)bpriorcb ~xb, (7.32)

where σs is the signal cross section, σb is the background cross section, ~xs is the signal

distribution, ~xb is the background distribution, Θb is the nuisance parameter related to

the background cross section uncertainty, bprior and ∆bprior are prior background cross

section and its uncertainty and cs and cb are constants related to the normalization of

signal and background templates in Monte Carlo.

For the systematic uncertainties affecting only a template normalization, the rela-

tion between the expected mean value vector ~x and values of nuisance parameters is

given by Equation 7.32. If a negative normalization of the sample should be avoided,

the linear extrapolation is replaced by an exponential:

~x(~µ, ~Θ) = ~x(σs,Θb) = σscs ~xs + σbcb ~xb = σscs ~xs + bpriorcb ~xb

(
1 +

∆bprior
bprior

)Θb

. (7.33)

For systematics uncertainties affecting also shape of the template, it is necessary

to estimate ~x(Θ) dependency. In this analysis a piecewise linear interpolation and

extrapolation is used.
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~x(Θi) = ~xs(Θi) + ~xb = ~xs
nominal + Ilin(Θi, ~xs

nominal, ~xs
syst-upi , ~xs

syst-downi) + ~xb, (7.34)

where the systematics described by nuisance parameter Θi affects only signal,

~xs
nominal is the signal nominal distribution and ~xs

syst-upi and ~xs
syst-downi are +σ and -σ

systematics variations. The function Ilin(Θi, ~xs
nominal, ~xs

syst-upi , ~xs
syst-downi) is defined in

the following way:

Ilin(Θ, ~xs, ~xs
up, ~xs

down) =

Θ(~xs
up − ~xs), if Θ ≥ 0

−Θ(~xs − ~xs
down), if Θ < 0

(7.35)

The problem with Equation 7.34 is that the systematics is allowed to cause a neg-

ative normalization of the sample. In order to avoid the negative normalization, the

shape and normalization effects are separated. The shape effect is estimated via the

linear extrapolation and interpolation (Equation 7.35) and output histogram is nor-

malized to the nominal distribution integral. The histogram is then multiplied by

the normalization term given by exponential extrapolation (Equation 7.36), naturally

preventing the integral from reaching negative values.

Iexp(Θ, xs, x
up
s , x

down
s ) =

(x
up
s

xs
)Θ, if Θ ≥ 0

( xs
xdown
s

)Θ, if Θ < 0
(7.36)

Statistical uncertainty of Monte Carlo templates

The statistical uncertainties on Monte Carlo templates are taken into account as sep-

arate systematic uncertainty. The uncertainty is decorrelated between the histogram

bins, having a separate nuisance parameter, usually labelled γi for each bin. The prior

distribution of the γ nuisance parameter is described by Poisson and usually γi = 1

corresponds to the nominal value of Monte Carlo prediction in i-th bin.

Pruning and smoothing

The estimate of systematics effects often suffers from a limited number of events in

Monte Carlo. If the statistical fluctuations in systematic template are large, they can

lead to unphysical pulls and constraints and to double counting of statistical uncer-

tainties of MC. These effects are not desired and there are algorithms for suppressing

them. One of the possibilities is to use pruning and smoothing.
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The pruning algorithm loops over the systematic uncertainties and compare their

effects to a reference threshold. If the effect is lower than the chosen threshold, the

systematics is dropped. The pruning allows us to reduce a number of nuisance param-

eters and thus to decrease a size of the space that has to be exploited by the fitting

algorithm. The smaller space usually leads to a higher stability of the fit and lower

CPU time.

If the templates for systematics suffer from a large statistical uncertainty, artificial

pulls and constraints can appear. If the shape of statistical fluctuations in the tem-

plates is similar to the shape of statistical fluctuations in data, the fit will pull the

systematics in order to correct the fluctuations of data. These pulls are unphysical

and should be avoided. Large statistical fluctuations in the bins for systematics can

also cause artificial constrains in the fit and thus also underestimation of the total

uncertainty. In order to avoid such effects, several smoothing algorithms have been

developed. They smooth statistically insignificant differences between nominal and

systematics templates, merging bins together, or replacing bin content by weighted

sum of the bin content and contents of neighbouring bins. In this analysis smoothing

is used only for systematics which are evaluated from statistically independent sam-

ples. It is not used for systematics evaluated by reweighting the same sample, since the

difference between nominal and systematics templates are not affected by statistical

fluctuations in this case.



Chapter 8

2` channel analysis at 36.1 fb−1

The aim of the analysis in dilepton (2`) channel is to measure the total cross section of

tt̄Z, targeting the leptonic decay of the Z boson and hadronic decay of the top-quark

pair. The dataset corresponding to 2015-2016 period of data taking and luminosity of

36.1 fb−1 is used in the 2` channel analysis.

The main sources of backgrounds are Z+jets and dileptonically decaying tt̄ with

additional jets. In order to suppress these backgrounds, the selection summarized in

Section 8.1 is used to define three signal regions.

8.1 Event Selection

If all the decay products of the tt̄Z are reconstructed correctly, in the final state there

is a lepton pair from the Z-boson decay, two b-jets from top-quark pair decay and

another four light jets from the top-quark pair. No physical missing transverse energy

is expected. The lepton pair originating from the Z-boson decay is expected to have

an invariant mass close to the Z-boson mass, opposite sign of the electric charge and

the same flavour. The event selection is based on the expected final state signature,

allowing at most one light jet to be lost because of a limited detector acceptance, or

at most one of the b-jets not being b-tagged.

The definitions of three signal regions are summarized in Table 8.2. In order to

define b-jets, MV2c10 b-tagger (described in Section 4.5) with the cut reaching 77 %

efficiency for b-jets is employed.

Single lepton triggers have been used in the analysis. Since the luminosity in 2016

was significantly higher compared to 2015, the pT threshold of the triggers had to be

adapted to the higher event rates. That is the reason why the 2015 data have been

103
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collected using different triggers compared to the data from 2016. The triggers used

for the both periods of data taking are summarized in Table 8.1. Each data and Monte

Carlo event is required to pass at least one trigger.

Year Electron trigger Muon trigger

2015

HLT e24 lhmedium L1EM20VH

HLT e60 lhmedium

HLT e120 lhloose

HLT mu20 iloose L1MU15

HLT mu50

2016

HLT e26 lhtight nod0 ivarloose

HLT e60 lhmedium nod0

HLT e140 lhloose nod0

HLT mu26 ivarmedium

HLT mu50

Table 8.1: Triggers used in the 2` channel analysis with 36.1 fb−1 of data. The number

right after mu or e is the minimal pT cut of the given type of lepton that can fire the trig-

ger. lhloose, medium or tight in the name refers to the lepton identification described in

Sections 4.2 and 4.3.

Variable 2`-Z-6j1b 2`-Z-5j2b 2`-Z-6j2b

Triggers Defined in Table 8.1

Leptons = 2

Leptons same-flavour

Leptons opposite-sign

M`` |Mll −MZ | < 10 GeV

pT (1st lepton) > 30 GeV

pT (2nd lepton) > 15 GeV

nb−jets =1 ≥ 2 ≥ 2

njets ≥ 6 =5 ≥ 6

Table 8.2: Summary of the event selection in the dilepton channel signal regions.

8.2 Event Yields

The observed and expected number of events in three signal regions of the dilepton

channel are shown in Table 8.3.

As Table 8.3 shows, the signal purity in the signal regions is very small, as well as
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2`-Z-6j1b 2`-Z-5j2b 2`-Z-6j2b

tt̄Z 80.7 ± 11.2 71.4 ± 4.48 126 ± 16.7

DD tt̄ 329 ± 20.4 1110 ± 46.8 574 ± 29.3

Z + 2 HF 1060 ± 244 1610 ± 309 913 ± 211

Z + 1 HF 1460 ± 364 245 ± 70.5 126 ± 46.0

Z + 0 HF 794 ± 277 103 ± 55.4 45.2 ± 31.2

other 263 ± 93.8 189 ± 52.0 135 ± 38.0

Total 3980 ± 848 3330 ± 396 1920 ± 285

data 3433 3272 1749

Data/MC 0.86 ± 0.18 0.98 ± 0.13 0.91 ± 0.14

S/(S+B) 2.0 % 2.1 % 6.6 %

S/
√
S +B 1.3 1.2 2.9

Table 8.3: Expected (Monte Carlo) and observed (data) yields in 3 signal regions of the

dilepton channel at 36.1 fb−1. Quoted uncertainties include both statistical and systematic

uncertainties. The category ”other” includes all other SM background producing at least two

promt leptons, as well as background from non-promt and fake leptons. Z + jets contribution

is split into 3 parts, based on the number of truth heavy-flavour jets (jets initiated by a c-

or b- hadron), since modelling of heavy-flavour jets is problematic and can be mismodelled

by Monte Carlo. The tt̄ background is estimated using data-driven technique described in

Sec. 8.5. The last two rows show signal purity, S/(S+B), and statistical only significance

of signal, S/
√
S +B, in other words, what is the ratio of the signal to expected statistical

uncertainty of the total number of events in the channel.
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the statistical significance of the signal. Including effects of systematics, the expected

signal significance would be significantly decreased.

In order to be able to measure the signal cross section of such a rare process at such

high background rate, it is necessary to find an algorithm able to separate the signal

from background.

8.3 Neural Network

NeuroBayes [115] Neural Network interfaced with TMVA [86] package has been used

in order to obtain the variable providing signal vs. background separation.

8.3.1 Considered set of input variables

A set of input variables providing signal versus background discrimination, summarized

in Table 8.4, has been tested in the training. There are various motivations for using

these input variables.

The important physical difference between tt̄Z and backgrounds, mostly Z+jets

and tt̄, is in the origin of additional jets. While the signal has six jets initiated by

the quarks from the hard scattering (two b-jets and four light jets from the top-quark

pair), the backgrounds have only two jets expected from the hard scattering and other

jets come mostly from initial or final state radiation, or gluon splitting. This has

an important consequences on the jet kinematics. The jets from gluon splitting, or

initial/final state radiation are softer compared to the jets initiated by the quarks from

a hard scattering. The difference in their energy is the motivation of using pT of the

jets, number of jets with pT > 40 GeV and H6jets
T which is the scalar sum of pT of

leading 6 jets in pT. A significant difference in distribution of these variables between

the signal and background can be observed.

The different origin of the jets is also used in the variables targeting the top-quark

or W -boson properties, such as NV mass
jetpairs, N

top−mass
bjj , MMindR

jj , MPtord
uu , Mbb, ∆Rjj

ave, and

∆Rbb. In the tt̄Z events, there are two quark pairs, originating from hadronic decay of

W bosons. The invariant mass of jet pairs initiated by these quark pairs is expected to

be close to the W -mass, mW = 80.3 GeV. In addition, invariant mass of the three jets

originating from the same top quark (one b-jet and two light jets), is expected to be

close to the top-quark mass mtop = 172.5 GeV. Because of the finite energy and angular

resolution of the calorimeters, the distribution of the jets from W/top invariant masses

are expected to be relatively broad, but having a peak at the mass of the top quark or
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Variable Definition

pllT pT of the lepton pair

p3jet
T pT of the third jet

p4jet
T pT of the fourth jet

p6jet
T pT of the sixth jet

∆Rll ∆R (cone) between the two leptons

NV mass
jetpairs number of jet pairs with mass within a window of 30 GeV around 85 GeV (tar-

geting jets from W boson, and possibly also jets from Z boson)

N top−mass
bjj number of 3 jets combinations (with exactly 1 b-jet) close to the top-quark mass

(|Mbjj −Mtop| < 15 GeV) and (|Mjj −MW | < 15 GeV)

N jet
pT>40GeV number of jets with pT > 40 GeV

MMindR
jj mass of the combination between the two jets with the smallest ∆R

MPtord
uu mass of the two untagged jets with the highest pT

Mbb mass of the two jets with the highest b-tagging weight (output from MV2C10

tagger)

∆Rbb cone between two jets with the highest b-tagging weight in the event

Centjet scalar sum of pT divided by sum of E for all jets

∆Rjjave average ∆R for all jet pairs

maxMMindR
lepb maximum mass between a lepton and the b-tagged jet with the smallest ∆R

H1 Second Fox-Wolfram moment, given by Equation 8.1

H1jet Second Fox-Wolfram moment built from jets only

H6jets
T scalar pT sum of the first 6 jets

p
jjj1
T pT of 3 jet system formed adding the nearest 2 jets in ∆R to the jet with highest

pT

Mjjj1 invariant mass of the 3 jet system used for p
jjj1
T

η`` η of the dilepton system

p
jjj2
T pT of 3 jet system built in the same way as jjj1, not considering the jets included

in jjj1

Mjjj2 invariant mass of 3 jet system built in the same way as jjj1, not considering the

jets included in jjj1

Mavg
W It is looped over all jet pairs from jjj1 and jet pairs from jjj2. The two pairs (one

from jjj1 and one from jjj2) with minimal difference in the dijet mass is searched

for. The variable is defined as the sum of these two dijet invariant masses divided

by 2. In the ideal case it matches the W -boson mass.

pb1T pT of the first b-jet. Jets are ordered by pT

pb2T pT of the second b-jet. Jets are ordered by pT

Table 8.4: The definitions of the input variables used in the Neural Network training. Jets and

leptons are ordered by their pT from the highest one. To supress an effect of the mismodelling

in the events with high jet multiplicity, only first 8 jets ordered by pT are considered when

evaluating the variables.
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W boson.

The number of jet pairs close to the invariant mass of the W and Z boson, is

expected to be higher for the tt̄Z events, since in the ideal case, there are two jet

pairs originating from the W -boson decay, while there are no jets from W -boson decay

in the Z+jets and dilepton tt̄ background. In the phase of the analysis when the

Neural Network was being developed, an option to target also decay channels with

hadronically decaying Z boson was considered. This is the reason why the W -mass

window is centered around 85 GeV instead of 80.3 GeV.

Number of hadronicaly decaying top-quark candidates, N top−mass
bjj is defined as the

number of three jet combinations, with exactly one b-tagged jet, invariant mass of the

three jet system close to the top-quark mass and invariant mass of the two non-b-tagged

jets close to the W mass. It is expected to be at least two in the signal events where all

the jets from the top-quark pair decay are reconstructed correctly. A higher number

of such combinations can arise from another random combination of jets, having by

chance invariant masses compatible with W boson and top quark.

Variables MMindR
jj and MPtord

uu attempt to reconstruct invariant mass of the W

boson. If there is a W boson in an event, the invariant mass of the system of two

non-b-tagged jets closest to each other in the cone, or pair of such jets with the highest

pT are more likely to have invariant mass close to the W -boson mass.

The variables Mbb and ∆Rbb are motivated by different origin of the b-jets between

the events with top-quark pair (tt̄Z and tt̄ in this case) and the Z+jets background,

which does not have the top-quark pair. In the case of the Z+jets background, the

b-jets are likely to originate from a gluon splitting and consequently having a lower

invariant mass and being closer to each other, compared to the tt̄Z and tt̄, where the

b-jets come from two top quarks, so a higher invariant mass and larger cone between

the b-jets can be expected.

The average cone between two jets, ∆Rjj
ave, provides a discriminating information

based on the angular distribution of jets. The variable targets mostly tt̄Z vs. tt̄

discrimination. In case of the tt̄Z production, the non zero momentum of Z boson

causes the top quarks to be closer to each other, while in the top-quark pair production,

the top quarks are very likely to be back-to-back. If the top quarks are closer to each

other, smaller average cone between their decay products can be expected, while in the

back-to-back case the average cone between the jets is expected to be larger.

Except of the differences in jets, also the origin of the leptons is different between

tt̄Z and Z+jets compared to tt̄. While in case of the tt̄Z and Z+jets the leptons
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originate from Z-boson decay, in the case of tt̄ they originate from the top-quark pair

decay. If the leptons originate from the Z boson, they are expected to be closer to each

other in their cone compared to the tt̄ case. The variable ∆Rll is designed based on

this difference. If a lepton originates from a top quark, the invariant mass of the lepton

with the b-jet from the same top-quark is expected to be bellow the top-quark mass.

While in the case of a lepton from the Z boson, the invariant mass is expected to be

larger. In the analysis, the lepton is paired with the closest b-jet in cone, building the

variable maxMMindR
lepb .

As stated in Section 2.4.1, the Z+jets production is dominated by the quark anti-

quark annihilation, where the quark typically carries higher momentum than the anti-

quark, since the quark is very likely a valence quark, while the anti-quark is from the

sea. As a consequence, the Z+jets system is boosted in the direction of the z-axis.

The tt̄Z production is dominated by gluon gluon fusion and thus the boost is typically

lower. The lower boost with respect to Z+jets makes the tt̄Z events to be more central.

The jets and leptons are more likely to fall into low |η| values, while higher values of |η|
can be expected for Z+jets. The variables η`` and centrality of the event are a measure

of the boost.

The second Fox-Wolfram momentum is defined as:

H1 =
∑
i,j

~pi · ~pj
E2
viss

, (8.1)

where ~pi and ~pj are 3-momenta of i-th and j-th object (jet or lepton) and Eviss is all

visible energy in the event. The Fox-Wolfram moments are often used in order to take

into account angular correlations between jets, which are expected to differ between

the signal and background [117].

The variables Mjjj1 and p
jjj1
T target a top-quark reconstruction. The jet with the

highest pT and two closest jets to it in the cone are considered to be from the same top

quark. These distributions are therefore expected to be different between the signal

and background.

The variables related to jjj2 are built using a similar logic. From the other jets

(not forming jjj1), the highest pT jet and two closest to it are considered to originate

from the other top quark. These three jets are labelled jjj2. This 3 jet system is used

to build Mjjj2 and p
jjj2
T variables.

In the next step, it is searched for jet pairs potentially originating from the W -boson

decay. It is searched for two jet pairs, one built from jjj1 and the other from jjj2,

with the minimal difference in their invariant masses. In the ideal case, mass of both
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jet pairs would be equal to W -boson mass. The arithmetic average of the two masses

is used as the input variable Mavg
W .

8.3.2 The full set of variables, the variable ranking and sensitivity of the

analysis as a function of the number of input variables

The variables are ranked based on their total correlation to the target, using an imple-

mentation from NeuroBayes [115] package, described in Section 7.1.3. The ranking of

the variables in three signal regions of the analysis is shown in Table 8.5.

The NeuroBayes has been trained using the full set of input variables in order to

check distribution of its output and overtraining. The NN output distributions for

background and signal events, for both training and testing samples are shown on the

bottom of Figure 8.1. The dependency of background rejection on the signal efficiency,

so-called ROC curves, are shown on the top of Figure 8.1. As a measure of the NN

performance, the area between the diagonal ([1,0] - [0,1] line) and the ROC curve,

multiplied by two is shown in the top-right corner. The number is expected to be

zero for a random distribution without a signal vs. background separation and one

for the ideal separation. The difference between these two numbers for training and

testing samples is a measure of the NN overtaining. No significant overtraining has

been found.

Although the Neural Network is not overtrained even with the full set of the input

variables, it is desired to keep the number of input variables as low as possible in order

to avoid a possible bias coming from a mismodelling in the simulation, as described in

Section 7.1.2. In order to find an optimal number of the input variables, an estimate of

a statistical significance of the measurement has been employed. For a given number

of variables, the NN output distribution has been scanned, looking for the optimal

cut reaching maximal S/
√
S +B for events with the NN output higher than the cut.

Once the cut is found, the value of the max(S/
√
S +B) at this point is saved. The

max(S/
√
S +B) is firstly evaluated using only the first variable from the ranking.

Once it is found, the process is repeated using the first two variables from top of the

ranking, then three e.t.c., until the full set of variables is reached. The dependency of

max(S/
√
S +B) on the number of input variables is shown in Figure 8.2.

Set of the leading 12 input variables (from the Table 8.5) in each region has been

chosen as the reasonable trade off between reaching a higher significance and avoiding

a possible bias. As it can be seen in Figure 8.2, adding more than 12 variables does

not bring any significant improvement in the statistical sensitivity.
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rank 2`-Z-6j1b 2`-Z-5j2b 2`-Z-6j2b

1. NV mass
jetpairs p4jet

T pllT

2. p4jet
T NV mass

jetpairs NV mass
jetpairs

3. ηll pllT Mbb

4. N top−mass
bjj Mbb p4jet

T

5. H1 N top−mass
bjj N top−mass

bjj

6. MmindR
jj Centrjet Centrjet

7. Centrjet MmindR
jj M jjj1

8. p6jet
T H1 MmindR

jj

9. pllT p3jet
T ηll

10. MpTord
uu ηll p6jet

T

11. M jjj1 M jjj1 H1

12. Mbb MpTord
uu p

jjj1
T

13. MaxMmindR
lep,b MaxMmindR

lep,b MaxMmindR
lep,b

14. Mavg
W dRbb Mavg

W

15. dRll dRavejj dRbb

16. dRbb p
jjj1
T MpTord

uu

17. p3jet
T dRll p3jet

T

18. M jjj2 p2bjet
T dRll

19. p
jjj2
T H1jet M jjj2

20. H6jets
T dRavejj

21. dRavejj p
jjj2
T

22. p
jjj1
T H1jet

23. H1jet H6jets
T

Table 8.5: The ranking of the MVA input variables using the method independent ranking,

based on the total correlation of input variables to the target value. The ranking has been

performed independently for each analysis region. Some of the variables, related to all six

jets are not defined in 2`-Z-5j2b region.
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Figure 8.1: The first row shows ROC curves for three signal regions. The second row shows

normalized distributions of NeuroBayes output for signal and background for both testing

(solid line) and training samples (points). The error bars show only statistical uncertainty.

The plots in the first, second and the last column correspond to 2`-Z-6j1b, 2`-Z-5j2b and

2`-Z-6j2b regions. The Neural Network has been trained using the full set of input variables

shown in Table 8.5.

Figure 8.2: Dependency of the estimated signal statistical significance on the number of input

variables. For a given number of the input variables the NN output distribution is scanned

with very narrow steps (0.001). At each step the S/
√
S +B for events with the NN output

higher than the current point is calculated. The maximal value obtained for a given number

of input variables is shown in the graphs above. The final choice is to use 12 variables.
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The ideal way how to find the suitable number of the input variables would be to

perform a fit with the full systematics for each number of the input variables, instead of

calculating only maximal S/
√
S +B, and choose a number of input variables reaching

a reasonable signal sensitivity. However, this would be unaffordably CPU intensive and

in the time of the NN optimization, a full set of samples for systematic uncertainty

estimate was not available.

8.3.3 The final choice of the input variables

The ROC curves and distributions of the NN output for signal and background for both

training and testing samples for the final choice of the 12 input variables are shown in

Figure 8.3. The correlation matrices of the input variables for signal and background

are shown in Figure 8.4

8.3.4 Parameters of the Neural Network

The set of hyperparameters has been taken from the previous ATLAS analysis at 8

TeV [7] and they are summarized in Table 8.6. Further optimizations showed that this

set of parameters is suitable also for the 13 TeV measurement. All the input variables

are transformed to follow Gaussian distribution with mean value zero and σ = 1. The

signal training samples are reweighted to the integral of background events in order to

obtain an NN output with the ideal signal vs. background separation.

In order to avoid a bias caused by an overtraining, the cross training has been used.

Available numbers of raw (without reweighting) Monte Carlo events in background

and signal samples are summarized in Table 8.7. The Monte Carlo estimate of the tt̄

background is used in the training, since the data driven method described in Sec. 8.5

does not provide a sufficient number of events for the NN training.

The total number of raw Monte Carlo signal events before applying any selection

is 8,244,600. Based on the Z-decay branch, they are split into the following cate-

gories: Z → e+e− (1,408,800), Z → µ+µ− (1,409,600), Z → τ+τ− (934,300), Z → νν̄

(1,495,400) and Z → qq̄ (2,996,400).
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Parameter Value

Number of hidden layers 1

Number of nodes in hidden layer 14

Batch size 50 events

Number of iterations 100

Learning speed 0.01

Momentum 0

Table 8.6: Hyperparameters of the Neural Network used in the analysis. The meaning of the

parameters is further described in Section 7.1.3.

Region Signal events Background events

2`-Z-6j1b 110,894 130,551

2`-Z-5j2b 59,378 83,868

2`-Z-6j2b 144,063 63,701

Table 8.7: Number of Monte Carlo events passing the event selection in the individual analysis

regions. The number of events is high enough to train an MVA without any significant

overtraining.
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Figure 8.3: The ROC curves (first row), normalized distributions of the NN output (second

row) for signal and background for both testing (solid line) and training samples (points) and

the distribution of the NN output in simulation and data (third row). The error bars show

only statistical uncertainty in the middle row and full statistical + systematic uncertainty in

the last row (the purpose of the middle row plots is to check the performance and overtraining,

so only the statistical uncertainty is important here, while the purpose of the last row is to

check the NN output modelling). The plots in the first, second and the last column correspond

to 2`-Z-6j1b, 2`-Z-5j2b and 2`-Z-6j2b regions. The Neural Network has been trained using

the set of 12 leading input variables shown in Table 8.5.
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Figure 8.4: The correlation matrices of the NN input variables for background (top) and

signal (bottom). The plots in the first, second and the last column correspond to 2`-Z-6j1b,

2`-Z-5j2b and 2`-Z-6j2b regions.
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8.4 Boosted Decision Tree

As an alternative MVA method, the Boosted Decision Tree (BDT) has been tested

and optimized1. With the given set of training events, the BDT has slightly better

performance in a sense of the fit sensitivity and areas under the ROC curves, however

the Neural Network is more robust against the overtraining. Based on an agreement

in the analysis group, the BDT has been chosen as the final MVA method used for the

analysis.

The choice of BDT input variables and their ranking are shown in Table 8.8.

rank 2l-Z-6j1b 2l-Z-5j2b 2l-Z-6j2b

1 η`` Centjet H1

2 Centjet H1 Centjet

3 H1 η`` η``

4 NV mass
jetpairs dRavejj NV mass

jetpairs

5 dRavejj H6jets
T dRavejj

6 p4jet
T NV mass

jetpairs p4jet
T

7 dRll MMindR
jj ∆Rbb

8 pllT dRll pllT

9 p6jet
T ∆Rbb Mbb

10 Mavg
W Mbb H6jets

T

11 p1b−jet
T pllT p6jet

T

12 H6jets
T p4jet

T dRll

13 MMindR
jj MPtord

uu maxMMindR
lepb

14 maxMMindR
lepb p5jet

T MMindR
jj

15 MPtord
uu Mavg

W

16 p1b−jet
T

17 N top−mass
bjj

Table 8.8: Ranking of the variables used for the BDT training.

The correlation matrices of the input variables are shown in Figure 8.5. The ROC

curves and distributions of the BDT output in signal and background for both training

and testing samples, together with control plots of the BDT output in data and the

simulation are shown in Figure 8.6. The parameters of the BDT are summarized in

1The BDT optimization was not done by the author of the thesis.
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Table 8.9.

Figure 8.5: Correlation matrices of the BDT input variables for background (top) and signal

(bottom). The plots in the first, second and the last column correspond to 2`-Z-6j1b, 2`-Z-

5j2b and 2`-Z-6j2b regions.
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Figure 8.6: The ROC curves (first row) and normalized distributions of the BDT output

(second row) for signal and background for both testing (solid line) and training samples

(points) and distributions of the BDT output in simulation and data (third row). The error

bars show only statistical uncertainty in the middle row and full statistical + systematic

uncertainty in the last row (the purpose of the middle row plots is to check the performance

and overtraining, so only the statistical uncertainty is important here, while the purpose of

the last row is to check the BDT output modelling). The plots in the first, second and the

last column correspond to 2`-Z-6j1b, 2`-Z-5j2b and 2`-Z-6j2b regions. The BDT has been

trained using the set of input variables shown in Table 8.8.



8.4. BOOSTED DECISION TREE 120

Option Values Description

NTrees 500 Number of trees in the forest

Maxdepth 3 Max depth of decision tree

Minnodesize 5% Minimimum % of training events required in a

leaf node

nCuts 20 Number of grid points in variable range used in

finding optimal cut in node splitting

BoostType Grad Boosting type for the trees in forest

Shrinkage 0.3 Learning rate for GradBoost Algorithm

SeparationType GiniIndex Separation criteria for node splitting

NodePurityLimit 0.5 nodes with purity > NodePurityLimit are signal

SigToBkgFraction 1 Sig to Bkg ratio used in Training

Table 8.9: Settings used in the BDT training.
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8.5 Data-driven tt̄ background estimate

The top-quark pair production is the second largest background in the dilepton channel.

In order to check the top-quark pair production modelling, dedicated tt̄ validation

regions have been designed.

Because of the lepton universality, dilepton decays of the top-quark pair into e+e−,

µ+µ−, e+µ− and e−µ+ have the same branching ratio and the same event kinematics.

While the first two decay modes (let’s call them ``) have both leptons of the same type

and thus contribute to the background in the dilepton channel of the tt̄Z, the decay

mode with different flavour of the leptons (eµ) can be easily identified and does not

contribute to the tt̄Z signal regions.

The tt̄ validation regions are defined by the selection summarized in Table 8.10.

The selection is the same as the definition of the tt̄Z signal regions, the only difference

is in the lepton flavour requirement. The lepton pair in the tt̄ validation regions is

required to be of a different flavour. The other cuts are kept the same in order to use

the events from the same kinematic region.

Variable eµ-Z-6j1b-VR eµ-Z-5j2b-VR eµ-Z-6j2b-VR

Triggers Defined in Table 8.1

Leptons = 2

Leptons eµ

Leptons opposite-sign

M`` |Mll −MZ | < 10 GeV

pT (1st lepton) > 30 GeV

pT (2nd lepton) > 15 GeV

nb−jets =1 ≥ 2 ≥ 2

njets ≥ 6 =5 ≥ 6

Table 8.10: Summary of the event selection in the tt̄ validation regions. The only difference

with respect to the definition of signal regions (summarized in Table 8.2) is requirement on

the different flavour of the leptons.

The event yields obtained from the simulation and observed data yields are shown

in Table 8.11. The validation regions are clearly dominated by the top-quark pair

production.

Monte Carlo generators have a problem to describe properly the top-quark pair

production in association with additional b-jets. The events with one or two b-jets are
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eµ-Z-6j1b-VR eµ-Z-5j2b-VR eµ-Z-6j2b-VR

tt̄Z 1.6 ± 0.3 5.6 ± 0.7 4.2 ± 0.7

tt̄ 304 ± 18.0 1100 ± 65.0 527 ± 31.1

Z + 2 HF 0.08 ± 0.01 0.3 ± 0.04 0.05 ± 0.02

Z + 1 HF 0 ± 0 0 ± 0 0 ± 0

Z + 0 HF 0 ± 0 0 ± 0 0 ± 0

other 33.4 ± 11.9 64.9 ± 20.4 45.1 ± 16.5

Total 339 ± 21.4 1170 ± 67.9 577 ± 35.1

observed 341 1151 596

Data/MC 1.01 ± 0.08 0.98 ± 0.06 1.03 ± 0.08

Table 8.11: Event yields of three tt̄ validation regions. The signal contamination is very small

and the regions are dominated by tt̄.

well modelled, but a disagreement between data and simulation can be observed for

three and more b-jets. The number of b-jets observed in the data and simulation is

shown in Figure 8.7

Figure 8.7: Control plots for number of b-jets in eµ-Z-5j2b-VR and eµ-Z-6j2b-VR regions.

The mismodelling in ≥3b region might seem to be statistically insignificant, but it is observed

by many other analyses with significantly larger number of events.
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In order to deal with the modelling of the additional b-jets in the top-quark pair

production and to reduce effects of modelling and experimental systematic uncertainties

on this background, a data-driven estimate of the tt̄ background has been employed.

The data events from eµ validation regions are used in the signal regions as the

data-driven tt̄ background estimate. The non-tt̄-background and tt̄Z contributions in

eµ regions are estimated from Monte Carlo and subtracted from data, so the resulting

distributions, (dataeµ - non-tt̄-MCeµ), correspond to tt̄ only contribution.

The different detector efficiency and slightly different τ → e and τ → µ branching

ratios are taken into account using a multiplicative scale factor estimated from tt̄ Monte

Carlo. The eµ data events are reweighted using the ratio of the tt̄ events with `` lepton

pair to the events with eµ pair:

Ctt̄ =
N ``
tt̄

N eµ
tt̄

= 0.981± 0.030, (8.2)

where N ``
tt̄ is Monte Carlo prediction for tt̄ events after `` selection and N eµ

tt̄ is Monte

Carlo prediction for tt̄ after eµ selection. The uncertainty± 0.030 comes from statistical

and tt̄ modelling (Powheg+Pythia8 vs. aMC@NLO+Pythia8) uncertainty of the ratio.

It is applied as a systematics uncertainty on the data-driven tt̄ normalization in the

fit. The ratio is calculated from the sum of events from all three (6j1b, 5j2b and 6j2b)

regions together. Calculating the ratio in individual regions is consistent with the value

0.981 ± 0.030, however its uncertainty is larger because of a lower number of available

events. Since there is no expected difference between tt̄ `` and eµ events among the

regions, the global value of the ratio is further used in the analysis.

The shapes of Neural Network and Boosted Decision Tree outputs, as well as distri-

butions of all their input variables have been checked in Monte Carlo, comparing their

shapes and normalizations in eµ and `` events. No statistically significant difference

has been found. The plots comparing shape of the variables between `` and eµ Monte

Carlo for top-quark pair production can be found in Appendix .1.

Because of a low number of events in eµ data, the data-driven tt̄ estimate cannot

be used for the NN and BDT training. The low number of available events would lead

to a large overtraining. In order to estimate an effect of the overtraining, the Monte

Carlo based tt̄ estimate is also used in overtraining checks, such as ROC curve plots

and comparison of the MVA response on training and testing samples. However, the

data-driven tt̄ background estimate is used in the rest of the analysis such as in the

control plots, yield tables, fit, studies of the fit sensitivity, modelling studies, etc.
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8.5.1 Neural Network and Boosted Decision Tree validation

In order to validate the response of the BDT and NN in an independent region and

check the agreement between simulation and data, the eµ validation regions have been

used. The distributions of the NN and BDT outputs are shown in Figure 8.8. No

statistically significant discrepancies have been found.
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Figure 8.8: The Boosted Decision Tree (top) and Neural Network (bottom) output distribu-

tions in three tt̄ validation regions: eµ-Z-6j1b-VR region (first column), eµ-Z-5j2b-VR region

(second column) and eµ-Z-6j2b-VR region (the last column). The Neural Network has been

trained using the 12 leading variables shown in Table 8.5, the Boosted Decision Tree has

been trained using the variables from Table 8.8. The shaded bands show both statistical and

systematic uncertainty of Monte Carlo. No significant disagreement between data and Monte

Carlo has been found.
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8.6 Fit strategy

In order to extract the cross section of the tt̄Z, the nuisance parameter fit described in

Section 7.2 has been used. The distributions of the MVA output in the three analysis

regions are fitted. The choice of the MVA type and binning choice will be described in

Section 8.7.

In order to reduce systematic uncertainties on the tt̄ background and deal with a

possible missmodelling, the fully data-driven technique of the tt̄ background described

in Section 8.5 has been employed to obtain the tt̄ templates used in the fit. Limited

number of events in the data driven tt̄ templates is taken into account as additional

systematic uncertainty.

The Z+jets background has been split into three parts, based on a number of

truth heavy flavour jets2 in an event: Z+0 HF, Z+1 HF and Z+2 HF (the last one

includes events with two and more truth heavy flavour jets). The normalization of

Z+0 HF component has been estimated from Monte Carlo and 10% uncertainty has

been assigned to it. The normalizations of Z+1 HF and Z+2 HF are free parameters of

the fit, so the fit can extract them from low MVA output regions, which are dominated

by Z+jets with a low signal contamination.

The fit has three free parameters: tt̄Z normalization, Z + 1HF normalization and

Z + 2HF normalization. Each of the normalizations is described by a µ parameter,

which is the ratio between the fitted cross section and the Monte Carlo prediction of

the cross section (µ = 1 means the perfect agreement between data and prediction).

The set of systematic uncertainties described in Section 6 has been considered. Each

of the systematic variations is described by a nuisance parameter in the fit.

In optimization studies, so-called Asimov fit is used. The Asimov fit is fit of Monte

Carlo templates to the same Monte Carlo. The mean values of the fitted parameters

agree with their Monte Carlo predictions, but their uncertainties provide an estimate

of the final uncertainty of the measurement. The Asimov fit is used also to choose the

final MVA choice from the NN and BDT and optimize the binning choice for the MVA

output histograms.

2The jet initiated by a c or b hadron is considered to be a heavy flavour jet. The Monte Carlo information

from the parton level event has been employed to assign the hadron to the jets.
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8.7 Asimov fit results

8.7.1 Asimov fit results using Neural Network

Binning optimization

In order to reach the best signal sensitivity, it is necessary to study effects of the

binning choice. A wider binning leads to lower statistical fluctuations in individual bins,

making the fit more stable and it reduces technical problems with low number of events

in the bins and possible negative bin contents caused by the statistical fluctuations

of the Monte Carlo events. On the other hand, wide bins are less sensitive to the

shape differences between signal and background distributions, which increases the

uncertainty of the measurement. The reasonable choice of the binning is a trade of

between the stability against the statistical fluctuations and a reasonable sensitivity to

the shape difference between signal and background templates.

The following numbers of bins have been tested in the fit of the Neural Network out-

put: 1, 2, 5, 10 and 19. The NN output is from the interval [-1, 1], thus the histograms

with 1, 2, 5 and 10 bins have the equally wide bins, covering this interval. However, for

20 bins, the last bin, covering the interval [0.9, 1], contains a very few events for tt̄ and

other minor background sources, which prevents the fit from converging for this bin-

ning choice. If the last two bins ([0.8, 0.9] and [0.9, 1.0]) are merged together, ending

up with 19 bins, the fit converges reaching the best signal sensitivity from the tested

options. The higher number of bins than 20 were tested as well, but the problems with

negative bin contents started to be very significant for such high number of bins and

thus the fit is not able to converge. Table 8.12 summarizes expected fitted signal cross

section and its uncertainty for the tested binning choices.

The 19 bins from interval [-1, 0.9], with the last bin including also overflow, have

been chosen as the final binning choice.

Fit results for the final binning choice

Fitting the Neural Network output distributions showed on the bottom of Figure 8.3,

the results summarized in Table 8.13 have been obtained. The plots showing nuisance

parameters and uncertainties on their post-fit values, together with the correlation

matrix of the fit parameters, are shown in Figure 8.9.
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Figure 8.9: Nuisance parameters plot (left) and correlation matrix (right) for the Asimov fit

of the Neural Network output distribution. The black dots (lines) in the nuisance parameter

plot show mean value (uncertainty) of the post-fit distribution of the nuisance parameter.

The green band shows pre-fit uncertainty on the nuisance parameters.
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Number of bins Fitted signal cross section

1 1.000 +1.997
−2.008

2 1.000 +0.535
−0.537

5 1.000 +0.371
−0.344

10 1.000 +0.345
−0.319

19 1.000 +0.343
−0.315

Table 8.12: The fitted signal cross section and its uncertainty, as the ratio between fitted value

and Monte Carlo prediction, extracted from the Asimov fit of the NN output distribution for

various binning choices. The uncertainties include both statistical and systematic uncertainty.

Parameter Value

µtt̄Z 1.000 +0.218
−0.212 (stat.) +0.265

−0.233 (syst.) = 1.000 +0.343
−0.315

µZ+1HF 1.000 +0.053
−0.053 (stat.) +0.276

−0.234 (syst.) = 1.000 +0.281
−0.240

µZ+2HF 1.000 +0.036
−0.036 (stat.) +0.151

−0.128 (syst.) = 1.000 +0.155
−0.133

Table 8.13: The fitted signal cross and Z+HF normalizations obtained from Asimov fit of

Neural Network output for the best binning choice (19 bins from -1.0 to 0.9).

8.7.2 Asimov fit results using Boosted Decision Tree

Binning optimization

The binning optimization for the fit of the BDT output was similar to the optimization

of the NN output binning. The same binning choices have been tested, leading to

the same conclusion: The best binning choice is 19 bins from -1.0 to 0.9. Table 8.14

summarizes the fitted signal cross section and its uncertainty obtained from the Asimov

fit of the BDT output distributions for the various binning choices.

Fit results for the final binning choice

Fitting the Boosted Decision Tree output distributions showed on the bottom of Fig-

ure 8.6, the results summarized in Table 8.15 have been obtained. The plots showing

nuisance parameters and uncertainties on their post-fit values, together with the corre-

lation matrix of the fit parameters, are shown in Figure 8.10. The effects of 20 leading

systematics uncertainties are shown in Figure 8.11. The expected signal significance

(exclusion of the background only hypothesis) is 3.8 σ.
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Number of bins Fitted signal cross section

1 1.000 +1.997
−2.008

2 1.000 +0.533
−0.535

5 1.000 +0.348
−0.325

10 1.000 +0.320
−0.294

19 1.000 +0.312
−0.288

Table 8.14: The fitted signal cross section and its uncertainty, as the ratio between fitted

value and Monte Carlo prediction, extracted from the Asimov fit of the BDT output distri-

butions for various binning choices. The uncertainties include both statistical and systematic

uncertainty.

Parameter Value

µtt̄Z 1.000 +0.207
−0.201 (stat.) +0.233

−0.207 (syst.) = 1.000 +0.312
−0.288

µZ+1HF 1.000 +0.053
−0.053 (stat.) +0.280

−0.238 (syst.) = 1.000 +0.285
−0.244

µZ+2HF 1.000 +0.036
−0.035 (stat.) +0.149

−0.127 (syst.) = 1.000 +0.153
−0.133

Table 8.15: The fitted signal cross and Z+HF normalizations obtained from Asimov fit of

the BDT output for the best binning choice (19 bins from -1.0 to 0.9).
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Figure 8.10: Nuisance parameters plot (left) and correlation matrix (right) for the Asimov

fit of Boosted Decision Tree output distribution.
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Figure 8.11: Effects of 20 leading systematic uncertainties in Asimov fit of BDT output dis-

tribution. The leading systematics uncertainty is shower-matching scale for Z+jets samples,

followed by uncertainty related to matrix element modelling in tt̄Z and b-tagging systematics

related to misstag rate for light jets. The expected mean value of nuisance parameters for

systematics is zero, while the expected mean value of Z+1HF and Z+2HF scale factors is

one.
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8.7.3 Asimov fit conclusion

Comparing the expected relative uncertainty on the signal cross section obtained from

NN fit (Table 8.13) and BDT fit (Table 8.15), the BDT has been chosen as the final

choice of the MVA used for the analysis. The expected signal cross section uncertainty

is lower in the BDT case. Correlation matrices of the systematic uncertainties are

similar for the both MVA methods.

The 19 bins of the same width, covering the BDT output interval from -1 to 0.9,

with the last bin including overflow, have been chosen as the final binning choice.

The expected signal significance is 3.8 σ. The expected uncertainty of the measure-

ment is summarized in Table 8.15.

8.8 Fit to data

Performing the fit to data on the BDT output distributions, showed in Figure 8.6 -

bottom line of plots, in the three signal regions of the dilepton channel, the signal and

background normalizations summarized in Table 8.16 have been obtained. The ob-

served signal significance is 3.0 σ (3.8 σ is expected). The fitted µtt̄Z value corresponds

to the cross section:

σ2l,measured
tt̄Z = σtheorytt̄Z × µtt̄Z = 0.636+0.152

−0.148(stat.)+0.203
−0.190(syst.) pb = 0.636+0.254

−0.241 pb, (8.3)

Parameter Value

µtt̄Z 0.721 +0.173
−0.168 (stat.) +0.230

−0.216 (syst.) = 0.721 +0.288
−0.273

µZ+1HF 1.072 +0.270
−0.234

µZ+2HF 1.084 +0.148
−0.132

Table 8.16: The fitted signal and Z+HF normalizations obtained from fit to data of the BDT

output. The Monte Carlo prediction of the cross section is taken as the unit of µ.

The plot with the post-fit values of nuisance parameters and their uncertainties,

together with the correlation matrix of the fit parameters are shown in Figure 8.12.

The ranking plot for the systematic uncertainties, showing the effects of 20 leading

systematics is shown in Figure 8.13.
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Figure 8.12: Nuisance parameters plot (left) and correlation matrix (right) for the Asimov

fit of the Boosted Decision Tree output distribution.
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Figure 8.13: Effects of 20 leading systematic uncertainties in the fit of BDT output distribu-

tion. The leading systematic uncertainty is the shower matching scale for Z+jets background,

followed by the normalizations of Z+1 HF and Z+2HF backgrounds. The expected mean

value Z+HF scale factors is one, while expected mean value of the other parameters is zero.

The pull in light-tag Eigenvar.1 nuisance parameter is caused by Z+0HF background in

2`-Z-6j1b region, where the Monte Carlo overestimates the data. The pull corrects this

discrepancy.
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8.9 Results from the tt̄Z trilepton and tetralepton channels,

and from tt̄W analysis

The aim of the total cross section measurement was to measure the tt̄Z and tt̄W cross

sections in the combined fit.

Two tt̄W channels are used in the analysis. The first tt̄W decay channel is the

same-sign dilepton, with the W boson decaying leptonically and the lepton+jets decay

of the top-quark pair, where the lepton from top-quark pair and the lepton from the

associated W boson have the same sign of charge. The other channel is the trilepton

channel, with the W boson decaying leptonically and the top-quark pair decaying

dileptonically.

Three channels sensitive to the tt̄Z contribution are used in the fit: 2`, 3` and 4`

channels.

The results obtained from the fit in the individual 3` and 4` tt̄Z channels will be

summarized in this section, as well as the results of the tt̄W fit.3

The results of the combined fit, for all the tt̄Z and tt̄W channels, fitting all the

channels together are summarized in Section 8.9.4 and they represent the final result

of the cross section measurement, published also in Reference [14].

8.9.1 Trilepton channel analysis

The trilepton channel targets the tt̄Z decay branch with the Z boson decaying lep-

tonically and top-quark pair decaying into lepton + jets. Three signal regions target

on-shell Z boson contribution and one signal region (labelled as ”noZ”) targets off-shell

Z boson contribution. A WZ production is the leading background in the trilepton

channel. In order to check its modelling and obtain its cross section, a dedicated WZ

control region (3`-Z-0b3j-CR) is used. Definitions of the four signal regions of the

trilepton channel, together with the WZ control region, are summarized in Table 8.17.

The event yields obtained from the simulation and observed numbers of events in

the individual regions of the trilepton channel are summarized in Table 8.18.

Contrary to the dilepton channel, the fit in the trilepton channel uses one bin per

region, fitting the event yields summarized in Table 8.18. The background rate in

the trilepton channel is significantly lower compared to the dilepton channel, which

3The author of the thesis worked only on the dilepton channel in the 2015 + 2016 data analysis. However,

for an overall understanding and overview of the analysis the author considers it to be important to bring also

a summary of results obtained from the other channels.
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Variable 3`-Z-1b4j 3`-Z-2b3j 3`-Z-2b4j 3`-noZ-2b4j 3`-Z-0b3j-CR

Triggers Defined in Table 8.1

Leptons = 3

pT (1st lepton) > 27 GeV

pT (2nd and 3rd lepton) > 20 GeV

One OSSF lepton pair required required required

|MOSSF
`` - MZ | < 10 GeV required vetoed required

njets ≥ 4 =3 ≥ 4 ≥ 4 =3

nb−jets =1 ≥ 2 ≥ 2 ≥ 2 =0

Table 8.17: Summary of the event selection in four signal regions and one control region of

the trilepton channel. OSSF stands for opposite-sign, same-flavour.

3`-Z-1b4j 3`-Z-2b3j 3`-Z-2b4j 3`-noZ-2b4j 3`-Z-0b3j-CR

tt̄Z 44.5 ± 5.32 57.0 ± 10.0 16.6 ± 3.30 12.7 ± 2.30 5.10 ± 1.20

tt̄W 0.491 ± 0.293 0.519 ± 0.336 0.826 ± 0.424 3.67 ± 1.91 0.184 ± 0.102

lllν 36.7 ± 12.0 7.05 ± 3.82 3.32 ± 1.62 1.05 ± 0.585 211 ± 22.4

llll 3.00 ± 0.616 0.534 ± 0.102 0.679 ± 0.264 0.328 ± 0.189 11.5 ± 1.99

tZ 2.89 ± 0.958 3.41 ± 1.13 3.66 ± 1.19 0.315 ± 0.138 1.42 ± 0.519

tWZ 6.74 ± 1.90 5.77 ± 1.99 2.07 ± 0.445 0.667 ± 0.301 2.17 ± 0.655

tt̄H 1.25 ± 0.193 1.42 ± 0.216 0.515 ± 0.0873 4.87 ± 0.656 0.110 ± 0.0344

Other 0.305 ± 0.161 0.375 ± 0.368 0.868 ± 1.04 2.13 ± 1.09 1.53 ± 1.17

Fakes 6.53 ± 2.85 4.01 ± 2.18 1.17 ± 1.15 3.16 ± 1.99 0 ± 0

γ +X 1.35 ± 1.15 0.492 ± 0.590 0.623 ± 0.649 4.88 ± 2.49 0 ± 0

Total 104 ± 14.2 80.6 ± 10.2 30.4 ± 4.47 33.8 ± 4.70 238 ± 23.0

Observed 86 78 45 37 211

Data/MC 0.83 ± 0.14 0.97 ± 0.16 1.48 ± 0.31 1.09 ± 0.24 0.89 ± 0.11

Table 8.18: Events yields in four signal regions and one control region of the trilepton channel.
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makes the fit sensitive enough even with one bin per region. There is no need to

use a multivariate analysis. The tt̄Z and WZ cross sections obtained from the fit

are summarized in Table 8.19. The signal significance was found to be 6.8 σ. The

µtt̄Z fitted in the trilepton channel corresponds to the following value of the tt̄Z cross

section:

σ3l,measured
tt̄Z = 0.95± 0.11(stat.)± 0.11(syst.) pb = 0.95+0.16

−0.15 pb, (8.4)

Parameter Value

µtt̄Z 1.08 +0.12
−0.12 (stat.) +0.13

−0.12 (syst.) = 1.08 +0.18
−0.17

µWZ 0.93 ± 0.07 (stat.) ± 0.10 (syst.) = 0.93 ± 0.12

Table 8.19: The fitted signal and WZ normalizations obtained from fit to data in the trilepton

channel. The Monte Carlo prediction of the cross section is taken as the unit of µ.

The ranking plot for the systematic uncertainties, showing the effects of 15 leading

systematic uncertainties, is shown in Figure 8.14.
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Figure 8.14: Effects of 15 leading systematic uncertainties in the trilepton channel fit. The

leading systematic uncertainty is b-tagging efficiency for b-jets, followed by uncertainty of the

WZ scale factor extrapolation from WZ control region to 3`-Z-1b4j signal region. The third

systematic uncertainty is the matrix element modelling of tt̄Z.
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8.9.2 Tetralepton channel analysis

The tetralepton channel targets the case with the Z boson decaying leptonically and

both W bosons from the top-quark pair also decaying leptonically.

In the final state, there are 2 b quarks, 4 leptons (OSSF lepton pair from Z boson

and the other opposite-sign pair from the top-quark pair) and two neutrinos from the

top-quark pair. If all the objects are reconstructed correctly, there are two b-jets, one

Z-like lepton pair (same flavour, opposite sign, M`` close to the Z-mass), another OS

lepton pair and missing transverse energy Emiss
T .

In the event reconstruction, the OSSF lepton pair with the invariant mass closest

to the Z-mass is considered to be the lepton pair from the Z-boson decay and it is

labelled as Z1. The other lepton pair is considered to originate from the top-quark pair

and it is labelled Z2. The signal regions are split according to the flavour of the Z2

leptons into different-flavour (DF) and same-flavour (SF) signal regions.

The main background in the tetralepton channel is ZZ → ````. This background

affects mostly the same-flavour signal regions, however it also contributes to different

flavour signal regions through Z → τ+τ− → e∓νe±ντ∓µ
±νµ∓ντ± decays. The ZZ

background is reduced requiring a minimal number of jets and b-jets and applying MZ2

and Emiss
T cuts.

Another important background in the tetralepton channel is tWZ, which is irre-

ducible, since the particles in the final state are similar to the tetralepton tt̄Z. The

only difference is one b quark, however, in the tetralepton channel, also regions with

exactly one b-jet are defined.

Associated production of the Higgs boson and the top-quark pair (tt̄H) and fake

leptons also contribute to the background.

In order to target the events from the tt̄Z tetralepton channel, the following selection

common to all 4` signal and control regions is applied:

• exactly 4 leptons, sum of their charges equal to zero

• at least one OSSF lepton pair

• all OS lepton pairs must satisfy the condition M`` > 15 GeV in order to suppress

the background from leptonically decaying resonances and photon conversions

• p1 lep
T > 27 GeV

In addition to the already mentioned common selection to all signal and control

regions, further cuts are applied in order to define the four signal regions and one control
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region, defined in Table 8.20. The composition of the background is different between

same-flavour and different-flavour regions. In order to suppress the ZZ background,

contributing mainly to the same-flavour signal regions, combined cuts on the missing

transverse energy Emiss
T and invariant mass of the Z2 lepton pair are applied. If the

invariant mass of the Z2 pair is compatible with the Z-boson mass, higher cut on the

Emiss
T is applied in order to cut off the ZZ background. If the Z2 pair is not compatible

with the Z-boson mass, the cut is relaxed.

Region Z2 leptons pT4 pT34 |m`` −mZ2 | EmissT Nb-jets

4`-DF-1b e±µ∓ > 7 GeV > 35 GeV - - 1

4`-DF-2b e±µ∓ > 10 GeV - - - ≥ 2

4`-SF-1b e±e∓, µ±µ∓ > 7 GeV > 25 GeV {
> 10 GeV

< 10 GeV

> 40 GeV

> 80 GeV
} 1

4`-SF-2b e±e∓, µ±µ∓ > 10 GeV - {
> 10 GeV

< 10 GeV

-

> 40 GeV
} ≥ 2

4`-ZZ-CR e±e∓, µ±µ∓ > 7 GeV - < 10 GeV [20 GeV; 40 GeV] -

Table 8.20: Definitions of the four signal regions and ZZ control region of the tetralepton

channel. pT34 stands for scalar sum of the third and fourth lepton pT. pT4 stands for

transverse momentum of the fourth lepton. The leptons are ordered by their pT decreasingly.

The event yields obtained from the simulation and observed numbers of events in

the individual regions of the tetralepton channel are summarized in Table 8.21.

Similarly to the fit in the trilepton channel, one bin per region is used in the

tetralepton channel, fitting the event yields summarized in Table 8.21. The signal

and ZZ normalizations obtained from the fit are summarized in Table 8.22. The signal

significance is 5.7 σ. The µtt̄Z fitted in the tetralepton channel corresponds to the

following value of the tt̄Z cross section:

σ4l,measured
tt̄Z = 1.07+0.25

−0.22(stat.)+0.10
−0.11(syst.) pb = 1.07+0.26

−0.25 pb, (8.5)

The ranking plot for the systematic uncertainties, showing effects of 15 leading

systematics, is shown in Figure 8.15.
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4`-SF-1b 4`-SF-2b 4`-DF-1b 4`-DF-2b 4`-ZZ-CR

tt̄Z 6.56 ± 0.39 6.14 ± 0.56 7.38 ± 0.42 5.99 ± 0.74 0.13 ± 0.04

ZZ 2.27 ± 0.75 1.06 ± 0.52 0.19 ± 0.06 0 ± 0 145.93 ± 20.84

tWZ 1.60 ± 0.46 0.55 ± 0.26 1.57 ± 0.30 0.51 ± 0.26 0 ± 0

tt̄H 0.58 ± 0.07 0.62 ± 0.09 0.68 ± 0.08 0.57 ± 0.08 0 ± 0

Other 0.12 ± 0.03 0.09 ± 0.03 0.20 ± 0.05 0.10 ± 0.02 0.51 ± 0.36

Fakes 1.84 ± 0.82 1.23 ± 0.62 0.93 ± 0.16 0.39 ± 0.11 7.35 ± 9.14

Total 12.97 ± 1.33 9.69 ± 1.17 10.95 ± 0.65 7.57 ± 0.88 153.92 ± 24.71

Observed 18 14 11 5 144

Data/MC 1.39 ± 0.36 1.44 ± 0.42 1.00 ± 0.31 0.66 ± 0.31 0.94 ± 0.17

Table 8.21: Events yields in the four signal regions and one control region of the tetralepton

channel.

Parameter Value

µtt̄Z 1.21 +0.28
−0.25 (stat.) +0.11

−0.12 (syst.) = 1.21 +0.30
−0.28

µZZ 0.94 ± 0.18

Table 8.22: The fitted signal and ZZ normalizations obtained from fit to data in the tetralep-

ton channel. The Monte Carlo prediction of the cross section is taken as the unit of µ.
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Figure 8.15: Effects of 15 leading systematic uncertainties in the tetralepton channel fit. The

leading systematic uncertainty is the matrix element modelling of the tWZ background, fol-

lowed by the b-tagging efficiency for b-jets and electron identification efficiency. The gammas

stand for statistical uncertainty of Monte Carlo templates, it is a ratio between the fitted

value (providing the best likelihood) and the value predicted by the Monte Carlo (which

suffers from statistical fluctuations). The gammas are expected to have mean values equal

to one. The mu XS ZZ stands for ZZ normalization (expected mean value is one).
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8.9.3 tt̄W signal regions

The tt̄W cross section is measured in two decay channels: same-sign dilepton and

trilepton. The same-sign dilepton channel is further split into 12 signal regions, based

on the type of the leptons (ee, eµ, µµ), b-jet multiplicity (=1b, ≥ 2b) and sign of the

lepton charge (pp for plus-plus and mm for minus-minus). The trilepton tt̄W channel

is further split into 4 signal regions, based on the b-jet multiplicity and sign of the

lepton charges sum.

The splitting based on the sign of the lepton charge is motivated by an asymmetry

in tt̄W production. Since there are pp collisions at the LHC, the environment is not

charge symmetric. Contrary to the tt̄Z which is produced either by gg fusion or qq̄

annihilation, where the initial state partons are charge symmetric, the tt̄W is produced

only in q′q̄ interaction, where both q′ and q̄ have the same sign of the electric charge.

Since there are two u quarks, but only one d valence quark in the proton, the production

of tt̄W+ has a higher cross section compared to the tt̄W− production. While the signal

is charge asymmetric, the backgrounds are almost charge symmetric. The splitting

based on the lepton charge helps to reach a higher signal sensitivity.

The event selection for the dilepton same-sign signal regions is summarized in Ta-

ble 8.23, the selection applied in trilepton tt̄W signal regions is summarized in Ta-

ble 8.24.

Requirement Region

nb−jets ==1 (for the 6 ” 1b” regions), ≥ 2 (for the 6 ” 2b” regions)

Emiss
T > 20 GeV for the 2 ”µµ 2b” regions and > 40 GeV for the others

HT > 240 GeV for all regions

pT (1st lepton) > 27 GeV for all regions

pT (2nd lepton) > 27 GeV for all regions

nJets ≥ 2 for the 2 ”mumu 2b” regions and ≥ 4 for the others

Z-veto for the 8 regions with same flavour leptons (”mumu” and ”ee”)

Table 8.23: Summary of the event selection in the same-sign dilepton tt̄W signal regions.

The Z-veto stands for vetoing a lepton pair compatible with Z-boson mass, |MOSSF
`` - MZ |

< 10 GeV, and it is applied in order to suppress the Z+jets contribution with misidentified

sign of a lepton charge in the same-flavour regions. HT stands for the scalar sum of leptons

and jets pT.

The event yields in tt̄W signal regions are summarized in Table 8.25 (3` regions),
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Variable 3Lp-noZ2b2j 3Lm-noZ2b2j 3Lp-noZ1b2j 3Lm-noZ1b2j

Leptons ==3

Lepton pT > 27 GeV

Z-like OSSF pair vetoed

Sum of lepton charges +1 −1 +1 −1

HT > 0 GeV > 240 GeV

njets 2 or 3

nb−jets ≥ 2 ≥ 2 1 1

Table 8.24: Definition of the four trilepton tt̄W signal regions. ”noZ” in the region name

stands for Z-like pair veto. It is applied in order to remove an overlap with trilepton tt̄Z

signal regions and to suppress WZ and tt̄Z contribution.

Table 8.26 (2` SS 1b regions) and Table 8.27 (2` SS 2b regions).

3Lp-noZ2b2j 3Lm-noZ2b2j 3Lp-noZ1b2j 3Lm-noZ1b2j

tt̄Z 2.19 ± 0.49 2.05 ± 0.56 3.24 ± 0.55 3.07 ± 0.47

tt̄W 5.97 ± 1.10 3.47 ± 1.81 6.32 ± 0.55 3.20 ± 0.37

WZ 0.58 ± 0.30 0.20 ± 0.12 6.22 ± 2.14 5.45 ± 2.01

tZ 0.19 ± 0.09 0.17 ± 0.08 1.00 ± 0.35 0.48 ± 0.17

tWZ 0 ± 0 0.10 ± 0.11 0.46 ± 0.17 0.62 ± 0.21

tt̄H 1.02 ± 1.45 1.08 ± 1.44 1.35 ± 1.80 1.42 ± 1.83

Other 0.11 ± 0.08 0.13 ± 0.10 0.23 ± 0.14 0.18 ± 0.11

DDCF 0 ± 0 0 ± 0 0 ± 0 0 ± 0

γ +X 0.46 ± 0.80 1.96 ± 1.76 1.02 ± 0.83 1.48 ± 1.06

Fakes 2.92 ± 0.51 4.78 ± 0.83 6.41 ± 1.87 7.88 ± 2.77

Total 13.44 ± 3.01 13.93 ± 4.44 26.25 ± 5.23 23.77 ± 6.10

Observed 11 14 30 15

Data/MC 0.82± 0.31 1.00± 0.42 1.14± 0.31 0.63± 0.23

Table 8.25: The event yields in four trilepton tt̄W signal regions.

Performing the fit in 16 tt̄W signal regions, using one bin per region, the tt̄W

normalization µtt̄W = 1.41+0.34
−0.32 has been obtained, corresponding to the following value

of tt̄W cross section:

σmeasuredtt̄W = 0.85 +0.20
−0.19 pb (8.6)

The signal significance is 4.3 σ. The ranking plot of systematic uncertainties is

shown in Figure 8.16
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µµ-SSpp 1b µµ-SSmm 1b eµSSpp 1b eµ-SSmm 1b ee-SSpp 1b ee-SSmm 1b

tt̄Z 1.56 ± 0.31 1.79 ± 0.31 3.81 ± 0.59 3.82 ± 0.60 1.39 ± 0.29 1.46 ± 0.27

tt̄W 7.35 ± 0.78 3.73 ± 0.96 13.86 ± 1.28 7.55 ± 0.73 5.29 ± 0.53 2.90 ± 0.32

WZ 2.47 ± 1.90 1.18 ± 0.56 4.46 ± 2.22 3.03 ± 1.29 1.42 ± 0.64 1.03 ± 0.44

tZ 0.11 ± 0.07 0.07 ± 0.04 0.27 ± 0.14 0.22 ± 0.09 0.10 ± 0.06 0.10 ± 0.08

tWZ 0.18 ± 0.12 0.26 ± 0.17 0.52 ± 0.17 0.54 ± 0.20 0.21 ± 0.15 0.19 ± 0.11

tt̄H 1.72 ± 0.27 1.81 ± 0.27 3.50 ± 2.18 3.86 ± 0.48 1.55 ± 0.25 1.50 ± 0.25

Other 0.32 ± 0.17 0.35 ± 0.19 0.65 ± 0.34 0.56 ± 0.29 0.36 ± 0.22 0.23 ± 0.13

DDCF 0.04 ± 0.00 0.04 ± 0.00 2.32 ± 0.25 2.29 ± 0.24 1.76 ± 0.20 1.77 ± 0.19

γ +X 0 ± 0 0 ± 0 4.40 ± 2.02 4.55 ± 2.34 5.18 ± 3.06 3.12 ± 1.89

Fakes 7.13 ± 2.19 5.18 ± 1.39 14.09 ± 3.89 8.18 ± 1.92 1.53 ± 1.10 1.37 ± 0.99

Total 20.89 ± 5.51 14.41 ± 3.93 47.88 ± 8.84 34.59 ± 5.17 18.81 ± 3.68 13.67 ± 2.63

Observed 15 19 46 43 27 14

Data/MC 0.72± 0.26 1.32± 0.47 0.96± 0.23 1.24± 0.27 1.44± 0.39 1.02± 0.34

Table 8.26: The event yields in six tt̄W dilepton same-sign 1b signal regions.

µµ-SSpp 2b µµ-SSmm 2b eµ-SSpp 2b eµ-SSmm 2b ee-SSpp 2b ee-SSmm 2b

tt̄Z 3.19 ± 0.50 3.23 ± 0.49 4.56 ± 0.73 4.68 ± 0.76 1.71 ± 0.40 1.78 ± 0.35

tt̄W 15.32 ± 1.84 8.09 ± 1.53 18.68 ± 1.88 9.60 ± 1.14 6.79 ± 0.97 3.43 ± 0.50

WZ 0.58 ± 0.28 0.31 ± 0.16 0.98 ± 0.56 0.33 ± 0.21 0.57 ± 0.47 0.16 ± 0.11

tZ 0.39 ± 0.25 0.14 ± 0.09 0.50 ± 0.22 0.15 ± 0.08 0.18 ± 0.08 0.05 ± 0.05

tWZ 0.35 ± 0.27 0.34 ± 0.15 0.40 ± 0.21 0.28 ± 0.13 0 ± 0 0 ± 0

tt̄H 2.66 ± 0.37 2.94 ± 0.40 4.72 ± 0.60 4.97 ± 0.60 1.86 ± 0.29 1.72 ± 0.27

Other 1.01 ± 0.53 0.85 ± 0.44 1.62 ± 0.83 1.74 ± 0.89 0.64 ± 0.33 0.73 ± 0.38

DDCF 0.14 ± 0.01 0.14 ± 0.01 2.92 ± 0.31 2.94 ± 0.31 2.15 ± 0.23 2.20 ± 0.24

γ +X 0 ± 0 0 ± 0 6.34 ± 2.74 2.23 ± 1.86 2.02 ± 1.74 2.79 ± 1.88

Fakes 11.21 ± 2.52 12.95 ± 2.76 15.35 ± 2.09 12.78 ± 1.80 4.23 ± 1.05 3.58 ± 0.90

Total 34.83 ± 6.03 28.99 ± 6.22 56.07 ± 6.03 39.69 ± 5.29 20.15 ± 2.95 16.44 ± 2.71

Observed 43 23 56 39 18 19

Data/MC 1.23± 0.28 0.79± 0.24 1.00± 0.17 0.98± 0.20 0.89± 0.25 1.16± 0.33

Table 8.27: The event yields in six tt̄W dilepton same-sign 2b signal regions.
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Figure 8.16: The ranking plot showing effects of individual systematic uncertainties of the

tt̄W total cross section fit in 16 signal regions.

8.9.4 Combined fit

After optimizing the signal sensitivity of the individual channels, the combined fit has

been performed. The combined fit included the three tt̄Z channels: 2`, 3` and 4`,

together with 2` SS and 3` channels of the tt̄W . All signal and control regions already

mentioned in this chapter were included in the fit.

The systematic uncertainties are correlated among the channels and regions, thus

the fit is able to constrain effects of some systematic uncertainties and reduce the total

systematic uncertainty.

The results of the combined fit are summarized in Table 8.28. The tt̄Z signal

significance is 8.9 σ. The µtt̄Z and µtt̄W values from the table correspond to the following

cross section values:

σmeasuredtt̄W = 0.87 ± 0.13(stat.) ± 0.14(syst.) pb = 0.87 ± 0.19 pb (8.7)

σmeasuredtt̄Z = 0.95 ± 0.08(stat.) ± 0.10(syst.) pb = 0.95 ± 0.13 pb (8.8)

The effects of statistical and systematic uncertainties are summarized in Table 8.29.
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Parameter Value

µtt̄Z 1.08 ± 0.14

µtt̄W 1.44 ± 0.32

µZ+1HF 1.19 ± 0.25

µZ+2HF 1.09 ± 0.13

µWZ 0.91 ± 0.10

µZZ 1.11 ± 0.17

Table 8.28: The fitted signal and background normalizations obtained from the combined fit.

The Monte Carlo prediction of the cross section is taken as the unit of µ.

Category tt̄Z POI tt̄W POI

Luminosity 2.9% 4.5%

Simulated sample statistics 2.0% 5.3%

Data-driven background statistics 2.5% 6.3%

JES/JER 1.9% 4.1%

Flavour tagging 4.2% 3.7%

Other object-related 3.7% 2.5%

Data-driven background normalisation 3.2% 3.9%

Modelling of backgrounds from simulation 5.3% 2.6%

Background cross section 2.3% 4.9%

Fake leptons and charge misID 1.8% 5.7%

tt̄Z modelling 4.9% 0.7%

tt̄W modelling 0.3% 8.5%

Total systematic uncertainty 10.2% 16.0%

Statistical uncertainty 8.4% 15.2%

Total 13.0% 22.2%

Table 8.29: The effects of systematic uncertainties on tt̄Z and tt̄W cross sections.
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8.10 Post-Fit results in the dilepton channel

Replacing Pre-Fit (Monte Carlo prediction) values of Z+HF and tt̄Z normalizations,

and values of nuisance parameters related to the systematic uncertainties, by the values

and corresponding uncertainties obtained from the combined fit, the yields summarized

in Table 8.30 have been obtained.

2`-Z-6j1b 2`-Z-5j2b 2`-Z-6j2b

tt̄Z 78.0 ± 11.3 78.6 ± 9.69 122 ± 14.1

tt̄ 330 ± 9.76 1120 ± 33.0 577 ± 17.1

Z + 2 HF 908 ± 112 1590 ± 104 790 ± 62.5

Z + 1 HF 1470 ± 173 212 ± 52.1 106 ± 26.3

Z + 0 HF 468 ± 96.8 48.6 ± 20.2 18.4 ± 8.97

other 189 ± 65.5 157 ± 42.0 108 ± 28.5

Total 3450 ± 68.2 3210 ± 71.2 1720 ± 44.2

Data 3433 3272 1749

Data/MC 1.00 ± 0.03 1.02 ± 0.03 1.02 ± 0.04

Table 8.30: The Post-Fit event yields of the three signal regions of the dilepton channel.

The fitted values of signal, Z + 1 HF and Z + 2 HF normalizations, as well as the fitted

values of nuisance parameters related to the systematic uncertainties, have been applied. The

uncertainties include both statistical and systematic uncertainties. The fitted event yields

obtained from the Monte Carlo are in a very good agreement with the observed number of

events.

The Post-Fit plots for the BDT output distributions are shown in Figure 8.17.

The Post-Fit distributions of the BDT input variables are shown in Appendix .1
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Figure 8.17: The Post-Fit distributions of BDT output in three dilepton signal regions. A

good agreement between the data and Monte Carlo prediction can be observed.



Chapter 9

4` channel analysis at full Run II

dataset (139 fb−1)

After finishing the analysis at 2015 and 2016 data, the increasing luminosity, corre-

sponding to 139 fb−1 collected during the Run II (2015-2018) brought new possibilities

in the tt̄Z process analysis. The number of events obtained from the full Run II dataset

is high enough to enable a differential cross section measurement, as well as to improve

a precision of the total cross section measurement, reaching an uncertainty similar, or

maybe, even lower than the uncertainty of the theory prediction.

The main focus of the first tt̄Z full Run II dataset analysis is given to the differential

cross section measurement which, however, will not be described in this thesis. Since

the dilepton channel, used already in the previous analysis, is very challenging because

of its high background rate, only the 3` and 4` channels are used in the current analysis.

This is the first tt̄Z differential cross-section measurement performed by ATLAS. The

CMS collaboration published recently a paper presenting an analysis performed at

77.5 fb−1 of data (corresponding to 2015-2017 period of data taking), measuring the

total cross section as well as the differential cross section in two variables: pT of the

Z-boson and cosine of angle between the negatively charged lepton from the Z boson

and the Z boson itself [16].

This thesis will focus mostly on the total cross section measurement in the tetralep-

ton channel. While the total cross section measurement at 36.1 fb−1 in the 3` channel

was almost limited by the systematic uncertainty, reaching the same statistical and

systematic uncertainty as shown in Eq. 8.4, the 4` channel was still dominated by the

statistical uncertainty, as shown in Eq. 8.5. Due to the high statistical uncertainty of

the previous measurement, a significant improvement can be expected in the 4` channel

149
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with the full Run II dataset.

The analysis of the full Run II dataset is still in progress, with some Monte Carlo

samples not yet available and several optimization studies in progress. This chapter of

the thesis is meant to document the current analysis status from the total cross section

point of view, and give an expected uncertainty on the tt̄Z cross section obtained

from the tetralepton channel with the full Run II dataset. The thesis does not aim to

present a result of a fit to data at the full Run II dataset, since the missing systematic

uncertainties might have an effect on both mean value and uncertainty of the fitted

cross section. Only the Asimov fit results are going to be presented.

9.1 Selection

The event selection in the tetralepton channel was motivated by the selection previously

used at 36.1 fb−1 analysis, however, it was improved for the purpose of the differential

measurement, taking into account also higher number of available data events.

Since a combined fit of the 3` and 4` channels is planned, the optimization of object

definitions, such as b-tagging working point, lepton isolation and identification etc., is

based on a compromise between 3` and 4` channel needs. The main difference with

respect to the previous analysis was in relaxing the b-tagging requirement, switching

to the threshold corresponding to 85 % efficiency for b-jets. Since the main goal of the

analysis is the differential cross-section measurement, targeting also tt̄ system recon-

struction, the events with exactly one jet cannot be used, while they were used in the

previous analysis.

The different requirements on the number of jets and b-tagging changed background

fractions and compositions. The cuts used previously and summarized in Sec 8.9.2 had

to be reoptimized.

As the result of the optimization, the following cuts have been obtained:

• exactly 4 leptons

• p1lep
T > 27 GeV, p2lep

T > 20 GeV, p3lep
T > 10 GeV

• at least one OSSF lepton pair with |M`` −MZ | < 10 GeV

• sum of lepton charges == 0

• M`` > 10 GeV for all OSSF lepton pairs (in order to suppress a background from

photon conversions and decay of resonances)
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In addition to the already mentioned selection, four signal regions and one control

region for the ZZ background are defined by the cuts in Table 9.1. Similarly to the

previous analysis, the OSSF lepton pair with the invariant mass closest to the Z boson

mass is considered to originate from the Z-boson decay and labelled Z1. The other

lepton pair is considered to originate from the top-quark pair and it is labelled Z2.

Region Z2 leptons |mZ −mZ2 | EmissT Nb-jets Njets

4`-DF-1b e±µ∓ - - == 1 ≥ 2

4`-DF-2b e±µ∓ - - ≥ 2 ≥ 2

4`-SF-1b e±e∓, µ±µ∓ {
> 10 GeV

< 10 GeV

> 50 GeV

> 100 GeV
} == 1 ≥ 2

4`-SF-2b e±e∓, µ±µ∓ {
> 10 GeV

< 10 GeV

-

> 50 GeV
} ≥ 2 ≥ 2

4`-CR-ZZ e±e∓, µ±µ∓ < 10 GeV 20 GeV < EmissT < 40 GeV - -

Table 9.1: The definitions of four signal regions and ZZ control region of tetralepton channel.

9.2 Event yields

Applying the selection summarized in the previous section, the event yields shown in

Table 9.2 have been obtained.

9.3 Asimov Fit

In order to extract an expected uncertainty on the signal cross section, the nuisance

parameter fit with similar approach to the previous analysis is used. The four signal

regions and one control region are included in the fit, each region having one bin,

reflecting expected event yields. The fit has two free parameters: the tt̄Z normalization

and ZZ normalization. A set of nuisance parameters is used for the systematics.

In the time of the thesis writing, some of the Monte Carlo samples correspond-

ing to a matrix element modelling and parton showering and hadronization were not

available. Due to this, the following systematic uncertainties are missing in the fit: tt̄Z

matrix element modelling, tWZ matrix element modelling and tWZ parton showering.

In order to compensate an effect of missing samples for theory uncertainties on the ZZ

background, additional uncertainty ± 50 % have been assigned to ZZ+HF normaliza-
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4`-SF-1b 4`-SF-2b 4`-DF-1b 4`-DF-2b 4`-CR-ZZ

tt̄Z 12.37 ± 0.59 22.05 ± 1.03 16.36 ± 0.90 21.47 ± 1.01 0.62 ± 0.10

ZZ 3.42 ± 0.92 4.41 ± 1.41 0.79 ± 0.15 0.11 ± 0.04 480.1 ± 23.0

tWZ 2.71 ± 0.30 1.86 ± 0.25 3.18 ± 0.32 1.74 ± 0.34 0.12 ± 0.09

tt̄H 0.45 ± 0.06 0.73 ± 0.09 0.54 ± 0.07 0.71 ± 0.09 0.02 ± 0.01

Fakes 2.03 ± 0.55 1.99 ± 0.79 1.90 ± 0.65 1.03 ± 0.45 22.49 ± 9.93

other 0.03 ± 0.02 0.11 ± 0.06 0.02 ± 0.02 0.09 ± 0.05 0.76 ± 0.68

Total 21.02 ± 1.35 31.15 ± 2.10 22.80 ± 1.27 25.15 ± 1.26 504.1 ± 25.0

data 18 30 31 31 519

Data/MC 0.86 ± 0.21 0.96 ± 0.19 1.36 ± 0.26 1.23 ± 0.23 1.03 ± 0.07

Table 9.2: The yields in 4 signal regions and ZZ control region of the tetralepton channel with

the full Run II dataset, corresponding to 139 fb−1 of data. The uncertainties include both

statistical and systematic uncertainties, except of tWZ, ZZ and tWZ modelling systematics,

since the related samples were not yet available in the time of the thesis writing. Good

data/MC agreement is observed in all regions.

tion (associated production of the ZZ with b-jets). This uncertainty is considered to

be conservative enough.

Performing the Asimov fit, the following signal and ZZ normalizations have been

obtained:

µ4`,Asimov
tt̄Z = 1.000+0.142

−0.132 (stat.) +0.058
−0.050 (syst.) = 1.000+0.153

−0.142 (9.1)

µZZ = 1.000+0.073
−0.068 (9.2)

The post-fit values and uncertainties of nuisance parameters, together with correla-

tion matrix of fit parameters are shown in Figure 9.1. Effects of 20 leading systematic

uncertainties are shown in the ranking plot in Figure 9.2.

The expected signal significance is 9.6 σ.

9.4 Estimate of the final uncertainty in the 4` channel fit

The uncertainty quoted in Eq. 9.1 is not the final expected uncertainty, since the

tt̄Z and tWZ modelling uncertainties are still missing. Although the Monte Carlo
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Figure 9.1: Nuisance parameters plot (left) and correlation matrix (right) for the Asimov

fit in tetralepton channel, using event yields corresponding to the full Run II dataset. No

significant constrains of the systematic uncertainties have been observed.
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Figure 9.2: Effects of 20 leading systematic uncertainties in the tetralepton channel Asimov

fit, using event yields corresponding to the full Run II dataset. The uncertainty on electron

identification efficiency is the leading systematic uncertainty, followed by cross section of

ZZ+HF background and luminosity uncertainty. The γ parameters correspond to statistical

uncertainties of fitted templates, originating from limited number of events in data-driven

fake lepton estimate. It is the ratio between the fitted (providing the highest likelihood) and

predicted (suffering from statistical fluctuations) Monte Carlo contribution in the bin.
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samples for their proper estimate are not available at the time being, their effect can

be approximately estimated from the previous analysis.

The currently missing uncertainties were not correlated with any other uncertain-

ties. Based on this fact, their effect can be summed in quadrature with the current

value of the expected uncertainty, in order to obtain an estimate of the final expected

uncertainty on the tt̄Z cross section. This approach is based on an assumption, that

the systematic uncertainties were not changed by the different selections applied in

previous analysis and the current one. It is not an exact prediction of this effect

and the uncertainty have to be calculated again once the samples for these systematic

uncertainties become available.

The effects of the missing uncertainties in the previous analysis on the fitted value

of the tt̄Z cross section were following:

• tt̄Z matrix element modelling: ± 3.4 %

• tWZ matrix element modelling: ± 1.4 %

• tWZ parton showering and hadronization: ± 2.8 %

Adding the uncertainties in quadrature to the systematic uncertainty of the current

measurement, the following uncertainty on the signal cross section can be expected:

µ4`,expected
tt̄Z = 1.000+0.142

−0.132 (stat.) +0.074
−0.068 (syst.) = 1.000+0.160

−0.149 (9.3)

The expected uncertainty on the tt̄Z cross section obtained from the 4` chan-

nel shows significant improvement in the sensitivity with respect to the result from

36.1 fb−1, shown in Eq. 8.8.

The expected uncertainty obtained from the 4` channel (+16%, -15%) is signifi-

cantly lower compared to the relative uncertainty obtained from the 4` channel fit at

36.1 fb−1, which was +25%, -23%. It approaches the uncertainty obtained from the

combined fit at 36.1 fb−1, which was ± 14 %.



Chapter 10

Conclusion

This thesis presents measurements of the total cross section of the top-quark pair and

Z boson associated production in two analyses using the data from pp collisions at
√
s

= 13 TeV collected by the ATLAS experiment.

The first analysis was performed at 36.1 fb1, corresponding to 2015-2016 period of

data taking. The analysis uses combination of 2, 3 and 4 lepton final states of tt̄Z and

the fit is performed simultaneously with tt̄W cross section fit in dilepton same-sign and

trilepton final states. This measurement was the first observation of the tt̄Z process

by the ATLAS experiment, reaching the significance (exclusion of background only

hypothesis) 8.9 σ and measuring the cross section value

σmeasuredtt̄Z = 0.95 ± 0.08(stat.) ± 0.10(syst.) pb = 0.95 ± 0.13 pb. (10.1)

The author of the thesis was the main analyser in the 2` channel. The 2` chan-

nel is characteristic by the high background rate, which makes it necessary to use a

multivariate analysis in order to improve a signal sensitivity. The Neural Network has

been studied in details in the thesis and the set of its input variables has been studied

and optimized. As an alternative to the Neural Network, the Boosted Decision Tree

was tested by another member of the analysis team. Based on the expected signal

sensitivity using the NN and BDT, showing slightly better performance in the BDT

case, the BDT has been chosen as the MVA used for this measurement. The expected

signal cross section uncertainty, obtained from the fit in the 2` channel, was +21%
−20%(stat.)

+23%
−20%(syst.) with expected significance 3.8 σ. The fit to data in the 2` channel results

in 3.0 σ observed signal significance and the total cross section value of

σ2l,measured
tt̄Z = 0.64+0.15

−0.15(stat.)+0.20
−0.19(syst.) pb = 0.64+0.25

−0.24 pb. (10.2)
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Both measured cross sections, the one obtained only from the fit in the 2` channel, as

well as the value obtained from the combination of all channels, are in a good agreement

with the theory prediction at NLO+NNLL in QCD and NLO in EW precision [1]:

σtheory
tt̄Z = 0.863+0.073

−0.085(scale)+0.028
−0.028(PDF + αS)pb (10.3)

The other part of the thesis presents the current measurement of the tt̄Z total and

differential cross section in 4` channel. The analysis is still in progress. The combina-

tion of 3` and 4` channels is planned, but only individual results from the 3` and 4`

channels are currently available. The expected signal sensitivity of the 4` channel to

the total cross section, with the currently implemented systematic uncertainties, is

µ4`,Asimov
tt̄Z = 1.000+0.142

−0.132 (stat.) +0.058
−0.050 (syst.) = 1.000+0.153

−0.142 (10.4)

with 9.6 σ significance. Assuming the same effects of the missing systematic uncer-

tainties as in the previous analysis, the expected sensitivity to the total cross section

was found to be

µ4`,expected
tt̄Z = 1.000+0.142

−0.132 (stat.) +0.074
−0.068 (syst.) = 1.000+0.160

−0.149. (10.5)
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.1. INPUT VARIABLES FOR NEURAL NETWORKAND BOOSTEDDECISION TREE169

.1 Input variables for Neural Network and Boosted Decision

Tree

In order to verify the MVA technique response, modelling of input variables needs to be

checked. Distributions of MVA input variables have been checked in data and Monte

Carlo prediction in order to validate their modelling. No significant mismodelling

in MVA input variables has been found. One can see that the uncertainty band is

reduced in the Post-Fit plots compared to the Pre-Fit ones and the Data/MC agreement

improves after the fit is performed. The Post-Fit plots use values of parameters from

the combined fit.

Pre-Fit, Post-Fit (after combined fit) and separation plots for all BDT and NN

input variables defined in the Table 8.4 are shown in the Figures 1-24. In addition,

shapes of the MVA input variables in tt̄ background after `` and eµ selections have

been checked in order to justify the data driven technique used for the tt̄ background

estimation. No statistically significant difference between the event kinematics after

these selection has been found.
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Figure 1: Centrality of the event built from the jets Pre-Fit (first line) and Post-Fit (second

line) plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions for eµ

and `` selections (fourth line) in three signal regions of the dilepton channel. The error bars

include the systematic uncertanties defined in Sec. 6. The data-driven technique described

in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 2: Number of hadronically decaying top-quark candidates, Pre-Fit (first line) and

Post-Fit (second line) plots, separation plots (third line) and comparison of tt̄ Monte Carlo

predictions for eµ and `` selections (fourth line) in three signal regions of the dilepton chan-

nel. The error bars include the systematic uncertanties defined in Sec. 6. The data-driven

technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 3: The cone between two jets with the highest b-tagging weights PPre-Fit (first line)

and Post-Fit (second line) plots, separation plots (third line) and comparison of tt̄ Monte

Carlo predictions for eµ and `` selections (fourth line) in three signal regions of the dilepton

channel. The error bars include the systematic uncertanties defined in Sec. 6. The data-driven

technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 4: Average cone between any two jets in the event Pre-Fit (first line) and Post-Fit

(second line) plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions

for eµ and `` selections (fourth line) in three signal regions of the dilepton channel. The

error bars include the systematic uncertanties defined in Sec. 6. The data-driven technique

described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 5: Cone between the leptons Pre-Fit (first line) and Post-Fit (second line) plots, sepa-

ration plots (third line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections

(fourth line) in three signal regions of the dilepton channel. The error bars include the sys-

tematic uncertanties defined in Sec. 6. The data-driven technique described in Section 8.5 is

used to estimate the tt̄ contribution.
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Figure 6: First Fox-Wolfram momentum built from all jets and leptons in the event, Pre-Fit

(first line) and Post-Fit (second line) plots, separation plots (third line) and comparison of

tt̄ Monte Carlo predictions for eµ and `` selections (fourth line) in three signal regions of the

dilepton channel. The error bars include the systematic uncertanties defined in Sec. 6. The

data-driven technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 7: First Fox-Wolfram momentum built from jets, Pre-Fit (first line) and Post-Fit

(second line) plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions

for eµ and `` selections (fourth line) in three signal regions of the dilepton channel. The

error bars include the systematic uncertanties defined in Sec. 6. The data-driven technique

described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 8: Maximal invariant mass of the lepton and the closest b-jet, Pre-Fit (first line)

and Post-Fit (second line) plots, separation plots (third line) and comparison of tt̄ Monte

Carlo predictions for eµ and `` selections (fourth line) in three signal regions of the dilepton

channel. The error bars include the systematic uncertanties defined in Sec. 6. The data-driven

technique described in Section 8.5 is used to estimate the tt̄ contribution.



.1. INPUT VARIABLES FOR NEURAL NETWORKAND BOOSTEDDECISION TREE178

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

 

prob = 0.882χ/ndf = 8.9 / 15  2χ   
0

200

400

600

800

1000

1200

1400

E
ve

nt
s

-1 = 13 TeV, 36.1 fbs
dilepton OSSF
2l-Z-6j1b
Pre-Fit

data Ztt

tt Z + 2 HF
Z + 1 HF Z + 0 HF

other Uncertainty

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

 

prob = 0.312χ/ndf = 17.2 / 15  2χ   
0

200

400

600

800

1000

1200

E
ve

nt
s

-1 = 13 TeV, 36.1 fbs
dilepton OSSF
2l-Z-5j2b
Pre-Fit

data Ztt

tt Z + 2 HF
Z + 1 HF Z + 0 HF

other Uncertainty

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

 

prob = 0.642χ/ndf = 12.6 / 15  2χ   
0

100

200

300

400

500

600E
ve

nt
s

-1 = 13 TeV, 36.1 fbs
dilepton OSSF
2l-Z-6j2b
Pre-Fit

data Ztt

tt Z + 2 HF
Z + 1 HF Z + 0 HF

other Uncertainty

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

 

prob = 0.882χ/ndf = 9.0 / 15  2χ   
0

200

400

600

800

1000

1200E
ve

nt
s

-1 = 13 TeV, 36.1 fbs
dilepton OSSF
2l-Z-6j1b
Post-Fit

data Ztt

tt Z + 2 HF
Z + 1 HF Z + 0 HF

other Uncertainty

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

 

prob = 0.282χ/ndf = 17.8 / 15  2χ   
0

200

400

600

800

1000

1200

E
ve

nt
s

-1 = 13 TeV, 36.1 fbs
dilepton OSSF
2l-Z-5j2b
Post-Fit

data Ztt

tt Z + 2 HF
Z + 1 HF Z + 0 HF

other Uncertainty

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0.5

0.75

1

1.25

 
D

at
a 

/ P
re

d.
 

prob = 0.572χ/ndf = 13.5 / 15  2χ   
0

100

200

300

400

500

600

E
ve

nt
s

-1 = 13 TeV, 36.1 fbs
dilepton OSSF
2l-Z-6j2b
Post-Fit

data Ztt

tt Z + 2 HF
Z + 1 HF Z + 0 HF

other Uncertainty

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0

0.1

0.2

0.3

A
rb

itr
ar

y 
un

its

Total background
Zttdilepton OSSF

2l-Z-6j1b

-1 = 13 TeV, 36.1 fbs

Separation: 1.65%

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0

0.1

0.2

0.3

A
rb

itr
ar

y 
un

its

Total background
Zttdilepton OSSF

2l-Z-5j2b

-1 = 13 TeV, 36.1 fbs

Separation: 3.74%

0 100 200 300 400 500 600

 [GeV]
pTord
bbM

0

0.05

0.1

0.15

0.2

0.25

A
rb

itr
ar

y 
un

its

Total background
Zttdilepton OSSF

2l-Z-6j2b

-1 = 13 TeV, 36.1 fbs

Separation: 2.82%

0 100 200 300 400 500 600

  [GeV]
pT, ord
bbM

0.5
0.75

1

1.25
1.5µ

ll/
e

0

0.05

0.1

0.15

0.2

0.25

0.3

E
ve

nt
s 

/ 4
0 

G
eV

-1 = 13 TeV, 36.1 fbs
dilepton, OSSF
2l-Z-6j1b

 lltt
µ ett

/ndf = 13.18/142χ
) = 0.5112χprob(

0

  [GeV]
pT, ord
bbM

0 100 200 300 400 500 600

  [GeV]
pT, ord
bbM

0.5
0.75

1

1.25
1.5µ

ll/
e

0

0.05

0.1

0.15

0.2

0.25

0.3

E
ve

nt
s 

/ 4
0 

G
eV

-1 = 13 TeV, 36.1 fbs
dilepton, OSSF
2l-Z-5j2b

 lltt
µ ett

/ndf = 5.419/142χ
) = 0.9792χprob(

0

  [GeV]
pT, ord
bbM

0 100 200 300 400 500 600

  [GeV]
pT, ord
bbM

0.5
0.75

1

1.25
1.5µ

ll/
e

0

0.05

0.1

0.15

0.2

0.25

0.3

E
ve

nt
s 

/ 4
0 

G
eV

-1 = 13 TeV, 36.1 fbs
dilepton, OSSF
2l-Z-6j2b

 lltt
µ ett

/ndf = 22.56/142χ
) = 0.0672χprob(

0

  [GeV]
pT, ord
bbM

Figure 9: Invariant mass of the two b-jets with the highest b-tagging weight Pre-Fit (first

line) and Post-Fit (second line) plots, separation plots (third line) and comparison of tt̄

Monte Carlo predictions for eµ and `` selections (fourth line) in three signal regions of the

dilepton channel. The error bars include the systematic uncertanties defined in Sec. 6. The

data-driven technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 10: Invariant mass of the two closest non-b-tagged jets, Pre-Fit (first line) and Post-Fit

(second line) plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions

for eµ and `` selections (fourth line) in three signal regions of the dilepton channel. The

error bars include the systematic uncertanties defined in Sec. 6. The data-driven technique

described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 11: Invariant mass of the two non-b-tagged jets with the highest pT in the event, Pre-

Fit (first line) and Post-Fit (second line) plots, separation plots (third line) and comparison

of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line) in three signal regions of

the dilepton channel. The error bars include the systematic uncertanties defined in Sec. 6.

The data-driven technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 12: Number of jets with pT > 40 GeV Pre-Fit (first line) and Post-Fit (second line)

plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions for eµ and

`` selections (fourth line) in three signal regions of the dilepton channel. The error bars

include the systematic uncertanties defined in Sec. 6. The data-driven technique described

in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 13: Number of jet pairs with invariant mass close to the mass of Z and W boson, Pre-

Fit (first line) and Post-Fit (second line) plots, separation plots (third line) and comparison

of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line) in three signal regions of

the dilepton channel. The error bars include the systematic uncertanties defined in Sec. 6.

The data-driven technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 14: Transverse momentum of the sixth jet Pre-Fit (first line) and Post-Fit (second

line) plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions for eµ

and `` selections (fourth line) in two signal regions of the dilepton channel. The error bars

include the systematic uncertanties defined in Sec. 6. The data-driven technique described

in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 15: Dilepton transverse momentum, Pre-Fit (first line) and Post-Fit (second line)

plots, separation plots (third line) and comparison of tt̄ Monte Carlo predictions for eµ and

`` selections (fourth line) in three signal regions of the dilepton channel. The error bars

include the systematic uncertanties defined in Sec. 6. The data-driven technique described

in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 16: η of the dilepton system, Pre-Fit (first line) and Post-Fit (second line) plots,

separation plots (third line) and comparison of tt̄ Monte Carlo predictions for eµ and ``

selections (fourth line) in three signal regions of the dilepton channel. The error bars in-

clude the systematic uncertanties defined in Sec. 6. The data-driven technique described in

Section 8.5 is used to estimate the tt̄ contribution.
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Figure 17: Scalar sum of transverse momenta of 6 leading jets in pT , Pre-Fit (first line)

and Post-Fit (second line) plots, separation plots (third line) and comparison of tt̄ Monte

Carlo predictions for eµ and `` selections (fourth line) in two signal regions of the dilepton

channel. The error bars include the systematic uncertanties defined in Sec. 6. The data-driven

technique described in Section 8.5 is used to estimate the tt̄ contribution.
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Figure 18: Mjjj1 , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots

(third line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth

line) in three signal regions of the dilepton channel. The error bars include the systematic

uncertanties defined in Sec. 6. The data-driven technique described in Section 8.5 is used to

estimate the tt̄ contribution.
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Figure 19: Mjjj2 , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots

(third line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth

line) in three signal regions of the dilepton channel. The error bars include the systematic

uncertanties defined in Sec. 6. The data-driven technique described in Section 8.5 is used to

estimate the tt̄ contribution.
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Figure 20: Mavg
W , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots (third

line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line)

in three signal regions of the dilepton channel. The error bars include the systematic un-

certanties defined in Sec. 6. The data-driven technique described in Section 8.5 is used to

estimate the tt̄ contribution.
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Figure 21: pjjj1T , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots (third

line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line)

in three signal regions of the dilepton channel. The error bars include the systematic un-

certanties defined in Sec. 6. The data-driven technique described in Section 8.5 is used to

estimate the tt̄ contribution.
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Figure 22: pjjj2T , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots (third

line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line) in

two signal regions of the dilepton channel. The error bars include the systematic uncertanties

defined in Sec. 6. The data-driven technique described in Section 8.5 is used to estimate the

tt̄ contribution.
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Figure 23: p4jet
T , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots (third

line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line)

in three signal regions of the dilepton channel. The error bars include the systematic un-

certanties defined in Sec. 6. The data-driven technique described in Section 8.5 is used to

estimate the tt̄ contribution.
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Figure 24: p3jet
T , Pre-Fit (first line) and Post-Fit (second line) plots, separation plots (third

line) and comparison of tt̄ Monte Carlo predictions for eµ and `` selections (fourth line)

in three signal regions of the dilepton channel. The error bars include the systematic un-

certanties defined in Sec. 6. The data-driven technique described in Section 8.5 is used to

estimate the tt̄ contribution.
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