Vedecká rada Fakulty matematiky, fyziky a informatiky Univerzity Komenského v Bratislave

Mgr. Stanislav Antalic

Autoreferát dizertačnej práce

Synthesis and properties of neutron deficient isotopes of elements around Z=100

Na získanie vedecko-akademickej hodnosti *philosophiae doctor* v odbore doktorandského štúdia: 11–24–9 Jadrová a subjadrová fyzika

Bratislava 2005

Dizertačná práca bola vypracovaná v dennej forme doktorandského štúdia na Katedre jadrovej fyziky a biofyziky Fakulty matematiky, fyziky a informatiky, Univerzity Komenského v Bratislave.

Predkladatel':

Mgr. Stanislav Antalic Katedra jadrovej fyziky a biofyziky FMFI UK, Mlynská dolina 842 15 Bratislava

Školiteľ:

prof. RNDr. Štefan Šáro, DrSc. Katedra jadrovej fyziky a biofyziky FMFI UK, Mlynská dolina 842 15 Bratislava

Oponenti:

Autoreferát bol rozoslaný dňa

Obhajoba dizertačnej práce sa koná dňa o hod

na FMFI UK, Mlynská Dolina, 842 48 Bratislava, miestnosť číslo pred komisiou pre obhajobu dizertačnej práce doktorandského štúdia vymenovanou dňa predsedom spoločnej odborovej komisie vo vednom odbore 11-24-9 jadrová a subjadrová fyzika.

Predseda spoločnej odborovej komisie: prof. RNDr. Jozef Masarik, DrSc. Katedra jadrovej fyziky a biofyziky FMFI UK 842 15 Bratislava

Obsah

1	Úvod a motivácia	3
2	Experiment2.1SHIP - Separator for Heavy Ion reaction Products2.2Charakteristika experimentov	4 4 6
3	Výsledky a diskusia3.1Rozpadový reťazec 247 Md3.2Rozpadový reťazec izotopu 246 Md3.3Rozpadový reťazec 255 Lr3.4Rozpadový reťazec 254 Lr	7 7 8 10 11
4	Záver	13
5	Conclusion and Outlook	14
6	Zoznam publikacií6.1Publikácie v časopisoch	18 18 19 20

1 Úvod a motivácia

Predkladaná práca bola motivovaná poslednými experimentami v oblasti superťažkých prvkov. Po úspešnej syntéze prvkov s protónovými číslami od 107 do 112 v GSI Darmstadt (Nemecko) [Mun81a],[Mun84],[Mun82],[Hof95a],[Hof95b, Hof01],[Hof96, Hof01] na konci minulého storočia boli postupne v JINR Dubna (Rusko) [Oga99a, Oga99b, Oga99c, Oga00a, Oga00b, Oga01a, Oga01b, Oga02, Oga04] a v Rikene (Japonsko) [Mor04] syntetizované nové prvky od 113 do 116. Popri tom, postupný vývoj experimentálnej techniky umožnil spektroskopickú štúdiu izotopov až do prvku Hassium - Z = 108.

Mnohé fyzikálne veličiny, nevyhnutné pri realizácii experimentov, musia byť v súčastnosti získavané pomocou semiempirických a empirických modelov. Väčšina týhto modelov vyžaduje nastavenie mnohých empirických parametrov, ktoré sa získavajú fitovaním experimentálnych údajov. Cieľom práce bolo získanie nových informácií, ktoré doplnenia databázu týhto experimentálnych údajov. Nové údaje naviac umožňujú priamu konfrontáciu s výsledkami teoretických modelov a ich postupné vylepšenie. Mnohé teoretické modely sa totiž v predpovedaní jednotlivých vlastností superťažkých prvkov navzájom odlišujú a jedine experiment umožní ich zhodnotenie a upresnenie výpočtov v okrajových oblastiach.

Experimenty opísané v tejto práci boli realizované v rámci dlhodobého projektu štúdia spektroskopických vlastností transuránov a superťažkých prvkov. Všetky študované izotopy - ²⁴⁶Md, ²⁴⁷Md, ²⁵⁴Lr a ²⁵⁵Lr - boli po prvý krát syntetizované pred dlhším časom, avšak doposiaľ nebolo uskutočnené detailné meranie zamerané na štúdium ich rozpadových charakteristík. Z pohľadu spektroskopických dát boli preto tieto izotopy bielymi miestami v tabuľke izotopov.

Pri analýze dát boli využité metódy α a α - γ koincidenčnej spektroskopie kombinovanej s α - α a Recoil - α korelačnou metódou. Výsledky ukázali, že použité metódy v kombinácii s účinným separátorom produktov ťažkoiónových reakcií sú silným nástrojom na štúdium rozpadových vlastností izotopov s krátkym polčasom rozpadu (dolný limit je $\approx 10 \ \mu$ s) a malým účiným prierezom reakcie potrebnej na ich produkciu (dolný limit je $\approx 1 \ n$ b).

Ako už bolo spomenuté, experimenty boli realizované na rýchlostnom filtri SHIP [Mun79] v GSI Darmstadt v rámci dlhodobej kolaborácie s tamojšou experimentálnou skupinou. Pri analýze dát bol využitý analyzačný software GO4 [GO4] s analytickou nadstavbou GO4SHIP umožňujúcou analyzovať experimentálne dáta získané na spomínanom experimentálnom zariadení. Táto analyzačná časť bola vyvinutá a spravovaná skupinou na katedre jadrovej fyziky FMFI UK v Bratislave. Správnosť výsledkov bola overená vo viacerých experimentoch, pri ktorých bola vykonávaná paralelná analýza s programovým balíkom GOOSY [GOO].

2 Experiment

2.1 SHIP - Separator for Heavy Ion reaction Products

Všetky experimenty opísané v predkladanej dizertačnej práci boli realizované na separátore SHIP. Tento sa nachádza na línii urýchlovača tažkých iónov UNILAC (skratka z UNIversal Linear ACcelerator) v GSI Darmstadt v Nemecku. Spomínaný urýchlovač poskytuje zväzky pre všetky prvky až po urán s relatívne vysokými intenzitami (3.0 p μ A pre ⁴⁰Ar⁸⁺, 1.2 p μ A pre ⁵⁸Fe⁸⁺ a 0.4 p μ A pre ⁸²Se¹²⁺)¹. Relatívna presnosť energie zväzku je ± 0.003 MeV/u a absolútna presnosť je približne ± 0.01 MeV/u. Táto presnosť umožnuje uskutocnit precízne merania aj pri reakciách s úzkymi excitačnými funkciami, ako je to v prípade 1n a 2n kanálov pri produkcii najťažších jadier (Z > 100). [Hof00]

Rýchlostný filter SHIP [Mun79] bol navrhnutý tak, aby dával vysoké výtažky separovaných produktov reakcií tažkých iónov, špeciálne reakcií úplnej syntézy. Separátor akceptuje rýchlosti do hranice $\pm 5 \%$ od strednej hodnoty a náboj iónov $\pm 10\%$.

Pri syntéze ťažkých a supertažkých jadier s oloveným alebo bizmutovým terčíkom je tento terčík (zvyčajne s hrúbkou 450 μ g/cm²) naparený na tenkej podkladovej uhlíkovej fólii (40 μ g/cm²) a pokrytom ešte dalšou uhlíkovou vrstvou s hrúbkou (15 μ g/cm²) na obmedzenie radiačného poškodenia terča a zvýšenie emisivity. Kedže olovo aj bizmut majú veľmi nízku teplotu topenia (olovo 327.5° C, bizmut 271.3° C), používa sa na zväčšenie ožiareného povrchu a na rozloženie deponovanej energie rotačný terčík tvorený kruhom s polomerom 155 mm, skladajúci sa z ôsmych "banánových" terčov, ktorý rotuje zosynchronizovane s pulzným režimom urýchlovača (5.5 ms pulz a 14.5 ms pauza) s frekvenciou 18.75 Hz [Hof00].

Za terčom sa nachádza strhávacia fólia, ktorej úlohou je zrovnovážnit nábojové stavy produktov. Táto je zvyčajne tvorená 40 - 60 μ g/cm² uhlíkovou fóliou. Produkty reakcií po prechode strhávacou fóliou vstupujú do separátora, ktorý je kombináciou dvoch rýchlostných filtrov so separovanými elektrickými a magnetickými deflekcnými polami. Každý filter je tvorený z jedného elektrostatického deflektora a dvoch magnetických dipólov. Triplet magnetických kvadrupólov na začiatku SHIPu zbiera odklonené odrazené jadrá a fokusuje ich do 'rýchlostného otvoru' v prostriedku separátora, kde je primárny zväzok odseparovaný od recoil jadier. Druhý triplet kvadrupólov fokusuje vyseparované jadrá do systému detektorov nachádzajúcom sa za SHIPom. Pred detekčnou častou je ešte umiestnený malý vychylovací magnet, ktorý vychyluje produkty reakcie približne o 7,5° a zaisťuje dodatočné potlačenie pozadia o faktor 10-50 [Hof00]. Celkové potlačenie pozadia pozdĺž celého energetického spektra je 10¹⁰ - 10¹¹.

Systém detektorov za separátorom je zložený z TOF systému tvoreného tromi detektormi, siedmymi 16 stripovými kremíkovými detektormi (jedným finálnym a šiestimi spätnými detektormi), gama detektorom a veto detektorom.

TOF systém sa skladá z troch identických detektorov (jeden "štart" detektor a dva "stop" detektory), ktoré majú spolu účinnost registrácie 99,8 % a rozlíšenie približne 700 ps. Každý z nich tvoria dve samonosné uhlíkové fólie s hrúbkou cca 30 $\mu g/cm^2$ [Sar96]. Medzi týmito fóliami je vysoké napätie (4 kV) určené na urýchlenie elektrónov vyrazených z fólií prechádzajúcimi tažkými iónmi. Vyrazené elektróny sa zbierajú na mikrokanálové

 $^{^{1}1~\}mathrm{p}\mu\mathrm{A}$ = 6.24 x 10¹² castíc/s

Obrázok 1: Rýchlostný filter SHIP. Systém koncových detektorov je detailnejšie znázornený na obrázku 2

doštičky, z ktorých sa odoberá signál, kde vzniká lavína elektrónov. Antikoincidenčným zapojením TOF systému od finálneho detektora je možné rozlíšit signály pochádzajúce z rozpadov vo finálnom detektore a signály tvorené implantáciou iónov prichádzajúcich zo smeru separátora.

Aktívna plocha jedného silikónového detektora je 80 x 35 mm². Každý strip je 5 mm široký a pozične citlivý vo vertikálnom smere s relatívnym rozlíšením (FWHM) 150 μ m pre α rozpad, čím vzniká ekvivalent systému detektorov tvorený 3700 samostatnými detektormi s rozmermi 5x0,15 mm. Energetické rozlíšenie pre externý α zdroj - ²⁴¹Am - je 14 keV. Šesť detektorov tvorí zadný detektor, ktorý registruje unikajúce α častice alebo štiepne fragmenty s uhlom zachycujúcim 80 % z 2π . Všetky spomenuté detektory sú chladené na teplotu 263 K.

Dodatočný veto detektor nachádzajúci sa za finálnym detektorom je využívaný na potlačenie pozadia tvoreného protónmi prichádzajúcimi z urýchlovača. Germániové gamma detektory merajú žiarenie X alebo gama, ktoré sú v koincidencii so signálmi z kremíkového detektora.

Na potlačenie nízko
energetického pozadia tvoreného pomalými tažkými i
ónmi je možné umiestniť pred finálny detektor hliníkové (prípadne mylar
ove) fólie s klinovitým alebo rovnomerným profilom, ktorých hrúbku je možné meniť s krokom 0.5 μ m.

Obrázok 2: Zjednodušené zobrazenie usporiadania detekčnej časti za separátorom SHIP tvorenej TOF systémom, finálnym detektorom, spätnými detektormi, gamma detektorom a veto detektorom.

2.2 Charakteristika experimentov

Na výskum izotopov ²⁴⁶Md, ²⁴⁷Md, ²⁵⁴Lr a ²⁵⁵Lr boli zamerané 2 experimenty²:

1. RUN 211

Realizácia experimentu: 7.4.2003 - 11.4.2003 Reakcia: ${}^{40}\text{Ar} + {}^{209}\text{Bi}$ Energie zväzku: $\text{E}_{beam} = 4,67$ AMeV a $\text{E}_{beam} = 4,95$ AMeV Celková dóza: 7,76x10¹⁷ projektilov pri energii $\text{E}_{beam} = 4,67$ AMeV a 1,65x10¹⁸ projektilov pri energii $\text{E}_{beam} = 4.95$ AMeV Test reakcie: ${}^{40}\text{Ar} + {}^{169}\text{Tm}$, ${}^{40}\text{Ar} + {}^{176}\text{Yb}$, produkty transfer reakcie ${}^{40}\text{Ar} + {}^{209}\text{Bi}$

2. RUN 210 Realizácia experimentu: 24.2.2003 - 11.3.2003³ Reakcia: ⁴⁸Ca + ²⁰⁹Bi Energie zväzku: $E_{beam} = 4,69$ AMeV a $E_{beam} = 4,81$ AMeV Využitá dóza zväzku: 3,5x10¹⁶ projektilov pri energii $E_{beam} = 4,69$ AMeV a 1,165x10¹⁸ projektilov pri energii $E_{beam} = 4.81$ AMeV Test reakcie: ⁴⁸Ca + ¹⁷⁰Er

²V septembri 2001 bol na experimentálnom zariadení SHIP realizovaný experiment zameraný na syntézu izotopov ²⁴⁶Md a ²⁴⁷Md. Pre problémy s meraním energie zväzku však nebolo možné nastaviť optimálnu energiu a boli produkované oba izotopy súčastne. Nakoľko majú podobné rozpadové charakteristiky bolo nemožné ich jednoznačne odlíšiť a detailná analýza nebola zrealizovaná. Preto tento experiment nebol do predkladanej dizertačnej práce zahrnutý.

 $^{^{3}}$ Tento experiment bol uskutočnený s využitím parazitického zväzku počas iného experimentu, zameraného na výskum chemických vlastností prvku 112, čo bolo príčinou dlhej doby jeho realizácie.

3 Výsledky a diskusia

3.1 Rozpadový reťazec ²⁴⁷Md

V tejto časti experimentu boli potvrdené známe dáta pre α rozpad izotopu ²⁴⁷Md. α rozpad s energiou $E_{\alpha} = 8416 \pm 10$ keV bol priradený rozpadu zo základného stavu 7/2⁻[514] Nilssonovho levelu izotopu ²⁴⁷Md. Taktiež bol po prvý krát nameraný α prechod s energiou $E_{\alpha} = 8660 \pm 20$ keV ktorý bol predbežne priradený prechodu medzi základnými stavmi ²⁴⁷Md a ²⁴³Es.

Izotop	E_{α} [keV]	$T_{1/2} [s]$	b_{α}	E_{γ} [keV]	b_{SF}	Ref.
²⁴⁷ Md	8416±10	$1.3 {\pm} 0.1$		209.6 ± 0.5 157.5 ± 0.5		Táto práca
	$ \begin{array}{c} 8660 \pm 20^{A} \\ 8424 \pm 20 \end{array} $	1.12 ± 0.22				Táto práca [Hof94]
^{247m} Md	8783±40	$\begin{array}{c} 0.257 {\pm} 0.033 \\ 0.23 {}^{+0.19}_{-0.12} \end{array}$	pprox 0.77		$\approx 0.23 \\ \approx 1^B$	Táto práca [Hof94]
$^{243}\mathrm{Es}$	7893 ± 10 7860 ± 20^{A}	22.9 ± 2.2	≈ 0.6			Táto práca Táto práca
	7895 ± 20	40^{+40}_{-20}				[Hof94]
	7939 ± 10 7899 ± 3	21 ± 5				[Hat89] [Hat89]

Tabuľka 1: Zhrnutie získaných údajov o rozpade 247,247m Md a 243 Es a porovnanie s niektorými známymi údajmi. ^{A)} - priradenie je, v dôsledku nízkej štatistiky, iba predbežné ^{B)} počas merania boli jednoznačne registrované iba 3 spontánne štiepenia.

Po prvý krát bol registrovaný aj α rozpad z izomerického stavu ^{247m}Md s polčasom rozpadu T_{1/2} = 0.257 ± 0.033 s a s energiou E_{α} = 8783 ± 40 keV. Tento level bol priradený stavu 1/2⁻[521]. Doposiaľ bol tento izomerický stav predpokladaný iba na základe dvoch štiepení registrovaných pri produkcii tohto izotopu s polčasom T_{SF} = 0.23^{+0.19}_{-0.12} s [Hof94].

Po prvý krát boli registrované gamma prechody s energiami $E_{\gamma} = 209.6 \pm 0.5$ keV a $E_{\gamma} = 157.5 \pm 0.5$ keV v koincidencii s α rozpadom ²⁴⁷Md. Tieto prechody boli priradené prechodom z nízko ležiacich vzbudených hladín izotopu ²⁴³Es, ktorých spiny a parity boli určené: $7/2^{-}[514]$ pre hladinu s excitačnou energiou $E_{exc} = 209.6$ keV a $9/2^{+}[624]$ pre hladinu s excitačnou energiou $E_{exc} = 52.1$ keV. Taktiež je α rozpadom ^{247m}Md obsadzovaný stav $1/2^{-}[521]$. Základnému stavu a/alebo nízkoležiacemu vzbudenému stavu izotopu ²⁴³Es môže byť priradený stav $7/2^{+}[633]$ a/alebo $3/2^{-}[521]$. Dôvodom je predpokladaná existencia oboch stavov v tesnej blízkosti. V prípade izotopu ²⁵¹Es bola hladina $7/2^{+}[633]$ lokalizovaná s excitačnou energiou $E_{exc} = 8.3$ keV [Ahm00]. Existencie hladiny

Obrázok 3: Rozpadová schéma ²⁴⁷Md a ²⁴³Es navrhnutá na základe analyzovaných dát. Priradenie spinu a parity základnej hladine ²⁴³Es nie je jednoznačné (viď text).

v okolí $E_{exc} \approx 0$ keV pre ostatné neutrónovo deficitné izotopy einstienia je okrem jej lokalizácie pre ²⁵¹Es založené na fakte, že teória predpovedá túto hladinu pre všetky izotopy v rozmedzí ²⁴³Es - ²⁵⁷Es s približne rovnakou excitačnou energiou $E_{exc} \approx 270$ -300 keV [Cwi94]. Spomínané teoretické výpočty ako aj ich porovnania s niektorými experimentálnymi výsledkami sú zobrazené na obrázku 7. Pre úplnosť treba dodať, že detekčné zariadenie na separátore SHIP zvyčajne neumožňuje jednoznačne odlíšiť od seba existenciu dvoch hladín vzdialených od seba iba niekoľko keV z dôvodu vysokého prahu γ detektorov a rozlíšenia α detektorov na úrovni 10 - 20 keV.

V prípade α rozpadu izotopu ²⁴³Es bola potvrdená iba jedna (z dvoch) publikovaných energií rozpadu [Hat89] $E_{\alpha} = 7893 \pm 10$ keV. Očakávaný α rozpad s energiou 7939 keV nebol sledovaný, avšak bol registrovaný prechod s energiou $E_{\alpha} = 7860 \pm 20$ keV.

Všetky získané dáta sú sumarizované v tabuľke 1. Návrh rozpadovej schémy je zobrazený na obrázku 3.

3.2 Rozpadový reťazec izotopu ²⁴⁶Md

Pre tento izotop je typický silný vplyv sumovania energie α rozpadu s energiou elektrónu vznikajúceho pri vnútornej konverzi. Energetické spektrum α rozpadu ²⁴⁶Md možno

rozdeliť na tri oblasti. Prvou je oblasť od 8250 keV do 8690 keV s polčasom $T_{1/2} = 1.3 \pm 0.4$ s. Druhou oblasťou je okolie čiary s energiou 8744 ± 10 keV a s polčasom $T_{1/2} = 0.75 \pm 0.18$ s. Obe oblasti sú priradené rozpadu zo základnej hladiny ²⁴⁶Md.

Izotop	$E_{\alpha} [keV]$	$T_{1/2} [s]$	b_{lpha}	E_{γ} [keV]	\mathbf{b}_{SF}	Ref.
²⁴⁶ Md	8250-8690 ^C	1.3 ± 0.4	pprox 0.74	$169.0 \\ 232.5^{A}$		Táto práca
				252.0 279.0 396.4^{A}		
	8744 ± 10 8500-8560 8740 ± 20	0.75 ± 0.18				Táto práca [Nin96]
$^{246m}\mathrm{Md}$	8178 ± 10	4.4 ± 0.8			≈ 0.3	Táto práca
$^{242}\mathrm{Es}$	7780-7960 ^C	17.8 ± 1.6	0.456 ± 0.026^B	86.6 107.0		Táto práca
	8025 ± 20^{A} 7920 ± 20	$\begin{array}{c} 22^{+1.6}_{-9.9} \\ 16^{+6}_{-4} \end{array}$		122.4		Táto práca [Nin96]

Tabuľka 2: Zhrnutie získaných údajov o rozpade ^{246,246m}Md a ²⁴²Es a porovnanie s niektorými známymi údajmi. ^{A)} - priradenie je, v dôsledku nízkej štatistiky, iba predbežné ^B) Predbežne bola popri α a EC rozpade identifikovaný aj ECDF rozpad s vetviacim pomerom 0.67 $^{+0.61}_{-0.39}$ %. ^{C)} V dôsledku nemožnosti roslíšíť jednotlivé α čiary je daný iba energetický interval.

Dalej bol po prvý krát sledovaný α rozpad s energiou $E_{\alpha} = 8178 \pm 10$ keV a polčasom $T_{1/2} = 4.4 \pm 0.8$ s. Tento α rozpad bol priradený rozpadu z izomerického stavu ^{246m}Md.

Podobne, ako v prípade α rozpadu ²⁴⁶Md, taktiež pre α rozpad izotopu ²⁴²Es je evidentný silný vplyv sumovania energie s konverznými elektrónmi. Oblasť α rozpadu pre tento izotop leží od 7780 keV do 7960 keV. Pre vetviaci pomer EC rozpadu bola získaná hotnota b_{EC} = 54.4 ± 2.6 %.

V koincidencii s α rozpadom izotopov ²⁴⁶Md a ²⁴²Es boli pozorované viaceré γ prechody. Všetky získané výsledky sú sumarizované v tabuľke 2. Návrh rozpadovej schémy pre ²⁴⁶Md a ²⁴²Es je zobrazený na obrázku 4. V dôsledky komplikovanej energetickej štruktury α rozpadu oboch izotopov a nemožnosti merať energie konverzných elektrónov ako aj nedostatku záchytných bodov potrebných pri zostavovaní rozpadovej schémy však nebolo možné priradiť spin a paritu jednotlivým stavom a je potrebné brať danú rozpadovú schému len ako predbežný návrh.

Obrázok 4: Rozpadová schéma ²⁴⁶Md a ²⁴²Es navrhnutá na základe analyzovaných dát. Treba upozorniť, že najmä časť zameraná na opis α rozpadu ²⁴⁶Md a exitačných hladín ²⁴²Es treba brať iba ako predbežný návrh.

3.3 Rozpadový reťazec ²⁵⁵Lr

Spin a parita základného stavu ²⁵⁵Lr bola priradená stavu 7/2⁻[514]. Taktiež bol po prvý krat registrovaný α rozpad s energiou $E_{\alpha} = 8310 \pm 10$ keV priradený, na základe jeho polčasu rozpadu, α prechodu zo základného stavu ²⁵⁵Lr na vzbudený stav ²⁵¹Md s energiou E^{*} ≈ 60 keV. Bolo zistené, že oba doposiaľ známe α rozpady smerujú z rôznych energetických hladín. Rozpad s energiou $E_{\alpha} = 8462 \pm 10$ keV bol priradený rozpadu z izomerického stavu $1/2^{-}$ [521] s polčasom rozpadu $T_{1/2} = 2.56 \pm 0.25$ s. Pre rozpad s energiou $E_{\alpha} = 8369 \pm 10$ keV bol nameraný polčas $T_{1/2} = 19.9 \pm 5.3$ s a bol prisúdený rozpadu základného stavu tohto izotopu.

Pre izotop ²⁵¹Md bol po prvý krát registrovaný γ prechod s energiou 294 keV a s charakterom E1 príp. E2 prechodu, v koincidencii s α rozpadom s energiou $E_{\alpha} = 7535 \pm 10$ keV. Level v izotope ²⁴⁷Es produkovaný týmto α rozpadom bol priradený stavu 7/2⁻[514]. Získané výsledky pre tento izotop boli potvrdené aj nezávislým experimentami realizovanými v Jyväskylä (Fínsko) and v GANILe (Francúczsko) [Hes04].

Izotop	E_{α} [keV]	$T_{1/2}$ [s]	\mathbf{b}_{lpha}	E_{γ} [keV]	\mathbf{b}_{SF}	Ref.
²⁵⁵ Lr	8369 ± 10 8310 ± 20	$19.9 \pm 5.3 \\ 24.2^{+5.1}_{-3.6}$	$>0.62{\pm}0.02$		< 0.0003	Táto práca Táto práca
255m Lr	8462±10	2.56 ± 0.25	$> 0.4 \pm 0.02$			Táto práca
²⁵¹ Md	7535 ± 10 7550 ± 20	$420 \pm 90 \\ 240 \pm 30$	0.902±0.009	294	< 0.0004	Táto práca [Hes85]
²⁴⁷ Es	7310 ± 20 7323 ± 1	273 ± 16				Táto práca [Hes85]

Tabuľka 3: Zhrnutie získaných údajov o rozpade 255,255m Lr, 251 Md a 247 Es a porovnanie s niektorými známymi údajmi.

Obrázok 5: Rozpadová schéma ²⁵⁵Lr a ²⁵¹Md navrhnutá na základe analyzovaných dát.

3.4 Rozpadový reťazec ²⁵⁴Lr

V koincidencii s α rozpadom izotopu $^{254}\mathrm{Lr}$ boli po prvý krát registrované γ prechody s energiami E $_{\gamma}$ = 42.3 keV, E $_{\gamma}$ = 209.2 keV a E $_{\gamma}$ = 305.1 keV. V dôsledku malej získanej štatistiky a kvôli komplikovanej rozpadovej štruktúre nebolo možné zostaviť rozpadovú schému ani získať daľšie údaje o tomto izotope.

Izotop	E_{α} [keV]	$T_{1/2}$ [s]	b_{lpha}	E_{γ} [keV]	b_{SF}	Ref.
$^{254}\mathrm{Lr}$	8460 ± 20	13 ± 2	$0.78 {\pm} 0.06$		< 0.0016	[FiS96]
	8408±20 8300 - 8550	18.4 ± 1.8	0.72 ± 0.02	$\begin{array}{c} 42.3 \\ 209.2 \\ 305.1 \end{array}$		Táto práca
²⁵⁰ Md	7830 ± 20 7750 ± 20	52 ± 6	$0.07 {\pm} 0.03$			[FiS96]
	7840 ± 40 7750 ± 20	50^{+10}_{-7}	0.070 ± 0.008	152		Táto práca

Tabuľka 4: Zhrnutie získaných údajov o rozpad
e $^{254}{\rm Lr},\,^{250}{\rm Md}$ a porovnanie s niektorými známymi údaj
mi.

Obrázok 6: Rozpadová schéma $^{250}\mathrm{Md}$ navrhnutá na základe analyzovaných dát.

Predbežný návrh rozpadovej schémy možno zostaviť pre izotop ²⁵⁰Md (viď obrázok 6). Pre tento izotop bol zaregistrovaný prechod $E_{\gamma} = 152$ keV ako časť reťazca Re- α - α - γ . Pre tento izotop boli potvrdené obidve doposiaľ známe energie α rozpadu [FiS96]

Obrázok 7: Porovnanie niektorých experimentálnych výsledkov a teoretických výpočtov pre nízko ležiace Nilssonove hladiny izotopov einsteinia. Teoretické hodnoty sú prebraté z *S. Cwiok et al.* [Cwi94]. Experimentálne hodnoty pre ²⁵¹Es sú prebraté z *I. Ahmad et al.* [Ahm00]. Výsledky pre ²⁴³Es a ²⁴⁷Es boli získané v rámci tejto dizertačnej práce. Hodnoty pre ²⁴⁵Es a ²⁴⁹Es Boli získane v ďaľších experimentoch realizovaných na separátore SHIP.

4 Záver

Predkladaná práca bola motivovaná najma nedostatkom známych údajov o uvedených izotopoch, ktoré by mohli poskytnuť viac informácii o správnosti existujúcich teoretických modelov opisujúcich vlastnosti ťažkých a superťažkých prvkov.

V práci boli zhrnuté najnovšie výsledky získané analýzou dát reakcií $^{40}\mathrm{Ar}$ + $^{209}\mathrm{Bi}$ a $^{48}\mathrm{Ca}$ + $^{209}\mathrm{Bi}$ vedúcich na syntézu izotopov $^{246}\mathrm{Md},~^{247}\mathrm{Md},~^{254}\mathrm{Lr}$ a $^{255}\mathrm{Lr}$ a ich dcérskych produktov.

Ako už bolo spomenuté, uvedené reakcie boli realizované v rámci dlhodobého projektu spektroskopickej štúdie prvkov s protonovým číslom 100 a vyšším. Do budúcna sú plánované ďaľšie experimenty, ktoré by mali doplniť prehľad a systematiku údajov pre izotopy z tejto oblasti. Tieto experimenty narážajú na viacero problémov, ktoré sa ukázali byť limitujúcim faktorom aj v tejto práci. Je to napr. vplyv de-excitácie jadra vnútornou konverziou, keď dochádza k sumácii energie α častice a emitovaného elektrónu. Tento problém sa dá čiastočne riešiť využitím spätných detektorov na meranie energie týchto elektrónov, tak ako to je realizované napr. detekčným systémom GREAT (Gamma Recoil Electron Alpha Tagging) na separátore RITU v Jyväskylä (Fínsko). Dalším limitujúcim faktorom je vysoká početnosť syntetizovaných izotopov potrebná pri tomto type experimentov. Tu narážame na problem s nedostatočnou intenzitou zväzkou pre niektoré druhy projektilov alebo tepelnou záťažou terča. Problém tepelnej záťaže terčov bol na separátore SHIP čiastočne riešený využitím chemických zlúčenín olovených príp. bizmutových terčov na báze oxidov a sulfidov (výborné výsledky boli dosiahnuté napr. s terčom na báze PbS [Kin00], [Lom02]. Taktiež sľubne vyzerajú prvé testy zamerané na testovanie aktívneho chladenia terčov héliom [Ant04].

5 Conclusion and Outlook

This work was motivated by recent experiments on the synthesis of heavy and superheavy elements performed in the region of elements with proton number around 100, and heavier. For most of the isotopes in this region only basic data, obtained by means of α spectroscopy, are available. Usually, there is no γ spectroscopy information available for the isotopes in this region. Experiments discussed in this work were performed with intention to obtained a spectroscopic data of better quality for some isotopes of odd elements around Z=100. The results presented in this work deliver valuable information on the nuclear structure and help to enlarge the basis of experimental data as support for the various theoretical models.

The results, presented here, were obtained using a method of α and α - γ coincidence spectroscopy combined with α - α and recoil - α correlation search. These results show that used spectroscopy method, combined with using of the separator of heavy ion reaction products, is powerful tool for study of decay properties of products with very low cross-section - around 1 nb - and short lifetime - with lower limit of few μ s. Using the α - γ spectroscopy method, energy differences between the low-lying excited levels can be obtained with high precision - in the order of few keV.

The obtained data were studied as a part of long-term project of spectroscopy studies of superheavy elements. This project is primarily aimed to the study of elements with odd proton number around Z > 100.

Decay chains of four isotopes were described in this work:

1. The decay chain of ²⁴⁷Md. The already known data about α decay of ²⁴⁷Md were confirmed with an improved precision. The α decay with a energy of $E_{\alpha} = 8416 \pm 10$ keV was assigned to originate from a ground-state 7/2⁻[514] Nilsson level of ²⁴⁷Md. Additional α decay with the energy of $E_{\alpha} = 8660 \pm 20$ keV (tentatively assigned to a g.s. - g.s. transition) was detected for this isotope. The α decay of the isomeric state with a lifetime of $T_{1/2} = 0.257 \pm 0.033$ s and energy of $E_{\alpha} = 8783 \pm 40$ keV was observed for the first time. This level was assigned to $1/2^{-}[521]$ Nilsson level. Until now only tentative indication based on a few fission events were known [Hof94].

The gamma transitions with energies of $E_{\gamma} = 209.6 \pm 0.5$ keV and $E_{\gamma} = 157.5 \pm 0.5$ keV were observed in coincidence with α decay of ²⁴⁷Md. These transitions were attributed to the direct de-excitation from low lying excited levels of ²⁴⁷Md daughter product - ²⁴³Es. The spin and parity for low-lying Nilsson levels of ²⁴³Es was assigned to $7/2^{-}[514]$ at $E_{exc} = 209.6$ keV and $9/2^{+}[624]$ at $E_{exc} = 52.1$ keV. Additionally a level of energy $1/2^{-}[521]$ is populated by an α decay of ^{247m}Md. The Nilsson levels of $7/2^{+}[633]$ and $3/2^{-}[521]$ can be assigned as a ground-state level and/or first excited levels of ²⁴³Es - tentatively located close to the ground state (see discussion in section ??).

In case of ²⁴³Es α decay only one of the known line was confirmed by α decay with energy of $E_{\alpha} = 7893 \pm 10$ keV. The previously reported α decay with energy of 7939 keV was not observed. An additional line - tentatively assigned to decay of ²⁴³Es - at the energy of $E_{\alpha} = 7860 \pm 20$ keV was detected.

All known data are summarized in the table 1. Based on new data - evaluated in this thesis work - the level assignment and decay scheme was drawn (see figure 3).

2. The decay chain of ²⁴⁶Md. The complicated α decay energy structure reported before [Nin96] was confirmed. Recent measurements analyzed and described in this thesis work show the existence of three separated α decay groups. The area of α decay energy from 8250 keV to 8690 keV with half-life of $T_{1/2} = 1.3 \pm 0.4$ s and the line of the $E_{\alpha} = 8744 \pm 10$ keV with a half-life of $T_{1/2} = 0.75 \pm 0.18$ s are attributed to ground-state decay of ²⁴⁶Md.

An additional α decay of energy $E_{\alpha} = 8178 \pm 10$ keV and a half-life of $T_{1/2} = 4.4 \pm 0.8$ s was observed for the first time. This α activity was assigned to a decay of isomeric state ^{246m}Md. The spontaneous fission branch ($b_{SF} < 30 \%$) of this isomeric state can be also the explanation for the higher number of fission events detected for this isotope - compare to value expected from known fission branch of ²⁴⁶Fm⁴.

Similarly as for ²⁴⁶Md, also for α decay of ²⁴²Es a strong influence of energy summing with conversion electrons was observed. The α decay assigned to ²⁴²Es are spread over a region from 7780 keV to 7960 keV. The EC branch of ²⁴²Es was evaluated to value of $b_{EC} = 54.4 \pm 2.6 \%$.

Several γ transitions were observed in coincidence with α decay of ²⁴⁶Md and α decay of ²⁴²Es. All spectroscopic data for ²⁴⁶Md and its daughter products are summarized in table 2. A tentative decay scheme was drawn for ²⁴⁶Md and ²⁴²Es (see figure 4). Due to a complicated decay structure of the ²⁴⁶Md and ²⁴²Es it was not possible to assigned spin and parity to suggested levels.

 $^{^4 {\}rm The}$ unexpected high number of fission events was previously ascribed to ECDF branch - $b_{ECDF} \approx 6\%$ - of $^{246} {\rm Md}$ [Nin96].

- 3. The decay chain of ²⁵⁵Lr. The ²⁵⁵Lr and ²⁵¹Md were a blank spot in the nuclear chart. Although both isotopes were known around 30 years [EsP73] there were no detailed α spectroscopy experiment performed until now⁵. The α spectroscopy data were measured with better precision. The spin and parity of ²⁵⁵Lr ground-state was assigned to $7/2^{-}[514]$ Nilsson level. An additional α line of energy $E_{\alpha} = 8310 \pm 10$ keV was identified as an α decay of ²⁵⁵Lr and attributed as the decay to ²⁵¹Md excited level of E^{*} ≈ 60 keV. The α decay of $E_{\alpha} = 8462 \pm 10$ keV was assigned to the decay from an isomeric state ($1/2^{-}[521]$) in ²⁵⁵Lr with a decay half-life of $T_{1/2} = 2.56 \pm 0.25$ s. For ²⁵¹Md the quality of the data was improved too. An 294 keV γ line, of E1 or E2 character, transition was identified in coincidence with α decay of energy $E_{\alpha} = 7535 \pm 10$ keV for the first time. The level populated by this α decay was tentatively assigned to a $7/2^{-}[514]$ Nilsson level.
- 4. The decay chain of ²⁵⁴Lr. The γ lines with the energies of $E_{\gamma} = 42.3$ keV, $E_{\gamma} = 209.2$ keV and $E_{\gamma} = 305.1$ keV were observed to be in coincidence with ²⁵⁴Lr α decays. Due to the low statistics collected in this experiment and complicated decay structure it is not possible to propose any decay scheme based on these data. Some tentative decay scheme can be drawn in case of ²⁵⁰Md α decay (see figure 6). For this isotope a new transition of energy $E_{\gamma} = 152$ keV was observed as a part of Re- α - α - γ chain.

As was already mentioned, this work is a part of long-term and continuous project and further spectroscopy investigation of the superheavy region is planed at SHIP in the future. The aim is to continue with study of more neutron deficient nuclei and also the isotopes of heavier elements with higher proton number.

For odd-even elements the measurements using existing setup of SHIP detectors give a good possibility to evaluate the decay scheme and spin - parity characteristic of low lying Nilsson levels. For odd-odd isotopes the situation is more difficult due to a strong effect of energy summing with electrons coming from internal conversion process. To improve the situation, it is necessary to measure the energy spectrum of escaped electrons in coincidence with α decay. These measurements are already realized on some other experimental setup, e.g. at RITU in Jyväskylä (Finland), where the detector device GREAT (Gamma Recoil Electron Alpha Tagging) is used.

To observe the α decays and γ transitions of low intensity it is necessary to increase a collected statistics for the isotopes of our interest. It is necessary to increase the total efficiency of the current experimental setup, improve reliability of analysis technique, increase beam intensity delivered by accelerator, improve a target properties etc. These changes require lot of effort and beam time.

For example, one of the obstacles is a low melting point of the lead and bismuth targets what is a limiting factor for an increasing of the beam intensity. Recently, this problem was partially solved by applying of the chemical compounds of lead and bismuth with sulfur or fluoride with higher melting point [Lom02],[Kin00]. Experiments with other

 $^{^{5}}$ As was already mentioned, beside the SHIP experiment aimed to the study of 255 Lr, an additional two experiments were performed in Jyväskylä (Finland) and GANIL (France) [Hes04]. The results of these experiments were in agreement with the conclusion of this thesis work.

projectile-target combinations seem promising. Recently the production of superheavy elements with platinum target was tested successfully [Cag02]. The other possibility, for the increase of beam intensity accepted by target, is the target cooling. The active cooling with Helium atmosphere was tested in last years with promising results [Ant04].

Necessary technical development will allow not only the production of new isotopes and study of the elements synthesized in last years but also the research of nuclear structure in case of superheavy elements. This is stringent test and base of theoretical calculation which needs to be improved, as was clearly shown in this thesis work.

Referencie

[Ahm00] I. Ahmad, R.R. Chasman, P.S. Fields, Phys. Rev. C61 (2000), 044301

- [Ant04] S. Antalic, et al. Nucl. Instrum. and Methods A 530 (2004), 185-193
- [Cag02] P. Cagarda Thesis work, FMFI UK, Bratislava (2002).
- [Cwi94] S. Cwiok, S. Hofmann, W. Nazarewicz, Nucl. Phys. A573, (1994), 356-394
- [GO4] H.G. Essel, GSI Object Oriented On-line Off-line system, GSI Darmstadt (2002); URL: http://go4.gsi.de
- [GOO] H.G. Essel, GOOSY Data Acquisition and Analysis, GSI Darmstadt (1988); URL: http://www-gsi-vms.gsi.de/anal/home.html
- [EsP73] Eskola P., Phys. Rev. C7 (1973), 280-289
- [FiS96] R.B. Firestone and V.S. Shirley (Editors), *Table of Isotopes*, 8th edition, (John Wiley and Sons, New York, 1996).
- [Hat89] Y. Hatsukawa, et al. Nucl. Physics A500 (1985), 90-110
- [Hes85] F.P.Heßberger, et al. Z. Phys. A **322** (1985), 557-566
- [Hes04] F.P. Heßberger, private communication (2004).
- [Hof94] S. Hofmann, et al. GSI Scietific Report 1993 (1994), 64
- [Hof95a] S. Hofmann, et al. Z. Phys., A**350** (1995), 277-280
- [Hof95b] S. Hofmann, et al. Z. Phys., A**350** (1995), 281-282
- [Hof96] S. Hofmann, et al. Z. Phys., A**354** (1996), 229-230
- [Hof00] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. **72** (2000), 733.
- [Hof01] S. Hofmann, F.P. Hessberger, et al. Eur.Phys. J. A10 (2001), 5.
- [Kin00] B. Kindler, et al. CP576, Proceedings to the 16th Int. Conference on Application of Accelerators in Research and Industry, Denton, Texas, Npv. 1-5. 2000, Edited by J.L. Duggan and I.L. Morgan.

- [Lom02] B. Lommel, et al. Nucl. Instrum. and Methods A 480, (2002), 16-21
- [Mor04] K. Morita et al. J. Phys. soc. Jpn **73**, (2004), 2593-2596
- [Mun79] G. Münzenberg, W. Faust, S. Hofmann, P.Armbruster, Nucl. Instrum. and Methods161, (1979) 65-82
- [Mun81a] G. Münzenberg, et al. Z. Phys. A 300, (1981), 107-108
- [Mun82] G. Münzenberg, P.Armbruster, et al., Z. Phys. A 309, (1982), 89
- [Mun84] G. Münzenberg, P.Armbruster, et al., Z. Phys. A 317, (1984), 235
- [Nin96] V. Ninov, F.P. Hessberger, et al. Z. Phys. A 356, (1996), 11-12
- [Oga99a] Yu.Ts. Oganessian, et al. Nature **600**, (1999), 242
- [Oga99b] Yu.Ts. Oganessian, et al. Phys. Rev. Lett. 83, (1999), 3154-3157
- [Oga99c] Yu.Ts. Oganessian, et al. Eur. Phys. J. A5, (1999), 63-68
- [Oga00a] Yu.Ts. Oganessian, et al. Phys. Rev. C62 (2000), 041604(R).
- [Oga00b] Yu.Ts. Oganessian, et al. Phys. Rev. C63 (2000), 011301(R).
- [Oga01a] Yu. Ts. Oganessian, et al. Nucl. Phys A682 (2001), 108c-113c.
- [Oga01b] Yu.Ts. Oganessian, Nucl. Phys. A685 (2001), 17c.
- [Oga02] Yu.Ts. Oganessian, Eur. Phys. J. A13 (2002), 135.
- [Oga04] Yu.Ts. Oganessian, et al. Phys. Rev. C69 (2004), 021601(R)
- [Sar96] S. Sáro, et al. Nucl. Inst. and Meth. A381, (1996) 520.

6 Zoznam publikacií

6.1 Publikácie v časopisoch

- S. Hofmann, F.P. Hessberger, D. Ackermann, <u>S. Antalic</u>, P. Cagarda, S. Cwiok, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Munzenberg, A.G. Popeko, S. Saro, H.J. Schott, A.V. Yeremin The New Isotope 270-110 and Its Decay Products 266Hs and 262Sg Eur.Phys.J. A10 (2001) 5.
- F.P.Heßberger, S.Hofmann, I.Kojouharov, D.Ackermann, <u>S. Antalic</u>, P.Cagarda, B.Kindler, B.Lommel, R.Mann, A.G.Popeko, S.Saro, J.Uusitalo, A.V.Yeremin Radioactive decay of 217Pa Eur.Phys.J. A 15, (2002), 335

- S. Hofmann, F.P. Hessberger, D. Ackermann, G. Munzenberg, <u>S. Antalic</u>, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A.G. Popeko, S. Reshitko, S. Saro, J. Uusitalo, A.V. Yeremin, New result on elements 111 and 112, Eur. Phys. J. A14 (2002) 147.
- A.N. Andreyev, D. Ackermann, <u>S. Antalic</u>, H.J. Boardman, P. Cagarda, J. Gerl, F. P. Hessberger, S. Hofmann, M. Huyse, D. Karlgren, A. Keenan, H. Kettunen, A. Kleinbohl, B. Kindler, I. Kozhoukharov, A. Lavrentiev, C. D. O'Leary, M. Leino, B. Lommel, M. Matos, C.J. Moore, G. Munzenberg, R.D. Page, S. Reshitko, S. Saro, H. Schaffner, C. Schlegel, M. J. Taylor, K. Van de Vel, P. Van Duppen, L.Weissman α-decay spectroscopy of light odd-odd Bi isotopes I: ^{188,190}Bi nuclei Eur.Phys.J. A 18, (2003) 39-54
- D.Ackermann, <u>S. Antalic</u>, M.Axiotis, D.Bazzacco, S.Beghini, G.Berek, L.Corradi, G.De Angelis, E.Farnea, A.Gadea, F.P.He &berger, S.Hofmann, M.G.Itkis, G.N.Kniajeva, E.M.Kozulin, A.Latina, T.Martinez, R.Menegazzo, G.Montagnoli, G.Munzenberg, Yu.Ts.Oganessian, C.Rossi Alvarez, M.Ruan, R.N.Sagaidak, F.Scarlassara, A.M.Stefanini, S.Szilner, M.Trotta, and C.Ur Reaction mechanism studies using the CN/ER spin distribution Eur.Phys.J. A20 (2004) 151-152
- 6. S. Hofmann, F.P. He &berger, D. Ackermann, <u>S. Antalic</u>, P. Cagarda, B. Kindler, P. Kuusiniemi, M. Leino, B. Lommel, O.N. Malyshev, R. Mann, G.M. Munzenberg, A. G. Popeko, S. Saro, B. Streicher, A. Yeremin Properties of heavy nuclei measured at the GSI SHIP Nucl. Phys. A734 (2004) 93-100
- S. Antalic, P.Cagarda, D. Ackermann, H.-G.Burkhard, F.-P. Heßberger, S. Hofmann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, S. Saro, H.-J.Shött Target cooling for high current experiments at SHIP Nucl. Instr. Meth. A530, (2004) 185-193

6.2 Vybrané Konferenčné Príspevky

- B. Kindler, <u>S. Antalic</u>, H.-G. Burkhard, P.Cagarda, D. Gembalies-Datz, W. Hartmann, S. Hofmann, J. Kojouharova, J. Klemm, B. Lommel, R. Mann, H.-J. Schött, J. Steiner, Status of the target Development for the Heavy Element Program, Proceedings of the 16th International Conference on the Application of Accelerators in Research and Industry edited by J.L. Duggan and I.M. Morgan, American Institure of Physics 0-7354-0015-6/01, p.1148-1151. (2001)
- 2. P. Cagarda, <u>S. Antalic</u>, S. Saro, S. Hofmann, F.P. Hessberger, D. Ackermann, B. Kindler, B. Lommel, J. Kojouharova, R. Mann, H.-J. Schött, A.V. Yeremin, A.G. Popeko, J. Uusitalo, The new isotopes 233Cm and 234Cm, to be published in the Proceedings of the 4th International conference on the Dynamical Aspect in Nuclear Fission '01, Casta-Papiernicka, Slovakia, 23 27 October 2001, World Scientific pub.

3. <u>S. Antalic</u>, S. Saro

Possibilities and limits for mass measurement of heavy evaporation residues Proceedings of the 5th International conference on the Dynamical Aspect in Nuclear Fission, , World Scientific pub. (2002), 524-533

4. S. Hofmann, F.P. Hebberger, D. Ackermann, <u>S. Antalic</u>, P. Cagarda, B. Kindler, P. Kuusiniemi, M. Leino, B. Lommel, O.N. Malyshev, R. Mann, G. Münzenberg, A.G. Popeko, S. Saro, B. Streicher, A.V. Yeremin Properties of heavy nuclei measured at the GSI SHIP Proceedings of the VIII International Conference on Nucleus-Nucleus Collisions (NN2003)

6.3 Reporty a Preprinty

- S. Hoffmann, F.P. Hessberger, D. Ackermann, P. Armbruster, H.G. Burkhard, B. Kindler, B. Lommel, R. Mann, G. Munzenberg, S. Reshitko, H.J. Schott, A.Yu. Lavrentiev, A.G. Popeko, A.V. Yeremin, <u>S. Antalic</u>, P. Cagarda, S. Saro, M. Leino The Reaction 86Kr + 208Pb to 294-118* Studied at SHIP GSI Sci.Rep. 1999, (2000) p.7.
- S. Hofmann, F.P. Hessberger, D. Ackermann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Munzenberg, S. Reshitko, H.J. Schott, A.G. Popeko, A.V. Yeremin, <u>S. Antalic</u>, P. Cagarda, S. Saro, H. Kettunen, M. Leino, J. Uusitalo Results on Element 111 and 112 GSI Sci. Rep. 2000, (2001), p.1 - 2.
- S. Hofmann, F.P. Hessberger, D. Ackermann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Münzenberg, H.J. Schött, A.G. Popeko, A.V. Yeremin, <u>S. Antalic</u>, P. Cagarda, S. Saro, S. Cwiok, The New Isotope 270-110 and its Decay products 266Hs and 262Sg, GSI Sci.Rep. 2000, GSI 2001-1, (2001) p.3.
- B. Kindler, <u>S. Antalic</u>, H. Burkhard, P. Cagarda, D. Gembalies-Datz, W. Hartmann, J. Klemm, J. Kojouharova, B. Lommel, R. Mann, H. Schött, J. Steiner, D. Ackermann, F.P. Hessberger, S. Hofmann Improvements of the Target Durability for the Heavy Element Production GSI Sci.Rep. 2000, (2001) p.204 - 205.
- F.P. Hessberger, S. Hofmann, I. Kojouharov, D. Ackermann, <u>S. Antalic</u>, P. Cagarda, B. Kindler, B. Lommel, R. Mann, A.G. Popeko, S.Saro, J. Uusitalo, A.V. Yeremin, Alpha decay studies of 217g-Pa and 217m-Pa, GSI Sci.Rep. 2001, (2002) p.12.
- K. Van de Vel, A.N. Andreyev, D. Ackermann, <u>S. Antalic</u>, H.J. Boardman, P. Cagarda, J. Gerl, F.P. Hessberger, S. Hofmann, M. Huyse, D. Karlgren, B. Kindler, I. Kozhoukharov, M. Leino, B. Lommel, G. Munzenberg, C. Moore, R.D. Page, C. Schlegel, P. Van Duppen Fine structure in the alpha decay of neutron-deficient polonium isotopes GSI Sci.Rep. 2001, (2002) p.14.

- P. Cagarda, <u>S. Antalic</u>, D. Ackermann, F.P. Hessberger, S. Hofmann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, A.G. Popeko, S. Saro, J. Uusitalo, A.V. Yeremin New isotopes 234Cm and 233Cm GSI Sci.Rep. 2001 (2002) p.15.
- D. Ackermann, G. Berek, <u>S. Antalic</u>, M. Axiotis, D. Bazzacco, S. Beghini, L. Corradi,G. De Angelis, E. Farnea, A. Gadea, F.P. Heßberger, S. Hofmann, M.G. Itkis, G.N. Kniajeva, E.M. Kozulin, A. Latina, T. Martinez, N. Marginean, R. Menegazzo, G. Montagnoli, G. Münzenberg, D.R. Napoli, Yu.Ts. Oganessian, C. Rossi-Alvarez, M. Ruan, R.N. Sagaidak, F. Scarlassara, A.M. Stefanini, S. Szilner, M. Trotta, C.Ur γ-Multiplicities to Study Reaction Mechanism Close to the Z=82 p-Shell Laboratori Nazionali di Legnaro, Annual Report 2002, (2003) 33-34
- S. Hofmann, D. Ackermann, <u>S. Antalic</u>, H.G. Burkhard, P. Cagarda, F.P. Heßberger, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, O.N. Malyshev, R. Mann, G. Münzenberg, A.G. Popeko, S. Saro, H.J. Schött, B. Streicher, B. Sulignano, J. Uusitalo, A.V.Yeremin Search for Element 113 GSI Sci.Rep. 2003, (2004), p.1
- 10. F.-P. Heßberger, S. Hofmann, D. Ackermann, <u>S. Antalic</u>, P. Cagarda, I. Kojouharov, P. Kuusiniemi, R. Mann, S. Saro Nilsson Levels in Odd Mass Odd Z Nuclei in the Region Z = (99-105) GSI Sci.Rep. 2003, (2004), p.3
- R. Mann, D. Ackermann, <u>S. Antalic</u>, H.-G. Burkhard, P. Cagarda, D. Gembalies-Datz, W. Hartmann, F.-P. Heßberger, S. Hofmann, B. Kindler, P. Kuusiniemi, B. Lommel, S. Saro, H.-J. Schött, J. Steiner On-line Target control GSI Sci.Rep. 2003, (2004), 224
- A.N. Andreyev et al. incl. <u>S. Antalic</u> New isotopes ^{186,187}Po and ¹⁹² GSI Sci.Rep. 2004, (2005).